
Case Study Based Questions 

Case Study 1 
In a park, four poles are standing at positions A, B, C and D around the fountain such 
that the cloth joining the poles AB, BC, CD and DA touches the fountain at P, Q, R and S 
respectively as shown in the figure. 

 

Based on the above information, solve the following questions: 

Q1. If O is the centre of the circular fountain, then <OSA = 
a. 60° 
b. 90° 
c. 45° 
d. All of these 

Q2. Which of the following is correct? 
a. AS = AP 
b. BP = BQ 
c. CQ = CR 
d. None of these 

Q3. If DR = 7 cm and AD = 11 cm, then AP = 
a. 4 cm 
b. 18 cm 
c. 7 cm 
d. 11 cm 

Circles 



Q4. If O is the centre of the fountain, with <QCR = 60°, then <QOR = 
a. 60° 
b. 120° 
c. 90° 
d. 30° 

Q5. Which of the following is correct? 
a. AB + BC = CD + DA 
b. AB+ AD = BC + CD 
c. AB + CD = AD + BC 
d. All of these 

Solutions 

 
Here, OS the is radius of circle. 
Since, radius at the point of contact is perpendicular to tangent. 
So, <OSA = 90° 
So, option (b) is correct. 

2. (d) Since, length of tangents drawn from an external point to a circle are equal. 
.. ASAP, BP BQ, 
CQ = CR and DR = DS ...(1) 
So, option (d) is correct. 

3. (a) AP AS AD-DS = AD-DR (using eq. (1)) 
= 11-7=4 cm 
So, option (a) is correct. 

4. (b) In quadrilateral OQCR, ZQCR = 60° (Given) 
And <OQC = <ORC = 90° 
(Since, radius at the point of contact is perpendicular to tangent.) 
<QOR = 360°-90°-90°-60° 



= 120° 
So, option (b) is correct. 

 

5. (c) From eq. (1), we have ASAP, DS = DR, 
BQ=BP and CQCR 
Adding all above equations, we get 
AS+DS+BQ+CQ=AP+DR+BP+CR 
= AD+BC AB + CD 
So, option (c) is correct. 

Case Study 2 
For class 10 students, a teacher planned a game for the revision of chapter circles with 
some questions written on the board, which are to be answered by the students. For 
each correct answer, a student will get a reward. Some of the questions are given below. 

 

Based on the given information, solve the following questions: 

Q1. In the given figure, x + y = 

 



Q2. If PA and PB are two tangents drawn to a circle with centre O from P such that PBA = 
50°, then <OAB = 
a. 50° 
b. 25° 
c. 40° 
d. 130° 

Q3. In the given figure, PQ and PR are two tangents to the circle, then <ROQ= 

 

a. 30° 
b. 60° 
c. 105° 
d. 150° 

Q4. In the given figure, AB is a chord of the circle and AOC is its diameter such that ACB = 
55°, then <BAT= 

 

a. 35° 
b. 55° 
c. 125° 
d. 110° 



Q5. In the given figure, if PC is the tangent at A of the circle with <PAB 72° and <AOB = 
132°, then <ABC = 

 

a. 18° 
b. 30° 
c. 60° 
d. Can't be determined 

Solutions 

1. (b) In ∆OAC, <OCA = 90° 
Since, radius at the point of contact is perpendicular to tangent. 
.. <OAC + <AOC = 90° = x+y=90° 
So, option (b) is correct. 

 
Since, OB I PB (since, radius at the point of contact is perpendicular to tangent) 
and <PBA 50° (Given) 
<OBA=90° 50° = 40° 
Also, OA = OB 
.. <OAB <OBA = 40° 
(radii of circle) 
(angle opposite to equal sides are equal) 
So, option (c) is correct. 

3. (d) In quadrilateral OQPR, 
<ROQ + <RPQ = 180° 
(Angle between the two tangents drawn from an external point to a circle is 



supplementary to the angle subtended by the line segment joining the point of contact at 
the centre) 
..<ROQ = 180° -30° = 150° 
So, option (d) is correct. 

4. (b) Here, <ABC = 90° (angle in a semicircle) 
Now, In ∆ABC, 
<BAC+ <ACB+ <ABC = 180° 
(by angle sum property of triangle) 
⇒ <BAC +55°+90° = 180° 
⇒ <BAC=180°-145° = 35° 
Also, <OAT 90° ( radius at the point of contact is perpendicular to tangent) 
⇒ <BAT+<OAB = 90° 
⇒ <BAT = 90° -35° (: <CAB = <OAB) 
= 55° 
So, option (b) is correct. 

5. (b) Here, <PAB = 72° 
:- OAP = 90° (;- OA I AP) 
<OAB + PAB = 90° 
= <OAB = 90° - 72° = 18° 
Also, <AOB=132° (given) 
Now in ∆OAB, 
<ABO+<BAO+<AOB = 180° 
(by angle sum property of triangle) 
<ABO = 180° - 132° -18° = 30° 
:. <ABC + <ABO= 30° 
So, option (b) is correct. 

Case Study 3 
In a math class-IX, the teacher draws two circles that touch each other externally at point 



M with centres A and B and radii 5 cm and 4 cm respectively as shown in the figure. 

 

Based on the above information, solve the following questions: 

Q1. Find the value of PX. 

Q2. Find the value of QY. 

Q3. Show that PS2 = PM-PX. 

Or 

Show that TQ² = YQ.MQ 

Solutions 

1. Here, AS = 5 cm and BT = 4 cm (*:* radii of circles)  
Since, radius at point of contact is perpendicular to tangent. 

 

 

 



3. In right-angled ∆ASP, 

PS²=PA2-A52 

= PA2-AM2  [:- AS = AM (radii)] 

= (PA + AM) (PA - AM) 

= (PA + AM) (PA - AX) 

= PM-PX [:- AM = AX (radii)]         Hence proved. 

Or 

TQ2²=BQ2-TB2 
= (BQ - TB) (BQ + TB) (:- TB = MB (radii)) 
(BQ-MB) (BQ + MB) 
(BQ-BY) MQ [:- MB = BY (radii)] 
YQ.MQ (:- BQ+ MB = MQ, BQ - BY = YQ)   Hence proved. 

Case Study 4 
If a tangent is drawn to a circle from an external point, then the radius at the point of 
contact is perpendicular to the tangent.  

Based on the above information, solve the following questions: 

Q1. In the given figure, O is the centre of two concentric circles. From an external point P 
tangents PA and PB are drawn to these circles such that PA = 6 cm and PB = 8 cm. If OP = 
10 cm, then find the value of AB. 

 

Q2. The diameter of two concentric circles are 10 cm and 6 cm. AB is a diameter of the 
bigger circle and BD is the tangent to the smaller circle touching it at D and intersecting 
the larger circle at P on producing. Find the length of BP. 



 

Q3. Two concentric circles are such that the difference between their radii is 4 cm and 
the length of the chord of the larger circle which touches the smaller circle is 24 cm. Then 
find the radius of the smaller circle. 

Or 

If AB is a chord of a circle with centre O, AOC is a diameter and AT is the tangent at A as 
shown in figure. Prove that <BAT = <ACB. 

 

Solutions 

1. Since, radius is perpendicular to the tangent. 
.. OB I BP and OA I AP 
Now in right-angled ∆OBP and ∆OAP, 
Here, OP2 - PB2 - 0B2 and OP2 - PA2 = OA² 

 



 

Since, chord BP is bisected by radius OD. 
.. BP = 2 BD = 2 x 4 = 8 cm. 

3. Let x be the radius of smaller circle, then (x+4) be the radius of larger circle, 

 

Since, radius is perpendicular to the tangent. 
.. OD I AB 
Now in right-angled ∆ODA, 
OA² = OD² + AD2 (by Pythagoras theorem) 
⇒(x+4)²= x²+122 
>>8x+16=144 
x= 16 cm 

Or 

Since, AC is a diameter, so the angle in a semi-circle will be 90°. 
In ∆ABC, 
:- <ABC = 90° 
<CAB+ <ABC + <ACB=180° 
(sum of interior angles of a triangle) 
= <CAB + <ACB=180°-90°-90° (1) 
Since, the diameter of the circle is the perpendicular to the tangent. 



i.e.. CA I AT 
:- <CAT=90° 
=> <CAB+ <BAT 90° ...(2) 
From (1) and (2), we get 
<CAB+<ACB= <CAB + <BAT 
<ACB = <BAT Hence proved. 

Case Study 5 
Circles play an important part in our life. When a circular object is hung on the wall with 
a chord at nail N, the chords NA and NB work like tangents. Observe the figure, given 
that 
<ANO = 30° and OA = 5 cm. [CBSE 2023] 

 
Based on the above information, solve the following questions: 

Q1. Find the distance AN. 

Q2. Find the measure of <AOB. 

Q3. Find the total length of chords NA, NB and the chord AB. 

Or 

Name the type of quadrilateral OANB. Justify your answer. 

 

 

 

 

 

 



Solutions 

1. 

 

2.  :- <ANO = <BNO = 30° 
= <ANB=2x <ANO = 2 x 30° = 60° 
:- OA I AN and OB I BN 
:- <OAN = <OBN=90° 
Now in quadrilateral OANB, 
<AOB + <OAN + <OBN + <ANB = 360° 
= <AOB+90°+90° +60° = 360° 
:- <AOB = 360°-240° = 120° 

3. In ∆AOB, 
OA = OB (radii of circle) 
= <OAB = <OBA 0 (Say) 
:- <OAB + <OBA + <AOB = 180° 
(by angle sum property] 
= 0+0+120° 180° (:- ZAOB = 120°) 
⇒20=60° = 0=30° 
:- <OAB = <OBA = 30° 
:- <OAN = <OAB + <BAN 
:- 90° = 30°+<BAN 
⇒ <BAN= 90° -30° = 60° 
Similarly, <ABN = 60° 
<ANB = <BAN = <ABN = 60° 
:-  ∆ANB is an equilateral triangle. 



:- Total length of chords = NA + NB+ AB 
(:- AN = BN AB =5√3 cm) 
=5√3+5√3+5√3 
= 15√3 cm 
From above parts, 
<OAN = <OBN=90° 
But <AOB = <ANB 
Also, AN = BN = 5√3 cm 
(the length of two tangents drawn from an external point of a circle are equal.] 
and OA OB 5 cm (Radii) 
In quadrilateral OANB, 
longer diagonal ON bisect shorter diagonal AB perpendicularly. 
(: the perpendicular from the centre of a circle to a chord bisect the chord) 
Hence, the special name of quadrilateral OANB is kite. 
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