SIMPLE HARMONIC MOTION

- **Periodic Motion:** If the motion of a body is re peated in regular intervals of time, then the motion is called periodic Motion.
- Harmonic Motion: If the displacement of a particle either in periodic motion or in vibratory motion is expressed in harmonic functions like "sine" or "cosine", such a motion often is called Harmonic Motion.

All vibratory motions are periodic. But all periodic motions need not be vibratory

Ex: Motion of earth around the sun is periodic but not vibratory

• **CONDITIONS FOR S.H.M.:** The body is said to be in SHM if :

- (i) it moves to and fro about a fixed point
- (ii) its acceleration is always directed towards the fixed point and
- (iii) the acceleration is directly proportional to the displacement and opposite to its

direction $a \propto -y$; $a = -\omega^2 y$.

• EXAMPLES FOR SIMPLE HARMONIC MOTION:

1.Simple Pendulum

2. Motion of needle of a sewing machine

3. Motion of the prongs of a vibrating tuning fork.

4. Vertical oscillatory motion of a loaded spring.

• AMPLITUDE(A):

i) The maximum displacement of the particle executing S.H.M is known as amplitude.

ii) If s is the span of S.H.M, amplitude A will be s/2.

• **PHASE (φ):**

Phase represents the state of vibration of the particle at an instant of time. It gives the position, velocity, direction of motion, acceleration of the particle at that instant.

Phase is a linear function of time. A graph drawn between time on X-axis and phase ϕ on Y-axis is a straight line not passing through the origin.

NOTE:

In SHM equal changes of phase occur in equal intervals of time.

EQUATIONS OF S.H.M.:

• If x is displacement of a body executing simple harmonic oscillatation (S.H.O.) from its mean position, then

$$\mathbf{x} = \operatorname{ASin}\left(\omega t + \phi\right)$$

$$= ASin(2\pi nt + \phi) = Asin\left(\frac{2\pi t}{T} + \phi\right)$$

Where

Phase = $(\omega t + \phi)$

 ϕ = initial phase angle from mean position (epoch)

A=Amplitude; T=time period of oscillation; n = frequency;

If the particle is initially at the mean position. Then $\phi = 0$, $x = ASin\omega t$

In a time interval
$$t = \frac{T}{12}$$
 from mean position,

$$x = \frac{A}{2}$$
 from mean position.

In a time interval $t = \frac{T}{6}$ from extreme position.

$$x = \frac{A}{2}$$
 from mean position.

In a time interval $t = \frac{T}{8}$ from mean position,

 $x = \frac{A}{\sqrt{2}}$ from mean position

(Where T is time period of oscillation; A = amplitude)

If the particle is initially in the extreme position. Then $\phi = 90^{\circ}$

Substituting in $x = ASin(\omega t + \phi)$

We get $x = ACos\omega t$

If V is velocity of S.H.O. at a phase angle θ or at a displacement x from mean position, then

$$V = \omega ACos(\omega t + \phi) = V_{max}Cos(\omega t + \phi)$$

$$= \omega \sqrt{A^2 - x^2}$$

Where $\omega = \frac{2\pi}{T} = 2\pi n$

Average speed in SHM:

The average speed during one complete oscilla-

tion is given by $V_{Avg} = \frac{4A}{T}$, where T is time pe-

riod of oscillation.

Note: Average velocity during one complete oscillation is zero.

If a is acceleration of S.H.O. at a displacement x from mean position, then

 $a = -\omega^2 A Sin(\omega t + \phi) = -\omega^2 x$

TIME PERIOD:

i) The time taken by the particle to complete one oscillation (i.e., one complete to and fro motion) is known as time period.

JR.PHYSICS

•

•

ii) The smallest time interval after which the oscillation repeats itself is called the time period of oscillation.

iii) If 'x' is the displacement of the particle executing S.H.M. at any time 't', it will achieve the same position again for the first time if time is advanced

by
$$\left(\frac{2\pi}{\omega}\right)$$
.
i.e., $t' = t + \left(\frac{2\pi}{\omega}\right)$ so that
 $x' = A\sin(\omega t' + \phi) = A\sin\left[\omega\left(t + \frac{2\pi}{\omega}\right) + \phi\right]$

$$= A \sin(\omega t + \phi)$$

iv) In other words, the displacement repeats after

a time interval of $\frac{2\pi}{\omega}$ so that $T = \frac{2\pi}{\omega}$

(v) When a hole is drilled along the diameter of the earth and if a body is dropped in it, it moves to and fro about the centre of the earth and is in S.H.M. with a time period of

$$T = 2\pi \sqrt{\frac{R}{g}} = 84.6 \text{ minutes } or T = \sqrt{\frac{3\pi}{GD}}$$

D = Mean density of the earth.

G =Gravitational constant.

• FREQUENCY (n):

i) The number of oscillations made by the vibrating body in one second is known as frequency. ii) The reciprocal of time period is known as frequency. n = 1/Tiii) The S.I. unit of frequency is hertz. (cycle / sec)

• Phase difference between displacement and ve-

locity of S.H.O. =
$$\frac{\pi}{2}$$
 radian = 90 °

- Phase difference between displacement and acceleration of S.H.O. = π radian = 180 °
- Phase difference between velocity and accelera-

tion of S.H.O. =
$$\frac{3\pi}{2}$$
 or $\frac{\pi}{2}$ radian

• If F is force acting on S.H.O. at a displacement x from mean position, then

 $F=-\,m\,\omega^2 x$

i) When x = 0, F = 0 (min)

ii) When
$$x = \pm A$$
 then $F = \mu m\omega^2 x$ (max.)

If T is time period of oscillation, n is frequency of S.H.O. then

$$T = 2\pi \sqrt{\frac{x}{a}} \qquad ==> \quad n = \frac{1}{2\pi} \sqrt{\frac{a}{x}}$$

where a is acceleration of S.H.O. at a displacement x from its mean position.

A particle is vibrating in SHM. If its velocities are V_1 and V_2 when the displacements from the mean position are y_1 and y_2 respectively. then its time

period is
$$2\pi \sqrt{\frac{y_2^2 - y_1^2}{V_1^2 - V_2^2}}$$

ENERGY OF S.H.O.: Kinetic Energy

$$K.E. = \frac{1}{2}m\omega^2 (A^2 - x^2) = \frac{1}{2}m\omega^2 A^2 Cos^2\theta$$
$$K.E. = K.E_{\max} \left(1 - \frac{x^2}{A^2}\right) = K.E_{\max} Cos^2\theta$$

Potential Energy

$$P.E. = \frac{1}{2}m\omega^{2}x^{2} + U_{o} = \frac{1}{2}m\omega^{2}A^{2}Sin^{2}\theta + U_{o}$$

where m = mass of S.H.O.

x = displacement of S.H.O. from its mean position

A = amplitude of oscillation; θ = phase angle from its mean position

 $U_0 = P.E.$ of S.H.O. at its mean position; Total

energy
$$\Rightarrow T.E. = \frac{1}{2}m\omega^2 A^2 + U_c$$

• K.E. of S.H.O. is maximum at its mean position and zero at extreme position

• P.E. of S.H.O. is minimum at its mean position and maximum at its extreme position

T.E. is constant at all positions of S.H.O., Energy and diplacement curve :

If P.E. = 0 at mean position of S.H.O., then

• K.E. = P.E. at a displacement $x = \frac{A}{\sqrt{2}}$ from mean position

• K.E. = 3 x P.E. at a displacement $x = \frac{A}{2}$

from mean position

• Displacement and acceleration graph of a S.H.O. is a straight line passing through origin

- Displacement and velocity graph of a S.H.O. is an ellipse $T \alpha \frac{1}{\sqrt{g}} \text{ or } g T^2 = \text{constant}$ (if length of the Velocity and acceleration graph of a S.H.O. is an ellipse. pendulum is constant) • If 'n' is the frequency of oscillation of a S.H.M , then its P.E and K.E veries with a frequency of $\frac{T_1}{T_2} = \sqrt{\frac{g_2}{g_1}}$ 2n. Simple Pendulum : • The arrangement, in which a point mass is suspended from a massless $l \alpha g \text{ or } \frac{g}{l} = \text{constant} (\text{when T is constant})$ flexible and inextensible thread clamped to a rigid support, is defined as simple pendulum. When a pendulum clock is taken from the equator to the poles the time period decreases. Hence it makes more oscillations and gains time and moves fast. When a pendulum is taken from the earth to moon, the time period increases (as g is less on moon). Hence it makes less number of oscillations and looses time or moves slow. When a pendulum clock is taken from the earth to the moon, to keep the time correct its length must An ideal simple pendulum is not possible hence a be decreased. heavy bob suspended from a light inextensible • If the pendulum of a clock is made of metal, it runs string acts as a simple pendulum. slow during summer and fast during winter due to The tension in the string at any position is equal to thermal expansion or contraction. $= mg\cos\theta + \frac{mv^2}{l}$ • If a boy sitting in a swing stands up, as centre of mass raises up, distance to the centre of mass Equation of motion of a simple pendulum in decreases and hence the period of the swing decreases. differential form is $\frac{d^2y}{dt^2} + \omega^2 y = 0$, $\omega^2 = g/l$ • If the bob of a pendulum is made hollow and filled with water, and the water is drained out as the water goes down, centre of mass shifts down, and Time period of a simple pendulum $T = 2\pi \sqrt{\frac{l}{g}}$ then rises to its original position. Hence time period first increases and then decreases and reaches its for smaller amplitudes. original value. The period of oscillation of a simple pendulum of • 1 - T² graph of a simple pendulum is **straight line** constant length is independent of the size, shape, passing through origin. mass and material of the bob provided it is not 1-T graph of a simple pendulum is parabola. made of a very light substance like cork. y 1 - T graph \uparrow $\rightarrow 1 - T^2 \text{ graph}$ The period of oscillation of a simple pendulum of constant length is independent of the amplitude, provided the amplitude is small. $T \alpha \sqrt{l} \text{ or } \frac{l}{T^2} = \text{ constant} (\text{at a place})$ $\frac{l_1}{l_2} = \frac{T_1^2}{T_2^2}$ At the point of intersection of 1 - T graph and $1 - T^2$ graph of a simple pendulum T = 1 second for smaller percentages, $\frac{\Delta T}{T}\% = \frac{1}{2} \frac{\Delta l}{l}\%$ n = 1 Hz.
 - $l = \frac{g}{4\pi^2} \approx 25$ cm on the surface of the earth.

275

29. **APPLICATIONS:**

For percentage $\geq 5\%$, if the percentage change is ΔT_{100} $\begin{pmatrix} 2 & n^2 \end{pmatrix}$ "n"

then
$$\frac{\Delta T}{T} \times 100 = \left(2n + \frac{n}{100} \right)$$

When the elevator is going up with an accelera

tion a, then its time period is given by $T = 2\pi \sqrt{\frac{L}{g+a}}$ and frequency n is given by $n = \frac{1}{2\pi} \sqrt{\frac{g+a}{L}}$

When the elevator is moving down with an accel eration a, then its time period is given by

$$T = 2\pi \sqrt{\frac{L}{g-a}}$$
 and frequency n is given by
 $n = \frac{1}{2\pi} \sqrt{\frac{g-a}{L}}$

When the elevator is at rest or moving up or down with constant velocity then the time period is given

by
$$T = 2\pi \sqrt{\frac{L}{g}}$$
; $n = \frac{1}{2\pi} \sqrt{\frac{g}{L}}$

When the elevator is moving down with an retar dation (+a) then its time period is given by

 $T = 2\pi \sqrt{\frac{L}{g+a}} \quad ; \quad n = \frac{1}{2\pi} \sqrt{\frac{g+a}{L}} \; .$

In case of downward accelerated motion if a > gthe pendulum turns upside and oscillates about the

highest point with $T = 2\pi \sqrt{\frac{L}{a-g}}$.

If a simple pendulum of length 'L' suspended in a car travelling with a constant speed around a circle of radius 'r', Then its time period of oscillation is

given by $T = 2\pi \sqrt{\frac{L}{\sqrt{g^2 + \left(\frac{v^2}{r}\right)^2}}}$

If a simple pendulum of length 'L' suspended in car moving horizontally with an acceleration 'a' then

its time period is given by
$$T = 2\pi \sqrt{\frac{L}{\sqrt{g^2 + (a)^2}}}$$
. The

equilibrium position is inclined to the vertical by an

angle '
$$\theta$$
'. where $\theta = tan^{-1}\left(\frac{a}{g}\right)$ opposite to the ac celeration.

- If a simple pendulum of length L is suspended from the ceiling of a cart which is sliding without friction on an inclined plane of inclination ' θ '. Then the time period of oscillation is given by

$$T = 2\pi \sqrt{\frac{L}{g \cos \theta}}$$
 Since the effective acceleration

changes from g to $g\cos\theta$.

If the length of the pendulum is infinite i.e.,

 $l = \alpha$ T = 84.6 minutes.

If the length of the pendulum is equal to radius of the earth, then its time period is

$$T = 2\pi \sqrt{\frac{R}{2g}} = 59 \, \min \& 5 \, \mathrm{sec.}$$

If the length of the pendulum considerably large.

$$T = 2\pi \sqrt{\frac{l.R}{g(l+R)}}$$
 where R= radius of

l =length of the pendulum earth.

Work done by tension in the string of the simple pendulum

during one complete vibration equal to zero. A simple pendulum fitted with a metallic bob of density d has a time period T. When it is made to oscillate in a liquid of density d_1 , then its time period increases.

$$T = 2\pi \sqrt{\frac{l}{g\left(1 - \frac{d_l}{d_s}\right)}} = 2\pi \sqrt{\frac{l}{g\left[1 - \frac{1}{d_{rel}}\right]}}$$

When two simple pendula of lengths l_1 and l_2 are set into vibration in the same direction at the same instant with same phase, again they will be in same phase after the shorter pendulum has completed n oscillations. To find the value of n.

$$n T_s = (n-1)T_L and T \alpha \sqrt{l}$$

$$\therefore \frac{n}{n-1} = \frac{T_L}{T_s} \text{ or } \frac{n}{n-1} = \sqrt{\frac{l_L}{l_s}}, \quad L = \text{ longer}$$

S=shorter

Seconds pendulum:

- The simple pendulum whose time period is equal to 2 seconds is called seconds pendulum.
- Its length at a place where $g = 9.8 m / s^2$ is 100 cm
- Since $T = 2 \sec t$

$$L = \frac{g \cdot T^2}{4\pi^2}; \ L = \frac{g}{4\pi^2} \cdot 4 \quad \therefore L = \frac{g}{\pi^2}$$

The length of a pendulum at a place where $g = g_1$ is l_1 and its length at a place where $g = g_2$ is l_2 . To keep the time period constant at $T = 2 \sec$, its length has to be

JR.PHYSICS

•

decreased or increased corresponding to the value of 'g' at that place.

Decrease in length =
$$\frac{g_1 - g_2}{\pi^2}$$
 (*if* $g_1 > g_2$

Increase in length = $\frac{g_2 - g_1}{\pi^2}$ (*if* $g_2 > g_1$)

• Due to small change in the value of g, the error in the time shown by a pendulum clock

during t seconds = $-\frac{1}{2}\frac{\Delta g}{g} \times t$

• Due to small change in the length of pendulum of pendulum clock, error in the time

shown by it during t seconds = $\frac{1}{2} \frac{\Delta l}{l} \times t$

- SPRING MASS SYSTEM :
 - Resorting force F = -kx
 - When the load is pulled down and released,

it makes vertical oscillations $T = 2\pi \sqrt{\frac{M}{K}}$

- Time period of spring mass system is independent of acceleration due to gravity.
- When a clock fitted with spring mass system is taken to the surface of the moon, it's time period will remain constant.
- If the spring mass is considered.

$$T = 2\pi \sqrt{\frac{M + \frac{m}{3}}{K}}$$
 (*m* = mass of the spring)

- Spring constant 'K' is inversely proportional to its length.
- When a spring of force constant K and length *l* is cut into two parts of lengths *l*₁ and *l*₂ having force constants K₁ and K₂

$$K \alpha \frac{1}{l} \text{ or } Kl = K_1 l_1 = k l_2$$

- If a spring of spring constant 'K' is divided into 'n' equal parts, then spring constant of each part is 'nK'.
- If a spring of spring constant 'K' and length 'l' is cut into two springs of lengths ' l_1 ' and

 l_2 , then the spring constants of the two parts are

$$K_1 = \frac{K(l_1 + l_2)}{l_1}$$
 and $K_2 = \frac{K(l_1 + l_2)}{l_2}$

When two springs of force constants K_1 and K_2 are connected in series, then the effective

force constant is $K = \frac{K_1 K_2}{K_1 + K_2}$

- When two springs of force constants k₁ and k₂ connected in parallel, the effective spring constant is k=k₁+k₂
- A spring of force constant K_1 attached to a mass 'm' oscillates with a time period of T_1 and another spring of force constant K_2 attached to the same mass 'm' oscillates with a time period of T_2 .
- When the springs are joined in series to the same mass 'm' the time period of oscillation

is given by $T = \sqrt{T_1^2 + T_2^2}$

• When the springs are joined in parallel to the same mass 'm' the time period of

oscillation is given by $T = \frac{T_1 T_2}{\sqrt{T_1^2 + T_2^2}}$.

MOTION OF A BALL IN A BOWL : If a small ball of mass m is placed at a small distance from O on a smooth concave surface of radius R and released, it will execute SHM about O. The time period of its SHM is

$$T = 2\pi \sqrt{\frac{R}{g}}$$

CONCEPTUAL QUESTIONS DISPLACEMENT, VELOCITY & ACCELERATION

1. If a particle is executing SHM, with an amplitude A, the distance moved and the displacement of the body in a time equal to its period are

1) 2A, A 2) 4A, 0 3) A, A 4) 0, 2A
The equation of motion of particle is given by dp/
dt + m
$$\omega^2 y=0$$
 where p is momentum and y is its

position. Then the particle

- 1) moves along a straight line
- 2) moves along a parabola
- 3) executes simple harmonic motion
- 4) falls freely under gravity

2.

•

3.A particle is in SHM. Then the graph of its accel-
ration as a function of displacement is
1) three bars of the graph of its accel-
ration as a function of displacement of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth and
a stone is dropped into it. If the radius of the earth is
1)
$$\sqrt{\frac{gR}{2}}$$
 2) $\sqrt{\frac{gR}{3}}$ 3) $\sqrt{\frac{2gR}{3}}$ 4) 2erv1.1. $\sqrt{\frac{gR}{2}}$ 2) $\sqrt{\frac{gR}{3}}$ 3) $\sqrt{\frac{2gR}{3}}$ 4) 2erv2.1. $\sqrt{\frac{gR}{2}}$ 2) $2\pi/\frac{\sqrt{R}}{3}$ 4) $2\pi/\frac{\sqrt{R}}{4}$ 3.1. $\frac{\pi}{2}$ a cos (at) The phase difference of the
velocitics of the two particles is
1) $\frac{\pi}{2}$ 2) $2\pi/3$ 3) $\sqrt{\frac{3}{2}}$ 2/ $\sqrt{\frac{3}{4}}$ 4) $2\pi/\frac{\pi}{4}$ 3.1. $\frac{\pi}{2}$ 2) $2\pi/\frac{\sqrt{R}}{3}$ 4) $2\pi/\sqrt{\frac{\pi}{2}}$ 4.1. $\frac{\pi}{2}$ and $\frac{\pi}{2}$ and

- 22. A hollow sphere of simple pendulum is first filled with mercury and then with water. The time periods are in the ratio if their densities are in the ratio 13.6:1. 1)1:12)1:23) 1 : 13.6 4) 13.6 : 1
- 23. The work done by the tension in the string of a simple pendulum in one complete oscillation is equal to 2) total energy of the pendulum 1) Zero 3) P.E. of the pendulum 4) K.E. of the pendulum
- 24. The period of a simple pendulum suspended from the ceiling of a car is T when the car is at rest. If the car moves with a constant acceleration the period of the pendulum

1) Remains same 2) decreases

3) increases 4) first increases then decreases

- 25. A pendulum clock is taken to the bottom of a deep mine. Will it gain or lose time? How should its length be altered to correct the time? 1) looses time, length to be increased

 - 2) looses time, length to be decreased
 - 3) gains time, length to be increased
- 4) gains time, length to be decreased 26. A pendulum bob is in SHM. The velocity of the bob in the mean position is V. If now the amplitude of oscillation is doubled and the length of the pendulum is also doubled, the speed of the bob in the mean position would be

1) V 2)
$$\sqrt{2}$$
 V 3) V/2 4) 4V

27. If T_1 , T_2 and T_3 are the time periods of a given simple pendulum on the surface of the earth, at a depth 'h' in a mine and at an altitude 'h' above the earth's surface respectively, then

1)
$$T_1 = T_2 = T_3$$

3) $T_2 > T_1 < T_3$
2) $T_2 < T_1 > T_3$
4) $T_1 > T_2 > T_3$

28. A pendulum of length L swings from rest to rest n times in one second. The value of acceleration due to gravity is

1)
$$4\pi^2 n^2 L$$
 2) $2\pi^2 n^2 L$ **3)** $\pi^2 n^2 L$ **4)** $\frac{\pi^2 n^2 L}{2}$

- 29. The percentage change in the time period of a seconds pendulum when its amplitude is reduced by 30% is 1) 45% 2) 0% 3) 27% 4) 70%
- 30. The frequency of a pendulum whose normal period 2 sec, when it is in an elevator in free fall, then the frequency will be 2) Infinity
 - 1) zero 3) 2sec

1

4) cannot be determined

31. A simple pendulum of length "I' is performing S.H.M. with maximum angular displacement θ . If the mass of the bob is 'm' then the maximum KE at its mean position is

1)
$$\frac{1}{2}m\left(\frac{l}{g}\right)$$

2) $\frac{mgl\sin\theta}{2}$
3) $\frac{mgl}{2}$
4) $mgl[1-\cos\theta]$

32. A simple pendulum of length L has been set up inside a railway wagon sliding down a frictionless inclined plane of inclination θ with the horizontal. What will be its period of oscillation as recorded by an observer inside the wagon

1)
$$2\pi \sqrt{\frac{L}{g\cos\theta}}$$
 2) $2\pi \sqrt{\frac{L}{g}}$
3) $2\pi \sqrt{\frac{L}{gSin\theta}}$ 4) $2\pi \sqrt{\frac{LCos\theta}{g}}$

33. A seconds pendulum is suspended from the roof of a bus. The time period of oscillation when the bus is moving along a straight horizontal road with uniform acceleration is

1) 2 sec $(2) < 2 \sec (3) > 2 \sec (4) 0$

34. The frequency of a particle executing simple harmonic motion is 10 hertz. The frequency of variation of its kinetic energy is

1) 20 Hz 2) 10 Hz 3) 5 Hz 4) Zero **SPRINGS**

35. The time period of a loaded spring on earth is 6s. On the surface of moon, the time period of the same loaded spring will be

1)
$$\sqrt{6s}$$
 2) $6\sqrt{6s}$ 3) 1s 4) 6s

36. T_1 is time period of oscillation of a body suspended to a spring and T₂ is time period of oscillation of same body suspended to another spring. If same body suspended to series combination of same two springs, what is its time period of oscillation.

1)
$$T_1 + T_2 = 2 \frac{T_1 T_2}{T_1 + T_2} 3 \frac{T_1 T_2}{\sqrt{T_1^2 + T_2^2}} 4 \sqrt{T_1^2 + T_2^2}$$

37. T_1, T_2 are time periods of oscillation of a block individually suspended to spring of force constants K₁, K, respectively. If same block is suspended to parallel combination of same two springs, its time period is

1)
$$T_1 + T_2 2$$
) $\frac{T_1 + T_2}{2}$ 3) $\frac{T_1 T_2}{T_1 + T_2}$ 4) $\frac{T_1 T_2}{\sqrt{T_1^2 + T_2^2}}$

38. A wrist watch keeps correct time on earth. If it is shifted to the surface of moon then it 1) Loses time 2) Gains time

39. A spring when loaded has a potential energy 'E'. Then 'm' turns out of 'n' turns are removed from the Spring. If the same load is suspended, then the energy stored in the spring is :

1)
$$\frac{n}{(n-m)}E$$
 2) $\frac{mE}{n}$ 3) $\frac{(n-m)}{m}E$ 4) $\frac{(n-m)}{n}E$

40.). A mass M is suspended from a light spring. An ac					NEW PATTERN QUESTIONS				
!	ditional mas	ss m added t	o it displaces	the spring fur-	1.	In SHM match the follow	ving			
 	ther by a dis	tance x the	n its time per	iod is		Column – I	Čolumn – II			
	$1)^{T} = 2\pi$	$\frac{mg}{x(M+m)}$	$2) T = 2\pi \sqrt{-1}$	$\frac{(M+m)x}{mg}$		a) Maximum velocity	e) $\frac{1}{2}$ M ω^2 A ²			
41	3) $T = 2\pi$	$\sqrt{\frac{(M+m)}{Mg}}$	$\frac{4x}{2}$ 4) T = 22	$\tau \sqrt{\frac{Mx}{mg}}$		b) Maximum acceleratio	n f) $\frac{1}{4}$ M ω^2 A ²			
41.	A CLOCK S 19	s based on c	oscillations of dulum motiv	of a spring and		c) Maximum Force	g) Aw			
 	run at the se	ased on pen ame rate on	Earth. On a	planet having		d) Maximum total energ	y h) $\omega^2 A$			
 	the same ma	as,. but twice	e the radius th	hat of the earth			i) $m\omega^2 \Lambda$			
!	1) S will run	faster than	P 2) P will ru	in faster than S		1)a-gb-bc-id	-e			
!	3) They will both run at the same rate as on Earth 4) Both do not function					2) $a - h, b - g, c - i, d - i$	e			
42	4) Both do not function. A hollow metal sphere is filled with water and it is					3) $a - g$, $b - h$, $c - f$, $d - f$	e			
^{-∓∠.}	hung by a lo	ng thread.It	is made to os	cillate. If there		4) a – g, b –i, c – h, d –	f			
!	be a small h	ole in the b	ottom throug	h which water	2.	When a body is in SHM	I, match the statements in			
	slowly flows out, then its period of oscillation is					Column A with that in Co	olumn B			
!	1) goes on increasing until the sphere is empty 2) goes on decreasing till the sphere is empty					Column A	Column B			
 	2) goes on decreasing till the sphere is empty 3) remains unchanged throughout				a) Velocity is maximum	e)At half of the				
!	4) first incre	ases and lat	er decreases i	intil the sphere		1	amplitude			
 	is empty			and the sphere		b) Kinetic energy is	t) At the mean position			
	1 5	ENEF	RGY			3/4th of total energy				
43.	A body exec	cuting SHM	l has a total er	nergy E. When		c) Potential energy is $2/4$ th of total energy is	g) At extreme position			
	ita Irinatia -	31	E the diam!	compart of the		5/401 OI total energy	<u>–</u>			
	ns kinetic e	$\frac{100 \text{ gy 1S}}{100 \text{ gy 1S}}$, me uispia			d)Acceleration is	h)At $\frac{\sqrt{3}}{2}$ times amplitude			
	particle is (a	a is amplitue	ae)			maximum	-			
	1) a	$2)_{a/2}$	3) $\frac{\sqrt{3a}}{\sqrt{3a}}$	4) $\frac{3a}{2}$		1) $a - f, b - e, c - h, d$	– g			
	1) a	2 j a/2	2	^{-,} 4		2) a – e, b – f, c – g, d –	- h			
44.	For a particl	le in SHM th	ne K.E. at any	instant is given		3) $a - g, b - h, c - e, d - b$	- f			
	by $K = K_{o}Cc$	$os^2 \omega t$. The 2	total energy (3) $K/2$	DI SHM 1S A AK		4) $a - h, b - e, c - f, d - d$	- e			
45	A particle	$\frac{2}{2}$ xecutes SH	M with a time	eperiod T. The	3.	Arrange the following sin	mple pendula in ascending			
	time period v	with which it	ts potential en	ergy changes is		order of their periods of	oscillation			
	1) 2 T	2) T	3) T/2	4) 3T/2		a) length 1 m at a place	of $g = 8 \text{ m/s}^2$			
	1) 2		X 2) 2	4) 2		c) of length $4m$ at a pla	$cc olg = 10 \text{ m/s}^2$			
	$\frac{1}{2}$	2) 3 6) 3	5)5 7)3	4) 2 8) 2		1) a, b, c 2 b, a c	3) b c a 4) c b a			
	9) 3	10) 3	11)1	12) 1	4.	In SHM at the equilibrium	m position			
	13) 4	14) ²	15) 2	16) 1		a) amplitude is minimun	h b) acceleration is zero			
	17) 1	18) 1	19) 1	20) 2		c) velocity is maximum				
	21) 3	22)1	23) 1	24) 2		d) potential energy is max	ximum			
	25)2 29)2	20)2 30)1	27)3 31)4	28) 3 32) 1		1) all are true	2) b, c, d are true			
	33) 2	34) 1	35) 4	36) 4		3) b, c true	4) a, b, d true			
	37) 4	38) 3	39) 4	40) 2	5.	If amplitude of particle e	xecuting SHM is doubled,			
	41) 1	42)́ 4	43) 2	44) 1		which of the following q	uantities are doubled			
	45) 3					a) Time period	b) Maximum velocity			
						c) Maximum acceleration	n d) Total energy			
						1) b and c 2) $a = 1$	2) a, b and c (1) $(1 - 1)^{-1}$			
 						3) a and c	4) a, b, c and d			
JR.	PHYSICS				280	SIMPLE	HARMONIC MOTION			

6.	If the length of the simple pendulum is equal to the	2.	Assertion (A): When a spring is cut into two equal
	radius of the earth, and it oscillates just above the		parts, spring constant of each piece is doubled.
	surface of the earth then its time period is		Reason (R): Spring constant is inversely propor-
			tional to length of spring
	a) $2\pi \sqrt{\frac{K}{2\pi}}$ b) $2\pi \sqrt{\frac{K}{\pi}}$	3.	Assertion (A): A loaded spring oscillating with fre-
	V2g Vg		quency f continues to maintain the same frequency
	c) nearly 59.5 minutes d) 84.6 minutes		in an earth's satellite
	1) a is only correct 2) b is only correct		Reason (R): Frequency of loaded spring is inde-
	3) a and c are correct 4) a and d are correct		pendent of acceleration due to gravity
7.	When a hole is drilled along the diameter of the earth	4.	Assertion (A): The pendulum clock made up of a
	and if a body is dropped into it, it executes SHM		metal losses time at high temperature
	with a period I equal to (R & D are radius and		Reason (R): When a metal rod is heated, then it
			contracts
	a) $2\pi \left[\frac{R}{2\pi}\right] + \left[\frac{3\pi}{2\pi}\right] = 2\pi \left[\frac{\pi}{2\pi}\right] + \frac{\pi}{2\pi} \left[\frac{R}{2\pi}\right] + \frac{R}{2\pi} \left[\frac{R}{2\pi}\right]$	5	Assertion (A): The length-time period graph for
	a) $2\pi\sqrt{g}$ b) \sqrt{GD} c) $2\pi\sqrt{GD}$ d) $2\pi\sqrt{2g}$		simple pendulum is a parabola
	1) a and b are true 2) a and c are true		Reason (R) . The length and time period at a given
	3) b and c are true 4) c and d are true		r_{1000} are connected by the relation $(-2)^2$
8.	If a simple pendulum is arranged in an artificial sat-		prace are connected by the relation $I = KT^2$
	ellite its		(where K is constant)
	a) time period becomes infinity b) frequency becomes infinity	6.	Assertion (A): The displacement time graph for a
	c) both time period and frequency become infinity		particle in SHM is sine curve, when the motion be-
	d) it does not oscillate		gins from mean position.
	1) a and d are correct 2) a and b are correct		<i>Reason (R):</i> The displacement of a particle in SHM
	3) b, c are correct 4) c, d are correct		is given by $y = A \sin \omega t$
		7.	Assertion (A): A wooden cube of side 'a' floats in
9.	Statement A: The average value of displacement,		a non viscous liquid of density ρ . When it is slightly
	velocity and acceleration for one time period in SHM		pressed and released, then it executes SHM
	is zero.		<i>Reason (R):</i> The net force responsible for SHM is
	Statement B: The acceleration of particle is		the resultant of buoyancy force and true weight of
	maximum at extreme position.		the body.
	1) A is true and B is false 2) A is false and B is true	8.	Assertion (A): The phase difference between dis-
	3) Both A and B are true 4) Both A and B are false		placement and velocity in SHM is 90°
	KEY		Reason (R): The displacement is represented by
	1) 1 2) 1 3) 1 4) 3 5) 1		$y=A \sin \omega t$ and $V=a\omega \cos \omega t$.
	6) 3 7) 1 8) 1 9) 3	9.	Assertion (A): The work done by the tension in
			the string of a simple pendulum in one complete
	INSTRUCTION FOR QUESTIONS:		oscillation is zero
	In each of the following questions, a statement		<i>Reason (R):</i> No work is done by the tension in the
	of Assertion (A) is given followed by a corre-		string since tension is always at right angles to the
	sponding statement of Reason (R) just below		motion of bob.
	it. Of the statements marks the	10.	Assertion (A): In simple harmonic motion, the
	correct answer		motion is to and fro and periodic
	1) Both A and R are true and R is the correct ex-		<i>Reason (R):</i> Velocity of the particle
	planation of A		$V = \omega \sqrt{A^2 - x^2}$ where x is displacement as mea-
	2) Both A and R are true and R is not the correct		sured from extreme position
	explanation of A	11.	Assertion (A): A pendulum clock shows correct
	3) A is true and R is false 4) A is false and R is true		time at 0°C, at a higher temperature the clock loses
1.	Assertion (A): The bob of pendulum is immersed		
	in a non viscous liquid (denser than water) com-		<i>Reason (R):</i> The period of oscillation increases due
	pletely. Time period of pendulum increases		to increase in length so the clock loses time since it
	Reason (R): Effective acceleration due to gravity		makes less number of oscillation in a day.
	increases		

12.	Assertion (A): When a clock fitted with a spring
	mass system is taken to the surface of the moon. Its
	time period is same as that on the earth.
	Reason (R): The time period of a spring mass sys-
	tem is not affected by the variations of g.

- 13. Assertion (A): SHM is an example of varying velocity and varying acceleration **Reason (R):** For a particle performing SHM in nonviscous medium its total energy is constant
- 14. Assertion (A): In damped vibrations, amplitude of oscillation decreases

Reason (R): Damped vibrations indicate loss of energy due to air resistance

01) 3	02) 1	03) 1	04) 3
05) 1	06) 1	07) 1	08) 1
09) 1	10) 3	11) 1	12) 1
13) 2	14) 1		

LEVEL-1

PERIODIC MOTION

1. A body is dropped from a height h on to the floor makes elastic collision with the floor. The frequency of oscillation of its periodic motion is

1)
$$\frac{1}{2}\sqrt{\frac{g}{2h}}$$
 2) $\frac{1}{2}\sqrt{\frac{2h}{g}}$ 3) $\frac{1}{2\pi}\sqrt{\frac{g}{2h}}$ 4) $2\pi\sqrt{\frac{g}{2h}}$

DISPLACEMENT, VELOCITYANDACCELERATION

2. A particle moves according to the equation x =

. The distance covered by it in the time acos

interval between t = 0 to t = 3 sec is

4) 4a 1) 2a 2) 3a 4) a

The resultant amplitude due to super position of two 3. SHMs is

 $x_2 = -10\cos(\omega t - 60^{\circ})cm$ $x_1 = 10 \sin(\omega t + 30^{\circ})$ cm; 2) 10 cm 3) 20 cm 4) zero 1) 5 cm

- A particle oscillates as per the equation $x = 7 \cos \theta$ 4. $(0.5 \pi t)$ m, the time taken by the particle to move from the mean position to a point 3.5 m away is 2) $1/2 \sec 3$ 1 sec 1) $1/3 \sec 2$ 4) $2/3 \sec^{-1}{3}$
- 5. Amplitude of oscillation of a particle that executes S.H.M. is 2 cm. Its displacement from its mean position in a time equal to 1/6th of its time period is

1)
$$\sqrt{2}cm$$
 2) $\sqrt{3}cm$ 3) $\frac{1}{\sqrt{2}}$ cm 4) $\frac{1}{\sqrt{3}}$ cm

6. A particle starts its SHM from mean position at t =0. If its time period is T and amplitude A. The distance travelled by the particle in the time from

t = 0 to
$$t = \frac{5T}{4}$$
 is
1) A 2) 2A 3) 4 A 4) 5A

7. A simple harmonic oscillator starts from extreme position and covers a displacement half of its amplitude in a time 't', the further time taken by it to reach mean position is

1) 2t 2) t 3)
$$\frac{t}{\sqrt{2}}$$
 4) $\frac{t}{2}$

- 8. The velocity of a particle that executes S.H.M. at is 0.866 m/s. at its mean position velocity at a displacement half of its amplitude from mean positionis 2) 1.414ms⁻¹ 3) 0.5ms⁻¹ 4) 0.75ms⁻¹ 1) 1 ms^{-1}
- 9. The time period of oscillation of a particle that executes S.H.M. is 1.2 sec. The time starting from extreme position, its velocity will be half of its velocity at mean position is

2) $0.2 \sec 3$ 0.4 sec 4) 0.6 sec 1) $0.1 \, \text{sec}$

10. The time period of oscillation of a particle in S.H.M. is π sec. If its acceleration at extreme position 1 ms⁻², its velocity at mean position is

1) 0.5 ms⁻¹ 2) 2ms⁻¹ 3)
$$\frac{\pi}{2}$$
 ms⁻¹ 4) π ms⁻¹

- The period of oscillation of a particle in SHM is 4 sec 11. and its amplitude of vibration is 4cm. The distance of the particle 1/3 sec after passing the mean position is 1) 1.33 cm 2) 1.66 cm 3) 2cm 4) 2.33 cm
- 12. The period of oscillation of a particle in SHM is π sec and its amplitude of vibration is 10 cm. The acceleration of the particle $\pi/12$ sec after passing the mean position is

1)
$$20\sqrt{3}$$
 cm/s² 2) 20 cm/s²

3)
$$20/\sqrt{3}$$
 cm/s² 4) $2\sqrt{3}cm/s^2$

TIME PERIOD & FREQUENCY

13. A particle moves such that its acceleration is given by $a = -\beta(x-2)$. Here β is a positive constant and x is position from origin. The time period of oscillation is

1)
$$2\pi\sqrt{\beta}$$
 2) $2\pi\sqrt{\frac{1}{\beta}}$ 3) $2\pi\sqrt{\beta+2}$ 4) $2\pi\sqrt{\frac{1}{\beta+2}}$

14. A particle executing S.H.M. has velocities 20cm/s, 16 cm/s at displacements 4 cm. 5cm from its mean position respectively. Its time period is

1)
$$\frac{\pi}{2}$$
 2) π sec 3) 2π sec 4) $\frac{\pi}{4}$ sec

- 15. If the displacement x and velocity v of a particle executing S.H.M. are related through the expression $4v^2 = 25 - x^2$. Then its time period is 2) 2π 1) π 3) 4π 4) 6π
- 16. The max. speed of a particle in S.H.M. is found to be 62.8 cm/s. If the amplitude is 20cm its period of oscillation is 4) 4 sec

1) 1 sec 2) 2 sec 3) 3 sec

17.	For a body in S.H.M. the velocity is given by the	26	The length of seconds pendulum is 1m. The length
	relation $V = \sqrt{144 - 16r^2}$ ms ⁻¹ . The maximum ac-		of simple pendulum at the point of intersection of l-
	celeration is		T graph and $I - I^2$ graph is
	1) 12 m/s^2 2) 16m/s^2 3) 36m/s^2 4) 48m/s^2		1) 25 cm 2) 50 cm 3) 25 $\sqrt{2}$ cm 4) 50 $\sqrt{2}$
18.	Two S.H.M.'s are represented by the relations	27.	A seconds pendulum is suspended from the roof of
	(\mathbf{x}, \mathbf{x}) (\mathbf{x}, \mathbf{x})		m/s^2 , its time period is
	$x = 4 \sin \left(\frac{80t + 2}{2} \right)$ and $y = 2 \cos \left(\frac{60t + 3}{3} \right)$.		1
	The ratio of their time periods is		1) 1 sec 2) $\sqrt{2}$ sec 3) $\frac{1}{\sqrt{2}}$ sec 4) 2 $\sqrt{2}$ sec
10	1) 2: 1 2) 1: 2 3) 4 : 3 4) 3 : 4	28.	Two simple pendulum of lengths 1m and 2m have
19.	The ratio between the acceleration to the displace-		identical bobs and oscillating with same amplitudes.
	ment of a particle in S.H.M. is $4\pi^2$. The time pe-		Their energies are in the ratio
		20	1) 1:2 2) 2:1 3) 4:1 4) 1:4 If the length of a simple pendulum is decreased
	1) 1 sec 2) 2 sec 3) 2 π sec 4) $\frac{\pi}{2}$ sec	29.	by 75% then its time period
20.	A particle executes SHM along a straight line 4cm		1) Decreases by 25% 2) Increases by 25%
	long. When the displacement is 1 cm its velocity	20	3) Increases by 50% 4) Decreases by 50%
	net acceleration are numerically equal. The time period of SHM is	30.	A seconds pendulum is shifted from a place where $a = 9.8 \text{ m/s}^2$ to another place where
			$g = 9.78 \text{ m/s}^2$ to another place where $g = 9.78 \text{ m/s}^2$. The change in its length so that its
	1) $2\pi s$ 2) $\frac{2\pi}{\sqrt{2}}s$ 3) $\frac{2\pi}{\sqrt{5}}s$ 4) $\frac{2\pi}{\sqrt{7}}s$		time period of oscillation does not change is
	$\frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{\sqrt{7}}$		1) Should be descent that $\frac{2}{2}$ and
21.	A man of mass 60kg standing on a platform		1) Should be decreased by $\frac{1}{\pi^2} cm$
	executing SHM in a vertical plane. The displacement		2 2 2
	from mean position is $y=0.5 \sin(2\pi ft)$. The minimum		2) Should be increased by $\frac{\pi^2}{\pi^2}$
	at the highest point is		2) Should be increased by $\frac{2}{2}$ cm
			$\frac{3}{\pi}$ (3) Should be increased by $\frac{-cm}{\pi}$
	1) $\frac{\sqrt{g}}{2\pi}$ 2) $\frac{\sqrt{2g}}{2\pi}$ 3) $\sqrt{\frac{g}{2\pi}}$ 4) $\frac{1}{2\pi}\sqrt{3g}$		4) Should be decreased by $\frac{2}{-cm}$
22	2π 2π $\sqrt{2\pi}$ 2π A horizontal platform is executing SHM up and		(4) Should be decreased by π
	down with period of 1 second. The maximum am-	31.	Two simple harmonic oscillators with amplitudes in
	plitude with which it can vibrate so that a small ob-		the ratio 1:2 are naving the same total energy. The ratio of their frequencies is
	ject placed on the platform does not leave it (As-		1) 1:4 2) 1:2 3) 2:1 4) 4:1
	sume $\pi^2 - g$ is 1) 0.25 m 2) 0.5 m 3) 1m 4) 1.25 m	32.	The acceleration due to gravity on a planet is $3/2$
	SIMPLE PENDULUM		times that on the earth. If length of a seconds pen-
23.	The length of a pendulum changes from 1 m to		autum on earth is 1m, length of seconds pendulum on the planet is
	1.21m. The percentage change in its period is 1) 20% 2) 21% 3) 10% 4) 11%		1) 0.7m 2) 1m 3) 1.7m 4) 1.5 m
24.	If the radius of earth shrinks by 0.2% without		PHASE
	change in its mass. The time period of oscillation	33.	The minimum phase difference between two SHM's
	of a simple pendulum 2^{20}		$y_1 = \sin \frac{\pi}{2} \sin \omega t + \sin \frac{\pi}{2} \cos \omega t$.
	$\begin{array}{llllllllllllllllllllllllllllllllllll$		6 3 ,
25.	The time period of oscillation of a simple pendulum		$y_2 = \cos \frac{\pi}{c} \sin \omega t + \cos \frac{\pi}{c} \cos \omega t$ is
	is $\sqrt{2}$ sec, If its length is decreased to half of initial		6 3
	length, then its new period is		1) $\frac{\pi}{2}$ 2) $\frac{\pi}{6}$ 3) $\frac{\pi}{12}$ 4) 0
	1) 1 sec 2) 0.707 sec 3) 0.414 sec 4) 0.5 sec		5 6 12
	PHYSICS	283	SIMPLE HARMONIC MOTION
		-00	

34.	E is kinetic energy of a simple harmonic oscillator	42.	Two masses M and m are suspended together by a
	at its mean position. The phase angle from mean		massless spring of force constant k. When the
	position at which its kinetic energy is $\frac{E}{2}$ is		disturbing the system. Then the amplitude of
	1) $\frac{\pi}{2}$ rad 2) $\frac{\pi}{2}$ rad 3) $\frac{\pi}{2}$ rad 4) None		oscillation is 1) $Ma/k = 2) ma/k = 2) (M+m)a/k = 4) (M = m)a/k$
		43	In a spring block system length of the spring is
25	RESIDENG FORCE	15.	reduced by 1%, the time period will
55.	A body of mass 1/4 kg is in S.H.M. and its dis- placement is given by the relation $y = 0.05$		1) increase by 2% 2) increase by 0.5%
	pracement is given by the relation $y = 0.05$		3) decrease by 2% 4) decrease by 0.5%
	$\operatorname{Sin}\left(20t+\frac{\pi}{2}\right)$ m. If t is in seconds, the maximum	44.	A ball of mass 2 kg from a spring oscillates with a time period 2π sec. Ball is removed when it is in
	force acting on the particle is		equilibrium position, then spring shortens by
	1) 5N 2) 2.5N 3) 10N 4) 0.25N		1) g meters 2) $g/2$ meters
36.	A body is executing SHM. If the force acting on		3) 2g meters 4) 2p meters
	the body is 6N when the displacement is 2 cm, then the force acting on the body when the displacement		SIMPLE HARMONIC OSCILLATOR
	is 3 cm in newton is	45.	The average kinetic energy of a simple harmonic
	1) $(N = 2)$ $(N = 2)$ $(AN = 4)$		oscillator is 2 joule and its total energy is 5 joule. its
	$\frac{1}{100} = \frac{2}{90} = \frac{3}{90} = \frac{3}{90}$		minimum potential energy is $1 + 1 + 2 + 3 + 2 + 4 + 4$
37	A and B are two thin rubber bands each of force	46	Potential energy of a simple harmonic oscillator at
57.	constant k. Assuming that they obey Hooke's law.	-0.	its mean position is 0.4 I. If its kinetic energy at a
	the time period of horizontal SHM of the mass m is		displacement half of its amplitude from mean posi-
	given by		tion is 0.6 Joule, its total energy is
	4 A		1) 1J 2) 1.2J 3) 1.4J 4) 1.6J
			KINETIC AND POTENTIAL ENERGY
		47.	The displacement of a simple pendulum whose
	1) $2\pi\sqrt{\frac{2m}{k}}$ 2) $\pi\sqrt{\frac{m}{k}}$ 3) $2\pi\sqrt{\frac{m}{2k}}$ 4) $2\pi\sqrt{\frac{m}{k}}$		amplitude is A and the potential energy is 1/4th of total energy is
38.	A spring of natural length 80cm with a load has a		1) $A/\sqrt{2}$ 2) $A/2$ 3) $A/4$ 4) $A/5$
	length of 100cm. If it is slightly pulled down and	48.	The amplitude of a particle in SHM is 0.2m. The P.E.
	released its period will be		and K.E. of this particle 0.1 sec after passing the mean
20	1) $3s$ 2) $0.9 s$ 3) $0.81 s$ 4) $2s$		position are equal. The period of oscillation is
39.	A simple spring has length I and force constant K it	10	1) 1 sec 2) $0.8 \sec 3$ $0.6 \sec 4$ $0.4 \sec$
	is cut into two springs of length I_1 and I_2 such that	49.	
	$I_1 = nI_2$ (n = an integer). The force constant of		$\sqrt{3}$ cm. The displacement from mean position at which
	spring of length I ₁ is		its potential and kinetic energies are in the ratio 1:2 is
	$K_{(1+1)} = K_{(1+1)} = K_{($		1) 1 2) 0.0((2) $\frac{1}{2}$ (m.t) $\sqrt{2}$
	1) K (1+n) 2) $\frac{-(1+n)}{n}$ 3) K 4) $\frac{-(1+n)}{n+1}$		1) Icm 2) 0.866 c.m 3) $\sqrt{3}$ cm 4) $\sqrt{2}$ cm
40.	A 1kg weight is suspended to a massless spring	50.	A particle is oscillating simple harmonically from
	and it has a period T. If now a 4kg is suspended		its equilibrium position. Then the ratio of kinetic
	from the same spring the new period will be		and potential energy of the particle at time T/12 is
4.1	1) 4T 2) 2T 3) T 4) T/2		(T - time period)
41.	When a body is suspended to a spring its length is	51	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	null down by 5 cm and released. Its time period of	31.	ne K.E. of a particle in S.H.M. is 8J at its mean
	oscillation is		then its time period is
			1) π second 2) 2 π second
	1) $\frac{\pi}{7}$ sec 2) $\frac{2\pi}{7}$ sec 3) $\frac{7}{2}$ sec 4) $\frac{7}{2}$ sec		3) $\pi/2$ second 4) 4π second
	I π 2π		

284

52.	A long sp	ring when stre	tched by x c	m has a poten-	7.	Apar
	tial energy	y v on increasi	ng the strete	ching to nx cm,		thetir
	the potent	ial energy stor	red in the spi	ring will be		then t
	$1) n^{2}/2v$	2) $n^2 v$	3) v/n^2	$4)\mathrm{nv}^2$		equal
		KE	Y			1) 1/
	01) 1	02) 2	03) 3	04) 4	8.	The v
	05) 2	06) 4	07) 4	08) 4		its ma
	09) 1	10) 1	11) 3	12) 2		accel
	13) 2	14) 1	15) 3	16) 2		1) 50
	17) 4	18) 4	19) 1	20) 2	9.	A sev
	21) 2	22) 1	23) 2	24) 2		a line
	25)1	26) 1	27) 2	28) 2		The c
	29) 4	30) 1	31) 3	32) 4		the m
	33) 2	34) 2	35) 1	36) 2		$1)3_{1}$
	37) 4	38) 2	39) 2	40) 2		
	41) 2	42) 1	43) 4	44) 1	10.	The t
	45) 2	46) 2	47) 2	48) 2		
	49) 1	50) 2	51) 1	52) 2		
		LEVE	EL 2			accel
		DISPLAC	EMENT,			positi
	VELO	CITYANDA	CCELERA	ATION		equal
1.	A particle	executes SHN	A along a st	raight line with		1) 0.
	mean pos	ition at $x=0$ ar	nd with a per	riod of		2) [
	20 sec an	d amplitude o	of 5cm. The	e shortest time) √'
	taken by 1	t to go from x	= 4 cm to x=	=-3 cm 1s	11.	Thep
-	1) 4sec	2) 5 sec	3) 7 sec	4) 10 sec		=0 it
2.	A body p	performs SHN	A along the	e straight line		tance
	ABCDE	with C is mi	dpoint of A	AE. Its kinetic		1) 1//
	energies	at B and D a	re each on	e fourth of its		1) 1/.
	maximun	n value. If Al	E = 2A, the	n the distance	12.	The v
	between I	3 and D is				it is 0
	1)A	2) $A\sqrt{2}$	3) $A\sqrt{3}$	4) $A\sqrt{5}$		sec. I
3.	The time	taken by a par	rticle perfor	rming SHM to		locity
	pass from	point A to B w	here its velo	ocities are same		mean
	is 2sec. At	fter another 2s	ec. it returns	to B. The time		1) 2.2
	period of o	oscillation is	,			,
	1)4 sec	2) 6 sec	3) 8 sec	4) 10 sec	13.	Aper
4.	Aparticlee	xecutes SHM ir	nastraightline	e. The maximum		oscil
	speed of th	e particle durir	ng its motion	is V. Then the		ampl
	average sp	eed of the parti	cle during its	SH ^m is		appai
	V	V	2V	21/		1) 10
	1) $\frac{v_{m}}{2}$	2) $\frac{v_{m}}{2}$	3) $\frac{2 v_m}{m}$	4) $\frac{3 v_{m}}{2}$		3) 54
-	π	2π	π	π		TI
5.	A body ex	ecuting SHM	has its veloc	ity 10 cm/s and	14.	The
	/ cm/s wh	en its displace	ments from	mean position		creas
	are 3 cm a	nd 4 cm respec	tively. The l	ength of path is		oscil
~	1) 10 cm	2) 9.5 cm	3) 4 cm	4) 11.36 cm	1 -	1)0.'
6.	A particle	an SHM has	a period of	4 sec. It takes	11.15.	Inree

6. time t₁ to start from mean position and reach half the amplitude in another case it takes a time t₂ to start from extreme position and reach half the amplitude, then

1)
$$\frac{t_1}{t_2} = 1$$
 2) $\frac{t_1}{t_2} = 1/2$ 3) $\frac{t_1}{t_2} = 2$ 4) $\frac{t_1}{t_2} = 3$

ticle performs SHM with a frequency of 2Hz. If ne is measured from its instantaneous rest position, he time taken by it when its displacement becomes to half of its amplitude is $12 \sec 2$ $1/6 \sec 3$ $1/2 \sec 4$ $1/24 \sec 4$ velocity of a particle executing SHM is 50% of ximum value at an instant of time. At that moment, eration is% of its maximum value 2) 86.6 3)75 4) 64.6 wing machine needle is oscillating vertically in of length 6cm with a frequency 30 per minute. displacement of the needle 1/6 s after crossing nean position is $\sqrt{3}$ cm 2) $\sqrt{3}$ cm 3) 3 cm 4) 1.5 cm ime period of oscillation of a S.H.O. is $\frac{\pi}{2}$ sec. Its leration at a phase angle $\frac{\pi}{3}$ rad from extreme on is 2ms⁻², what is its velocity at a displacement s to half of its amplitude from mean position? 707 ms^{-1} 2) 0.866 ms⁻¹ 4) $\sqrt{3} \text{ ms}^{-1}$ $\overline{2}$ ms⁻¹ period of a particle in SHM is 8 seconds. At t is at the mean position. The ratio of the distraveled by it in the first and the 2nd second is 2) $\frac{1}{\sqrt{2}}$ 3) $\sqrt{2}$ 4) $\sqrt{2}+1$ 2 elocity of a particle in SHM at the instant when).6 cm away from the mean position is 4cm / f the amplitude of vibration is 1cm then its vey at the instant when it is 0.8 cm away from the position is 25 cm/s 2) 2.5 cm/s 3) 3.0 cm/s 4) 3.5 cm/s **APPARENT WEIGHT** son weighing 60kg stands on a platform which lates up and down at a frequency of 2Hz and itude 5cm. The maximum and minimum rent weights are nearly $(g=10 \text{ m/s}^2)$ 2) 108kg-wt, 24kg-wt 8 kg-wt, 12kg-wt 4) 54 kg-wt, 24kg-wt kg-wt, 12kg-wt **ME PERIOD AND FREQUENCY** length of a seconds pendulum is 1m. The dese in its length to decrease its time period of lation by 1 second is 3) 0.414 m 4) 0.25m 2) 0.5 m 75 m e simple pendulums have lengths of strings 49 cms, 48 cms and 47 cms with diameters of the bobs 2 cms, 4 cm and 6 cm respectively. Then their periods are in the ratio: 1) 1 : 1 : 1 2) 1 : 2 : 3 3) 3 : 2 : 1 4) 51 : 52 : 53

JR.PHYSICS

2.

3.

4.

5.

285

16. The mass and diameter of a planet are twice those of earth. The period of oscillation of a pendulum on this planet if it is a seconds pendulum on earth is

1) $2\sqrt{3} \sec 2$ 2) $2\sqrt{2} \sec 3$ 2 sec 4) 4 sec

17. On a planet, a body dropped from a height of 8m reaches the ground in 2 seconds. If the length of a simple pendulum on that planet is 1m, the period of oscillation is

1)
$$\frac{1}{3}$$
 S 2) $\frac{\pi}{2}$ S 3) π S 4) $\frac{1}{2}$ S

18. A simple pendulum with a brass bob has a period T. The bob is now immersed in a nonviscous liquid and oscillated. If the density of the liquid is 1/8th of brass, the time period of the same pendulum will be

1)
$$\sqrt{\frac{8}{7}T}$$
 2) $\frac{8}{7}T$ 3) $\frac{64}{49}T$ 4) T

- 19. A seconds pendulum has time period 2 sec. The spherical bob which is empty has mass of 50 gm. This is replaced by another solid bob of same radius but having the mass of 100 gm. The new time period will be 1) 4 sec 2) 1 sec 3) 2 sec 4) 8 sec
- 20. A simple pendulum of length *l* is connected to the ceiling of a vehicle that is moving down along a smooth inclined plane 4 in 5. Then its period of oscillation is

1)
$$2\pi\sqrt{\frac{5l}{4g}}$$
 2) $2\pi\sqrt{\frac{4l}{5g}}$ 3) $2\pi\sqrt{\frac{5l}{3g}}$ 4) $2\pi\sqrt{\frac{3l}{5g}}$
SIMPLE PENDULUM

21. A pendulum is taken 1 km inside the earth from mean sea level. Then the pendulum
1) loses 13.5 s per day
2) gains 13.5 s per day

3) looses 7s per day 4) gains 7s per day

22. The length of a seconds pendulum is 1m. The length of a seconds pendulum at a depth equal to one fourth of the radius of the earth is

- 23. A simple pendulum is oscillating with an angular amplitude 30° . If mass of its bob is 50g. The is tension in the string at its mean position (g=10m/s²) 1) 0.634 N 2) 0.317 N 3) 1.268 N 4) 0.433 N
- 24. A simple pendulum of length 81 cm takes 3 minutes to execute 100 oscillations. The time that a simple pendulum of length 121 cm takes to make the same number of oscillations is

 2) 3.66 minute
 - 3) 4.2 minute 4) 4.67 minute
- 25. If pendulum which gives correct time beats seconds on ground at a place is moved to the top of a tower 320m high; The loss of time period in one day is
 1) 2.16 sec
 2) 1.08 sec 3) 0.54 sec 4) 4.32 sec
- 26. A simple pendulum consisting of a ball of mass m tied to a string of length l is made to swing on a circular arc of angle θ in a vertical plane. At the

end of this arc, another ball of mass m is placed at rest. The momentum transferred to the ball at rest by the swinging ball is

1)
$$m\theta/\sqrt{l/g}$$
 2) $m\theta/\sqrt{gl}$

3)
$$2\pi m / \sqrt{l/g}$$
 4) zero

PHASE

27. Two particles are in S.H.M. along parallel straight lines with same amplitude and time period. If they cross each other in opposite directions at the mid point of mean and extreme positions. Phase difference between them is

1) 30° 2) 120° 3) 150° 4) 180°

- 28. A point mass 0.1 kg in SHM of amplitude 0.1 m. When the particle passes through the mean position, its kinetic energy is 8×10^{-3} J. The equation of motion of this particle if the initial phase of oscillation is 45° is 1) y=0.1 sin (4t + $\pi/4$) 2) y=0.1 cos (4t + $\pi/4$) 3) y=0.1 sin (2t + $\pi/4$) 4) y=0.1 cos (2t + $\pi/4$)
- 29. Two simple pendulums have time periods T and 5T/4. They start vibrating at the same instant from the mean position in the same phase. The phase difference between them when the pendulum with higher time period completes one oscillation is 1) 30° 2) 45° 3) 60° 4) 90°
- 30. Two simple pendulums of lengths 100 cm and 196 cm are in phase at the mean position at a certain time. If T is the time period of shorter pendulum, the minimum time offer which they will be again in phase 1) 2.5 T
 2) 3.5 T
 3) 5T
 4) 7T
- 31. Two simple pendulums of length 100m and 121m start swinging together. They will swing together again after

the longer pendulum makes 10 oscillations
 the shorter pendulum makes 10 oscillations
 the longer pendulum makes 11 oscillations

- 4) the shorter pendulum makes 20 oscillations
- 32. The time periods of oscillation of two simple pendulums are 1 sec, 1.2 sec. Initially both are in same phase of oscillation. The minimum number of oscillations made by longer pendulum when they are again in same phase is 1) 5 2) 6 3) 10 4) 12

33. A body of mass 0.5 kg is performing S.H.M. with a time period $\frac{\pi}{2}$ seconds. If its velocity at mean position is 1 ms⁻¹, the restoring force acts on the body at a phase angle 60° from extreme position is 1) 0.5 N 2) 1N 3) 2N 4) 4 N

34. Due to some force F_1 a body oscillates with period (4/5) s and the due to other force F_2 it oscillates with period 3/5 s. if both the forces acts simultaneously new period will be 1) 0.72 s 2) 0.64 s 3) 0.48 s 4) 0.36 s

	I	OADEDS	DDINC			27)	2	20) 2	20) 2	40) 2
25	L A mantialala	LOADED S	rking	1 1		37).	2	38) 2	39) 2	40) 2
55.	A particle na	inging from s	pring stretch	les by I cill at		41)	1	42) 1		
	earth s surfa	ice. At a poi	nt 800 km 8	bove earth s				HIN	VTS	
	surface, the	same spring	g stretches	by the same	1	v –	- a sin ot	and v	- a sin ot	
	partical (Rad	aius of earth	R = 6400 km	n)	1.	y ₁ –	$-a\sin\omega_1$	\mathbf{y}_2	$-a\sin\omega_2$	
	1) 1 cm	$2) 0.79 \mathrm{cm}$	$3) 1.2 \mathrm{cm}$	4) 1.4 cm	4.	V _m :	$=a\omega$ and			
	T 1 · 1	0.1	1 .11	0 1 1 0			4a			
36.	The period of	of the vertica	al oscillatio	n of a load of		V _{avg}	$=\frac{1}{T}$			
	mass 4kg sus	spended form	n a spring is ().4 sec. When	_	0	1			
	an additiona	il load of ma	ss 5kg 1s ap	plied the pe-	7.	y =	$a\cos\omega t$			
	riod of oscilla	ation is	-				V			
	1) $0.9 \sec$	2) $0.8 \sec$	$3) 0.7 \sec$	4) $0.6 \sec$	8.	V =	$\frac{m}{2}, a=1$	x%ofan	naximum	
37.	A block of	mass M att	ached to an	ideal spring			۷			
	oscillates w	ith a time pe	eriod of 2 se	conds. If an	12.	V =	$= \omega \sqrt{A^2} -$	Y^2		
	additional m	ass 2 kg is at	ttached to th	is block then	12	117	Mai	max^2	nd W	$\int a m a c a^2$
	time period	ofoscillation	n increases l	by 1 sec. The	15.	vv _{ma}	ax = 101g +	-mao a	$\operatorname{Ind} \mathbf{W}_{\min} = 1$	vig – maw
	value of M is	5					$\sqrt{1}$		GM	
	1) 1.2 kg	2) 1.6 k.g	3) 2 kg	4) 2.4 kg	16.	T =	$2\pi / - v$	where g =	$=\frac{0.01}{2}$	
38.	An oscillatin	g mass spring	g system has	a mechanical			٧g		R²	
	energy 1 Jou	le, when it ha	as an ampliti	ude 0.1m and			Т			
	maximum sp	beed of 1 ms ⁻	¹ . Then the f	orce constant	18.	T'=	$=\frac{1}{\sqrt{1}}$	/ 1		
	of the spring	is			10.		$\sqrt{1-d_1}$	d_{s}		
	1) 100 N.m ⁻	1	2) 200 N.1	m ⁻¹			ht			
	3) 300 N.m ⁻	-1	4) 50 N.m	1 ⁻¹	21.	ΔT	$=\frac{1}{2D}$			
39.	Á force of 6.	4N stretches	a vertical sp	ring by 0.1m.			2K			
	The mass th	at must be su	uspended from	om the spring		т		mv^2		
			1	τ /) 1	23.	1 =	mg cos 0	1		
	so that it osc	illates with a	period of	$\frac{1}{4}$ seconds.			1.4	1		
	$(\pi/)$	•	(1/).		25	ΛT	$=\frac{n\iota}{-1}$			
	1) $\binom{n}{4}$ kg	2) 1 kg 3)	$\sqrt{\pi}$ kg 4) 10 kg	23.		R			
	KINETIC	AND POTE	NTIAL EN	ERGY		n	$\sqrt{1}$			
40.	The potentia	al energy of	particle in S	SHM 0.2 sec	31		$-= 1 \frac{1}{2}$			
	after passing	g the mean p	osition is 1	/4 of its total	51.	n –	$1 \bigvee l_1$			
	energy. The	period of osc	cillation is		33	۸m	-1 and	$\mathbf{F} = \mathbf{m} \mathbf{A} \mathbf{a}$	$^2 \cos \theta$	
	1) 3sec	2) 2.4 sec	3) 1.8 sec	4)1.2 sec	55.	Aw	_ 1 unu	$\Gamma = \Pi A \alpha$	0 0080	
41.	Án object of 1	mass 0.2 kg is	in SHM alo	ng x-axis with	3/	Fα-	1			
	5	25		C	54.	100,	T^2			
	a frequency of	of $\frac{25}{2}$ hertz.	At the positi	on $x = 0.04m$,			mg			
		π	1 CO 41 1	1. 1.	35.	x =	1-			
	it has KE of (0.5J and PE o	10.4J, its am	iplitude is			К			
	1) 0.06m	2) 0.05 m	3) 0.08 m	4) 0.09 m		T_1	m			
42.	The potential	l energy of a s	simple harmo	onic oscillator	36.	T T	$=\sqrt{M+r}$	— m		
	of mass 2 kg	g at its mean	position is :	5 J. If its total		1 ₂	Y IVI I I	11		
	energy is 9	s and its amr	$\frac{1}{1}$	01m then its	20	ΚF	$-\frac{1}{k}$	γ Λ ²		
	timenoriedy	vill bo	111 111111	o min, unem no	50.	IX.L	$\frac{2}{2}$ $\frac{1}{2}$			
	une period v	viii 0e					1 .			
	π	π	π	π	40.	P.E.	$=\frac{1}{2}m\omega^2$	y ² wher	$e y = A \sin \theta$	ωt
	1) $\frac{1}{100}$ sec	2) $\frac{1}{50}$ sec	3) $\frac{1}{20}$ sec	(4) $\frac{10}{10}$ sec			2			
	100	50	20	10	A 1	ΤБ	$-\frac{1}{m}$	$^{2}a^{2}$		
		LEVEL-2	ZKEY		41.	1.Ľ	$\frac{1}{2}$	a		
	01) 2	02) 3	03) 3	04) 3			-			
	05) 2	06) 2	07) 1	08) 2						
	$09)^{4}$	10^{2}	11)4	12)3						
	13) 1	14)1	15) 1	16) 2						
	17) 2	1 - 1	10) 2	10/2						
	1/) 3	18) 1	19) 3	20) 3						
	21) 3	22) 2	23) 1	24) 2						
	25)4	26) 4	27) 2	28) 1						
	29) 2	30) 2	31)1	32) 1						
	(23) 2	34)3	35) 2	36) 4						
	5572	54) 5	33) Z	50)4						

only a, b are correct
 only a,c,d are correct
 only b,c,d are correct
 all are correct

A particle moves with SHM in a straight line. In the first second after starting from rest, it travels a distance x_1 and in the second it travels a distance x_2 in the same direction. The amplitude of motion is

1)
$$\frac{x_1^2}{2x_1 - x_2}$$
 2) $\frac{2x_1^2}{3x_1 - x_2}$ 3) $\frac{2x_2^2}{3x_2 - x_1}$ 4) $\frac{x_2^2}{2x_2 - x_1}$

- 6. A particle executes SHM with amplitudes 25 cm and period 3 seconds. The minimum time required for it to move between two points 12.5 cm on either side of the mean position is
 - 1) 0.25 sec 2) 0.5 sec 3) 0.75 sec 4) 1 sec TIME PERIOD AND FREQUENCY
- 7. A horizontal board is made to perform SHM oscillations horizontally moving to and fro through a distance 32 cm. If a heavy body placed on the table $(\mu = 0.2)$ the maximum number of oscillation per second possible without moving the body is 1) $7/2\pi$ 2) $7/4\pi$ 3) $7/8\pi$ 4) $7/16\pi$ 8. A spherical ball of mass m and radius r rolls without

A spherical ball of mass m and radius r rolls without slipping on a concave surface of radius R. It makes small oscillations about the lowest point. Its time period is

1)
$$2\pi\sqrt{\frac{R}{g}}$$

2) $2\pi\sqrt{\frac{7(R-r)}{5g}}$
3) $2\pi\sqrt{\frac{R-r}{g}}$
4) $\frac{1}{2\pi}\sqrt{\frac{7(R-r)}{g}}$

A cylindrical block of wood of radius r and mass M is floating in water of density ρ with its axis vertical.
 It is depressed a little and then released. Its frequency of oscillation is

1)
$$\frac{1}{2\pi}\sqrt{\frac{M}{g}}$$

2) $\frac{1}{2\pi}\sqrt{\frac{\pi r^2 \rho g}{M}}$
3) $2\pi\sqrt{\frac{\pi r^2 \rho g}{M}}$
4) $\frac{1}{2\pi}\sqrt{\frac{\pi r^2 g}{M}}$

10. A particle executes SHM with a period of 'T' seconds. 't' seconds after it has crossed the equilibrium position it is at a point P. After how much time it will be again at P?

1)
$$(T/2) - t$$
2) $(T/4) - t$ 3) $(T/2) - 2t$ 4) $(T/4) - 25$

- 11. A liquid of mass m filled into a U-tube of cross sectional area A is oscillated and the time period obtained is T. If the same liquid is filled into another U-tube of cross sectional area A/4 and oscillated, then its time period will be
- T
 T/2
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T
 T

- 13. Two particles are executing SHM in a straight line with same amplitude A and time period T. At time t=0, one particle is at displacement x_1 =+A and the other at x_2 =-A/2 and they are approaching towards each other. After what time they cross each other 1) T/3 2) T/4 3) 5T/6 4) T/6
- 14. Two particles undergo SHM along the same line with the same time period (T) and equal amplitude (A). At a particular instant one is at x = -A and the other is at x = 0. They move in the same direction they will cross each other at

$$\overrightarrow{A} \qquad \overrightarrow{x=0} \qquad \overrightarrow{B} \\ \overrightarrow{x=-A} \qquad \overrightarrow{x=0} \qquad \overrightarrow{B} \\ \overrightarrow{x=+A} \qquad \overrightarrow{x=+A}$$

a) $t = \frac{4T}{3}$ b) $t = \frac{3T}{8}$ c) $x = \frac{A}{2}$ d) $x = \frac{A}{\sqrt{2}}$

1) only a, c are correct 2) only a, d are correct 3) only b, c are correct 4) only b, d are correct
 15. Two particles are in SHM with the same amplitude and frequency along the same line and about the same point. If the maximum separation between them is √3 times their amplitude, then the phase

difference between them is

1)
$$\frac{\pi}{6}$$
 2) $\frac{\pi}{3}$ 3) $\frac{2\pi}{3}$ 4) $\frac{\pi}{2}$
SPRINGS

16. Frequency of a particle executing SHM is 10Hz. The particle is suspended from a vertical spring. At the highest point of its oscillation the spring is unstretched, the maximum speed of the particle is $(g=10 \text{ m/s}^2)$ 1) $2\pi \text{ m/s}$ 2) $\pi \text{ m/s}$ 3) $1/\pi \text{ m/s}$ 4) $1/2\pi \text{ m/s}$ 17. A mass M is suspended from a spring of negligible mass. The spring is pulled a little and then released so that the mass executes simple harmonic motion with time period T. If the mass is increased to 'm'

then the time period becomes $\left(\frac{5T}{4}\right)$ the ratio $\left(\frac{m}{M}\right)$ is

1)
$$\frac{9}{16}$$
 2) $\frac{25}{16}$ 3) $\frac{4}{5}$ 4) $\frac{5}{4}$

18. A light spiral spring supports 200gm weight at its lower end, it oscillates with a period of 1 sec. The weight in (gm) that must be removed from the lower end to reduce the period to 0.5 sec

1) 100 gm 2) 50gm 3) 150gm 4) 200gm

19. A spring of force constant K is cut in to two parts whose lengths are in the ratio 1 : 2. The two parts are now connected in parallel and a block of mass m is suspended at the end of the combined spring. The period of oscillation of block is

1)
$$2\pi \sqrt{\frac{2m}{9k}}$$
 2) $2\pi \sqrt{\frac{m}{9k}}$ **3)** $2\pi \sqrt{\frac{2m}{5k}}$ **4)** $2\pi \sqrt{\frac{m}{5k}}$

RESTORING FORCE

- 20. A 1 kg mass executes SHM with an amplitude 10cm, it takes π seconds to go from one end to the other end. The magnitude of the force acting on it at any end is
 - 1) 0.1 N 2) 0.2 N 3) 0.5 N 4) 0.05 N HARMONIC OSCILLATOR
- A linear harmonic oscillator of force constant 2 x 10⁶ N/m and amplitude 0.01 m has a total mechanical energy of 160J its

1) maximum potential energy is 100J

2) maximum kinetic energy is 100J

3) minimum potential energy is zero

4) maximum kinetic energy is 160 J

SIMPLE PENDULUM

22. For a simple pendulum, length expressed in meters is taken on X-axis and both T expressed in seconds and T² expressed in second² are plotted on the Y-axis. The L-T graph, which is like a parabola and the L–T² graph, which is a straight line, both pass through the origin and intersect at a point whose coordinates are (Take $g = 10 \text{ m/s}^2$).

1) $(1/4 \text{ m}, 2 \text{ s})$	
3)(1/2 m, 1 s)	

- 2) (1/4 m, 1 s)4) (1 m, 4 s)
- 23. A pendulum has a period T for small oscillations. An obstacle P is fixed directly beneath the point of suspension so that only the lower one quarter of the string can follow the pendulum bob when it swings to the left of the equilibrium position. When the pendulum is released from rest as shown, the time it takes to come back to its initial position is

24. A block of mass M executes SHM with amplitude A and time period T. When it passes through the mean position, a lump of putty of mass m is dropped on it. The new amplitude of oscillation is
1)
$$4\sqrt{\frac{M+m}{m}} 2$$
) $4\sqrt{\frac{M+m}{M}} 3$) $4\sqrt{\frac{M}{M+m}} 4$) $4\sqrt{\frac{m}{M+m}}$
25. In the above problem, new time period is
1) $T\sqrt{\frac{M+m}{M}}$ 2) $T\sqrt{\frac{M+m}{M}}$ 3) $T\sqrt{\frac{M}{M+m}}$ 4) $T\sqrt{\frac{M}{M+m}}$
26. A particle executes SHM with amplitude A and angular frequency ω . At an instant the particle is at a distance A/5 from mean position and moving away from it. The time after which it will come back again to this position is
1) $\frac{2\sin^{-1}(1/5)}{\omega}$ 2) $\frac{2\cos^{-1}(1/5)}{\omega}$
27. A simple pendulum of length l_1 has time period 4 sec and another simple pendulum of length l_2 has time period 3 sec, the time period 6 a simple pendulum of length l_1 has time period 4 sec and another simple pendulum of length l_2 has time period 3 sec, the time period 6 a simple pendulum of length l_1 has time period 4 sec and another simple pendulum of length l_2 has time period 3 sec, the time period 6 a simple pendulum of length l_1 has time period 3 sec. The time period 6 a simple pendulum of length $l_1 + l_2$ is
1) $7\sqrt{7}$ sec 2) $\sqrt{7}$ sec 3) $\sqrt{5}$ sec 4) $\sqrt{10}$ sec **ENERGY**
28. A body is executing SHM under the action of a force whose maximum magnitude is 50 N. The magnitude of force acting on the particle at the time when its energy is half kinetic and half potential is
1) 25 N 2) $25\sqrt{2}$ N 3) $\frac{25}{\sqrt{2}}$ N 4) 12.5 N **KEY**
01) 4 02) 2 03) 2 04) 4
05) 2 06) 2 07) 2 08) 2
09) 2 10) 3 11) 3 12) 4
13) 4 14) 4 4 15) 3 16) 4
17) 2 18) 3 19) 1 20) 1
21) 2 22) 2 23) 2 24) 3
25) 2 26) 2 27) 2 28) 2

But
$$1 = \frac{h}{\sin \theta}$$

2. $V_{max} = a\omega$
6. $t = \frac{T}{12} + \frac{T}{12} = \frac{T}{6}$
7. $\mu mg = ma\omega^2$
8. $a = \frac{g \sin \theta}{1 + \frac{k^2}{r^2}}$
9. Restoring force $= \pi r^2 \rho g$
11. $T = 2\pi \sqrt{\frac{h}{g}}$
13. $x_1 = A \cos \omega t$, $x_2 = A \sin \left(\omega t - \frac{\pi}{6} \right)$

1. Time period T = 4t = $4\sqrt{\frac{21}{g\sin\theta}}$

HINTS

equating
$$x_1 = x_2$$
 t=T/6
14. $x_1 = -a \cos \omega t$, $x_2 = a \sin \omega t$
But $x_1 = x_2$

16. Amplitude
$$A = \frac{mg}{k}$$
 $V_{max} = a\omega$

19.
$$T = 2\pi \sqrt{\frac{m}{k_1 + k_2}}$$

22.
$$F = ma\omega^2$$

$$2 \cdot \mathbf{F} = \mathbf{m} \mathbf{a} \boldsymbol{\omega}^2$$

23. After p the length of the pendulum becomes $\frac{1}{4}$

$$\therefore \text{ Time period will become } T' = \frac{T}{2}$$
$$\therefore t = \frac{T}{2} + \frac{T'}{2} = \frac{3T}{2}$$

$$\therefore t = \frac{1}{2} + \frac{1}{2} = \frac{1}{4}$$

28. K.E = P.E when
$$y = \frac{A}{\sqrt{2}}$$

QUESTIONS FROM PREVIOUS
EAMCET EXAMINATIONS1A pendolum beating seconds at heratic, if sength to
be increased by ...cm10. A particle is in S.H.M. of amplitude 2cm. At ex-
term position the force is 4N. At the point indivay
between mean and extreme position, the force is
(1990 E)1)0. A particle is in S.H.M. of amplitude 2cm. At ex-
term position the force is 4N. At the point indivay
between mean and extreme position, the force is
(1990 E)1)10. A particle is in S.H.M. of amplitude 2cm. At ex-
term position the force is 4N. At the point indivay
between mean and extreme position, the force is
(1990 E)2. A seconds pendulum istaken to
and of the pendulum
mass is pulled down by another 0.05m and released
then the period of oscillation is is taken to that
planet, the time period of scillation of the pendulum
lum willbe
(1986 E)1)
$$\frac{2\pi}{7}$$

2) $2\pi \sqrt{0.85}$
 9.8 $\frac{4\pi}{7}$
 $4.5 \sqrt{9.8}$
 $3.9 \frac{4\pi}{7}$
 $4.5 \sqrt{9.8}$
 $3.9 \frac{4\pi}{7}$
 $4.5 \sqrt{9.8}$
 $4.7 \sqrt{9.8}$
 5.7×10^{1N} $10.1 \times 42 \times 10^{1N}$
 $3.5 67 \times 10^{1N}$
 $4.9 \times 10.5 m 2\pi$
 $(1992 E)$
 $1.1 \sqrt{7}$
 $2.5 \exp(-1) \sqrt{2} \sqrt{2} \sqrt{2} \sec(4) 1/\sqrt{2} \sec(4)$
 $1.1 \sqrt{2} \sec(2) 2 \tan(3) \sqrt{3} (4.4 \tan(4) \sqrt{4} + 10 \sqrt{4})$
 $1.2 \sqrt{2} \sec(2) 2 \sec(3) 2.\sqrt{2} \sec(4) 1/\sqrt{2} \sec(4)$
 $1.3 A simple harmonic oscillation is represented bythe object end of a simple par-dulum inside a stationary lift and finds it to be 7.17 $\sqrt{3}$
 $\sqrt{3}$ 10.12.2 $\frac{2\pi}{2} = 2$
 $\sqrt{2} \frac{2\pi}{3} = 2$
 $\sqrt{2} \frac{$$

291

SIMPLE HARMONIC MOTION

18. A body of mass 1kg executing S.H.M., its displacement y cm at t seconds is given by
y=6sin(100t +
$$\pi/4$$
). Its maximum kinetic energy is
(2000 F)
1) 6J 2) 18J 3) 24J 4) 36J25. When a body of mass 1.0 kg is suspended from a
certain light spring hanging vertically its ls.ngth in-
creases by 5cm. By suspending 2.0 kg block to the
spring and if the block is pulled through 10cm and
released, the maximum velocity of it in m/s is (Ac-
celeration due to gravity=10 m/s?) (2003, F)
10.5 2) 1 3) 2 4) 419. A particle executing S.H.M. has an amplitude off
em. Br accleration at distance or 22m from origin and ex-
ecute S.H.M. and garsamic and ex-
ecute S.H.M. and a splacement vis
the PE is to evolve sourds and 6 seconds respectively.
1) 1: 2 2) 2: 1 3) 2: 3 4) 3: 226. An object is attached to the bottom of a light vertical
spring and if the block is pulled allowed of the motoin incentineters is (2003, F)
1) 1: 2 2) 2: 1 3) 2: 3 4) 3: 221. A body is executing S.H.M. and any laneament vis
PE. is E, and at a displacement y is PE is E, $2 - \sqrt{E_2} = 2 \sqrt{E} = \sqrt{E_1} + \sqrt{E_2}$
3) $E = E_1 + E_2$
A body executes S.H.M. and the fraction of the body
its time period is 52 seconds. If the
force is changed to F, it executes S.H.M. with time
period 3/5 seconds. If both the forces F, and F,
act simultaneous in the same direction on the body
its time period is accords is (2002 F)
1) $1/2 = 2 - x^2$ then its time period is (2002 F)
1) $1/2 = 2 - x^2$ then its time period is (2002 E)
1) $\pi = 2) 2\pi = 3) 4\pi = 4) 2\pi - \frac{1}{r_1^2} - \frac{1}{r_2^2}$ 111223) $2 + 4 + \frac{4}{k}$ 24. The time period is decreased by 10cm, the period is $2 - x^2$ then its time period is $2 - x^2$ then its time period is $2 - 2 - x^2$ then its time period is $2 - 2 - x^2$ then its time period is $2 - 2 - x^2$ then its time period is $2 - 2 - x^2$ then i

292

SIMPLE HARMONIC MOTION

4.	The time period of a pendulum is 2 sec. If its length is increased by 4 times, the period becomes (1996)				9.	Two sprin N/m are s respective	ngs of fo tretcheo e potent	orce con l by san ial ener	stants 10 ne force. gies is	00 N/m The rati	and 2000 o of their (2002)
	1) 4 sec	2) 6 sec	3) 8 sec	4) 2 sec		1) 2 : 1	2)	1:2	3) 4 : 1	4)	1:4
5.	If two bodie with frequent the ratio 2:3	es of same m ncies in the ra then the rati	ass are exect tio $1:2$ and 3 o of their tota	uting S.H.M. amplitudes in al energies is (2001)	10.	The equation is_{a+16n} accelerate ment x in ords is	tion of n $\tau^2 x = 0$ ion in n meters	notion c . In thi n/s², of . The tir	of particle s equation the partic me period	e executi on a is the cle at a c l of SHN	ing SHM he linear displace- <i>A</i> , in sec- (2004)
6	The time n	2) 1.9	J) I. T	4) 1.0		1) 1/4	2)	1/2	2) 1	4)	(2004) ว
6.	The time period of a light loaded spring is 3.5 seconds. On changing the load by 1kg, the period decreases by 0.5 seconds. The initial load on the spring is (2001)1) 3 (10/13) kg2) 4 (10/13) kg				11.	The time period of a particle in simple harmonic motion is 8 seconds. At $t = 0$ it is at the mean p tion. The ratio of the distances travelled by it is first and second seconds is: (2003)					armonic ean posi- by it is the 2003)
	3) 5 (10/13) kg	4)6(10/1	3) kg		1) $\frac{1}{-}$	2)	1	$(3) - \frac{1}{2}$	<u> </u>	$\frac{1}{}$
7.	The mass a those of ear the time per	and diameter th. If a secon iod of the per	of a planet a ds pendulum ndulum in se	are two times is taken to it, conds is (2002)	12.	A body exof $1 ms^{-1}$ Its amplit	ecuting and a n ude in n	√2 gS.H.M naximu netres is	$\sqrt{2}$ I. has a main maccele	-1 '' aximum ration o	$\sqrt{3}$ i velocity if 4 ms ⁻² . (2005)
	1) $\frac{1}{\sqrt{2}}$	2) 1/2	3)2	4) _{2√2}		1) 1	2) (0.75	3) 0.5	J 4)	0.25
8.	The elonga ligible mas	tion of a sprin s due to a for	ng of length l ce is x. The	L and of neg- spring is cut				KEY	ζ		
	into two pie	ces of length	s in ratio 1: n	The ratio of		1) 1	2) 4	3) 3	4) 1	5)2	6) 1
	the respective 1 $n: 1$	2) 1:n	$3) n^2 : 1$	(2002) 4) 1 : n ²		7) 4	8) 2	9) 1	10) 2	11)3	12) 4