
Chapter 1

Programming in C

 • Basic concepts

 • Character set

 • Identifi er

 • Declaring a variable

 • Visualization of declaration

 • Constants

 • Single character constants

 • String constants

 • Using const keyword

 • Precedence decreases as we move from top to bottom

 • Type conversion

 • Documentation section

 • Preprocessing

 • Global declaration

 • Control statements

 • Selection/Decision making statement

 • Looping statements

 • Unconditional jump statements

LEARNING OBJECTIVES

BasiC COnCepts

Character Set
A character refers to an alphabet, digit or a special symbol.
Alphabets: A – Z, a – z

Digits: 0 -9
Special symbols:
∼ ! # % ∧ and * ( ) - + { } [ ] - < > , . | ? \ | : ; ” ’ White space

Identifi er
Identifi er is a user-defi ned name used for naming a variable or a
function.
Rules for naming an identifi er

 • Consists only letters, digits and underscore
 • Starts only with an alphabet or underscore
 • Keywords cannot be used.
 • Can be as long as you like, fi rst 31 characters are signifi cant.

Example: Valid identifi ers: RollNo, Roll_No, _Roll_No
 rollno, Name2;
 Invalid: 2name, Roll No.

Variable
The name itself represents value, is not constant. Variable is a
data name whose value varies/changes during program execution.
Variable name is a name given to memory cell (may be one or
multiple bytes).

Data types
Represents type of data and set of operations to perform on data .

Data Type

Primitive/Basic Derived User defi ned Valueless

– Char – Array – Structure

– fl oat – pointer – union – void

– double Enumeration

– integer

Type Keyword Number of Bytes

Integer int 2

Floating fl oat 4

Double double 8

Character char 1

3.4  |  Unit 3  •  Programming and Data Structures

Declaring a Variable

•• Before using a variable, you must give some information
to compiler about the variable. i.e., you must declare it.

•• Declaration statement includes the type and variable
name.

Syntax:
Datatype Var_name;
Example:
int roll_no;
char ch;
float age;

•• When we declare a variable
•• �memory space is allocated to hold a value of specified

type.
•• space is associated with variable name
•• space is associated with a unique Address.

Table 1  Visualization of declaration

roll no

int roll no; garbage

2002

marks

int marks = 10; 10

3008

diameter

float diameter = 5.9 5.9

4252

ch → variable name

char ch : ‘A’ A → value

2820 → address

Note: The default value is garbage, i.e., an unknown value
is assigned randomly.

Renaming data types with typedef  Typedef is a keyword,
which can form complex types from the basic type, and will
assign some simpler names for such combinations. This is
more helpful when some declaration is very tough, confus-
ing or varies from one implementation to another.

For example, the data type unsigned long int is redefined
as LONG as follows:

typedef unsigned long int LONG;

Uses of enumerated data types  Enumerated data types are
most useful when one is working over small, discrete set
of values, in which each is having a meaning and it is not
a number.

A best example can be given on months jan, feb, mar, …,
dec, which are 12 in number, with assigning consecutive num-
bers for it.

The main advantages are storage efficiency, the c-code
can become readable

Constants
A constant value is one which does not change during the
execution of a program.
C supports several types of constants:

	 1.	 Integer constants
	 2.	 Real constants
	 3.	 Single character constants
	 4.	 Strings constants

Integer constants
An integer constant is a sequence of digits. It consists of
a set of digits 0 to 9 preceded by an optional + or - sign
spaces, commas, and non-digit characters are not permitted
between digits.
Examples for valid decimal integer constants are
123
-31
0
562321	
+78
Examples for invalid integer constants are
20,000
`1000

Real constants
Real constants consist of a fractional part in their represen-
tation. Integer constants are inadequate to represent quanti-
ties that vary continuously.
Examples of real constants are
0.0026
-0.97
435.29
+487.0

Single character constants
A single character constant represents a single character
which is enclosed in a pair of quotation symbols.
Examples for character constants are
‘5’
‘x’
‘;’

String constants
A string constant is a set of characters enclosed in dou-
ble quotation marks. The characters in a string constant
sequence may be alphabet, number, special character and
blank space.
Examples of string constants are
“VISHAL”
“1234”
“C language”
“!….?”

Chapter 1  •  Programming in C  |  3.5

Naming constants
A name given to a constant value. Value of name does not
change during program execution.

Using const keyword
When we use ‘const’ with data type, memory will be allo-
cated to variable and the initialized value does not change.
const int x = 10;
const float pi = 3.141;

Using # define
define x 10
define pi 3.141
Where ‘# define’ is instruction to preprocessor so memory
is allocated. The preprocessor replace each occurrence of
name with value in program before execution.

Operator
An operator is a symbol which performs operations on
given data elements.

Table 2  Precedence and Associativity

()  Parenthesis
[]  Index
→  Member of
•  Member of

L - R

Pre ++, - -
(unary) - , &(address of)
* (Indirection)

R - L

Arithmetic * , /, % L - R

Arithmetic: +, - L - R

Bitwise shift : �, � L - R

Relational: <, >, =. >, > = = =, ! = L - R

Bitwise ex -OR : ∧ L - R

Logical AND : && L - R

Logical OR : || L - R

Conditional: ? : R - L

Assignment & compound Assignment
=, + =, - =, * =, / = ; % = R - L

Separation operator: , (comma) L - R

Note: For Assignment operator, only a variable is allowed
on its left.

Precedence Decreases as We Move from
Top to Bottom
Examples:

	 1.	 int a,b,c;
		 a = b = c = 0;
		 Assigns ‘0’ to a,b,c;

	 2.	 int a, b = 55, c = 10;
		 initializes ‘b’ with 55 and ‘c’ with ‘10’.
		 b + c = a; // Invalid
		 Only variable is allowed on left side of assignment.

	 3.	 int a = 15, b = 20, c = 2, d = 5, e = 10, f, g, h, i;
		 f = a << c;
		 ‘a’ is left shifted for ‘c’ times and result stored in ‘f’

i.e.,
		 a = 15 = (1 1 1 1)

2

		 ↓ ↓ ↓ ↓
		 1  1  1  1 0  (After first shift)
		 ↓ ↓ ↓ ↓
		 1  1  1  1 0 0  (After second shift)
		 One left shift multiplies 15 by 2 = 30
		 Again the 2nd left shift multiplies 30 by 2 = 60
		 Thus 15 × 22 = 60, where the power of 2 is the number

of times shift is made. Value of ‘f ’ becomes 60.

Note: Left shift multiplies the value by 2. Right shift divides
the value by 2.

g = a and b;
	 a - 0 1 1 1 1
	 b - 1 0 1 0 0

	   0 0 1 0 0 = 4

‘&’ performs bitwise AND. So ‘g’ value is ‘4’.
h = a|b;	 a - 0 1 1 1 1
	 b - 1 0 0 0 0

	   1 1 1 1 1 = 31

“I ” performs bitwise ‘OR’. R value is ‘31’.
i = a ^ d :	 a - 1 1 1 1
		 b - 0 1 0 1

		   1 0 1 0 = 10

‘^’ performs bit-wise ex - OR. i value is ‘10’.

	 4.	 int a = 100 , b = 200, c = 300, x;
		 x = (a > b)?((a > c)? a:c):((b > c)? b:c);
		    false 			    c
		 x = c
		 so, x = 300

	 5.	 int i = 10, j = 10, x, y;
	 x = i+++++i+i+++++i+++i
	 executes as
	 ++ i
	 ++ i pre-increments
	 ++ i
	 X = i + i + i + i + i
	 i ++ ; post-increments
	 i ++ ;
	 so x = 65, i = 15.
	� y = j - - + - - j + j - - + - - j +

- - j

}
}

3.6  |  Unit 3  •  Programming and Data Structures

		 executes as
		 - - j;
		 - - j; pre decrements
		 - - j;
		 y = j + j + j + j + j ;
		 j - -;
		 j - -; post decrements.
		 y = 35; j = 5

	 6.	 int i = 10;

		 printf(“%d%d%d%d%d”, i++, ++i, ++i,
i++, ++i);

		 evaluates the values in printf from
right to left.

		 So
		 i++, ++i, ++i, i++, ++i
		
		 Prints 14 14 13 11 11
		 Printf (“%d”, i)
		 Prints 15:

Type Conversion
‘C’ allows mixed mode operations, i.e., variables of differ-
ent type may appear in same expression. To perform the
operation, the data need to convert into compatible type.

The conversion takes place in two ways:

Implicit
C automatically converts any intermediate values to proper
type so that the expression can be evaluated without losing
any significance.

For mixed mode operations, generally the ‘lower’ type is
automatically converted to ‘higher’ type before the opera-
tion proceeds.

Explicit
 ‘C’ allows programmer to use type conversion operator to
convert a data value to the required type.

Syntax:
V1 = (type) V2;
Type in parenthesis represents the destination type.

Example: int a = 3, b = 2, float x, y;

Case I:  x = a/b;
	    results x = 1.000000

Case II:  y = (float) a/b;
	 results y = 1.500000.

Because, in case 1, the integer division is performed and
so returns an integer by division operator. While assigning the
integer value implicitly converted to 1.000000, then assigns
to float variable x where as in case 2, (float)a converts value
of ‘a’ to float, the second variable ‘b’ is integer. The compiler
implicitly converts integer to float. Then it performs float
division. So 1.500000 is stored into floating variables.

Notes: ‘C’ allows both implicit and explicit type conversion.
Type conversion is of two types:

	 1.	 Narrowing: Conversion of ‘higher’ type to ‘lower’
type.

	 2.	 Widening: Conversion of ‘lower’ type to ‘higher’ type.

Char – int ¬– long – float – double – long double

Widening

Narrowing

Note: Narrowing causes loss of data.

  Input/output Functions 

Function Purpose

printf prints formatted string

scanf reads formatted string

getchar reads character

putchar displays a character

gets reads a string

puts displays a string

Format Specifier Purpose

%c single character

%d decimal integer

%e floating point

%f floating point

%h short int

%o octal integer

%x hexa decimal

%s string

%u unsigned decimal integer

Note: scanf(“%s”, string_var); does not read string which
contains white space. Hence to read multi word string use
gets(string_var);

Example 1:  Which of following comment regarding the
reading of a string using scanf() and gets () is true?
(A)	 Both can be used interchangeably
(B)	� scanf is delimited by end of line, gets is delimited by

blank space
(C)	� scanf is delimited by blank, gets is delimited by end of

line
(D)	 None of these

Ans: (C)

Program Structure
/* Documentation section */

Preprocessor commands;

Global declaration;

main ()

}
}

Chapter 1  •  Programming in C  |  3.7

{
Body of main;
}
User defined function area;

Documentation section/comments  Ignored by com-
piler, provides additional information to user to improve
readability.

Preprocessing  Tells the compiler to do pre-processing
before doing compilation. For example

#include < stdio.h > tells to include stdio header file.

Global declaration  It contains variable declarations, these
are accessible in more than one function.

Function  Functions are main building blocks of ‘C’ pro-
gram. Every ‘C’ program contains one or more functions. A
mandatory function called ’main()’ instructs the compiler
to start execution from here.

User defined area  Here user can define his own functions.

Control Statements
The statement that controls the execution sequence of a pro-
gram is called “control statement”.

The control statements are classified as:

	 1.	 Selection statement: if, switch
	 2.	 Iterative/looping statement: While, do-while, for
	 3.	 Unconditional jump statements: break, continue,

return, goto

Selection/Decision-making Statement
Makes a decision to select and execute statement(s) based
on the condition. ‘C’ supports if and switch selection
statements.

The if statement  “if ” is called two-way selection statement.

Syntax:
if (expression) // simple-if
	 statement(s);
if (expression) // if-else
{
	 statement1(s);
}
else
{
	 statements(s);
}
if (expression) // ladder else-if.
{
	 Statement1(s);
}
else if (expression2)

{
Statement2(s);
}
else
{
Statement3(s);
}

Nested if:
	 if (expression1)
{
	 Statement(s)1;
	 if (expression(s)2)
 else
	 Statement(s)3;
}
else
Statement(s)4;

Note: If the expression evaluates to true then the statements
of if block gets executed otherwise else block statements
will execute.

Example 2:  Consider the following program segment:
if (a > b) printf (“a > b”);
else
printf (“else part”);
printf (“a < = b”);
a < = b will be printed if
(A)	 a > b	 (B)	 a < b
(C)	 a = b	 (D)	 all of these
Ans: (D)
Because the statement, printf(“a < = b”); is not the part of
either if block or else block.

The switch statement  Switch is a multi-way (n-way)
selection statement.

Syntax:
switch (var_name/exp)
{
case const1: stmts1;
		 break;
case const2: stmts2;
		 break;
	 .
	 .
	 .
case constn: stmts n;
		 break;
default: statements;
}

Notes:
•• For switch only the integral (integer/char) type variables

or expression evaluates to integral allowed.
•• Absence of break after case statements leads continua-

tion execution of all case statements followed by match-
ing case block.

3.8  |  Unit 3  •  Programming and Data Structures

Example 3:
	 main ()
	 {
	 int i = 10;
	 switch(i)
	 {
	 case 10 : printf (“case 10”);
	 case 15 : printf (“case 15”);
	 case 20 : printf (“case 20”);
	 default : printf (“default case”);
	 }
	 }

Output: Case 10 case 15 case 20 default case
Reason: Missing break after each case, leads to execution
of all the cases from matching case.

Example 4:
	 main ()
	 {
	 int i = 10;
	 switch (i)
	 {
	 case 10 : printf(“case 10”);
	 break ;
	 case 8 + 2 : printf(“case 8+2”);
			 break;
	 default : printf(“ No matching case”);
	 }
	 }

Program raises an error called ‘Duplicate case’ while com-
piling because the expression ‘8 + 2’ evaluates to ‘10’.

Looping Statements
Sometimes, there is a situation to execute statement(s) repeat-
edly for a number of times or until the condition satisfies. C’
supports following looping statements: while, do-while, for.

While Statement
Syntax: while (condition)
		 {
		 Statement(s);
		 }
If the condition is true the block of statements will execute
and control returns to condition, i.e., the statement(s) exe-
cutes till the condition becomes false.

Notes:
•• ‘While’ executes the block either ‘0’ or more times.
•• ‘While’ is called entry control loop.

Do-while Statement.
Syntax:
do
		 {
			 Statement(s);
		 } while (condition);

do-while is same as ‘while; except that the statement(s) will
execute for at least once.

Notes:
•• The condition will not be evaluate to execute the block

for first time.
•• ‘do-while’ is called exit-control loop.

Example 5:
	 main ()
	 {
	 int i = 0;
	 while (i! = 0)
	 {
		 printf(“%d”, i);
		 i++;
	 }
	 }

No output, because the condition is false for the first time.
main ()
	 {
	 int i = 0;
	 do
	 {
	 printf(“%d”, i);
	 i++;
} while (i! = 0);
}

Output: Displays 0 to 32767 and-32768 to-1

The for loop  ‘for’ provides more concise loop control
structure.

Syntax:
for(exp1; exp2; exp3)
{
Statement(s);
}

Expression 1: Initialization expression may contain mul-
tiple initializations. It executes only once before executing
the loop for first time.

Expression 2: Condition expression. Only one condition
expression is allowed. That may be single or compound
condition, evaluates before every execution.

Expression 3: Modification statement may contain multi-
ple statements. It executes on completion of loop body for
every iteration.

Note: All the expressions in parenthesis are optional. Two
semi-colons (;) are compulsory even though there are no
expressions.

Odd loops  In the for loop, while loop, the condition speci-
fies the number of times a loop can be executed. Sometimes
a user may not know, about the number of times a loop is
to be executed. If we want to execute a loop for unknown
number of times, then the concept of odd loops should be
implemented, these can be done using the for, while (or)
do-while loops. Let us illustrate odd-loop with a program

Chapter 1  •  Programming in C  |  3.9

include <stdio.h>
main()
{
int num, x;
num = 1;
while (num = = 1)
{
printf (“enter a number“);
scanf (“%d”, & x);
if((x % 2) = = 0)
printf(“number is even”);
else
printf(“number is odd”);
printf(“do u want to test any num.”);
printf(“for yes-enter ‘1’, No-enter ‘0’”);
Scanf(“%d”,& num);
}
}

Unconditional Jump Statements

•• “C” language permits to jump from one statement to
another.

•• ‘C’ supports break, continue, return and goto jump
statements.

Break statement  Breaks the execution sequence. That is
when the break statement executes in a block (loop) it’ll
come out from block (loop).

Syntax:
break;

Continue statement  Used to skip a part of the loop under
certain conditions.

Syntax:
continue;

Return statement  Terminates the execution of a function
and returns the control to the calling function.

Syntax:
return [exp/value];

Goto statement  Jumps from one point to another with in a
function.

Syntax:
	 label1:		 goto label2:
	 Statement(s);		 Statement(s);
	 goto label1;		 label2;
	 reverse jump		 forward jump

Reverse jump, executes the statements repeatedly where as
in forward jump, the statements are skipped from execution.

Example 6:
	 main()
	 {
	 int i ;
	 for (i=1; i<=10; i++)
	 {
		 if (i = = 5)
			 break;
		 printf(“%d” , i);
	 }
	 }
output:	  1	 2	 3	 4
if i = 5, then the loop will break.

Example 7:
	 main()
	 {
		 int i ;
		 for (i = 1; i<=10; i++)
		 {
			 if (i = = 5)
			 continue;
			 printf(“%d” , i);
		 }	
	 }
o/p:  1 2 3 4 6 7 8 9 10
if i = 5, the loop statements skipped for that iteration. So it
does not print ‘5’.

Example 8:
Output for the following program segment

for (i = 1, j = 10 ; i < 6; ++i, --j)
printf(“\n %d %d”, i, j);

Output:

1 10

2 9

3 8

4 7

5 6

Note: Since for statement allows multiple initialization and
multiple update statements, expression 1 and expression 3,
does not raise any error.

3.10  |  Unit 3  •  Programming and Data Structures

Exercises

Practice Problems 1
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.
	 1.	 What will be the output of the following program?
	 void main()
	 {
	 int i;
	 char a[] =” \0 ”;
	 if (printf(“%s\n”, a))
	 printf (“ok \n”);
	 else
	 printf(“program error \n”);
	 }
	 (A)	 ok	 (B)	 progam error
	 (C)	 no output	 (D)	 compilation error

	 2.	 Output of the following will be
	 # define FALSE-1
	 # define TRUE 1
	 # define NULL 0
	 main()
	 {
		 if(NULL)
		 puts(“NULL”);
		 else if(FALSE)
		 puts(“TRUE”);
		 else
		 puts(“FALSE”);
		 }
	 (A)	 NULL	 (B)	 TRUE
	 (C)	 FALSE	 (D)	 1

	 3.	 main()
	 {
		 printf(“%x”,-1 << 4) ;
	 }
	 For the above program output will be
	 (A)	 FFF0	 (B)	 FF00
	 (C)	 00FF	 (D)	 0FFF

	 4.	 For the following program
	 # define sqr (a) a*a
	 main()
	 {
		 int i;
		 i = 64 / sqr(4);
		 printf(“%d”, i);
		 }
	 output will be
	 (A)	 4	 (B)	 16
	 (C)	 64	 (D)	 compilation error

	 5.	 #define clrscr () 1000
	 main ()
	 {
	 clrscr();

	 printf (“%d \n”, clrscr());
	 }
	 Output of the above program will be?
	 (A)	 error	 (B)	 No output
	 (C)	 1000	 (D)	 1

	 6.	 Output of the following program is
	 main()
	 {
		 int i = -2;
		 +i;
		 printf(“i = %d, +i = %d\n”, i, +i);
	 (A)	 error	 (B)	 -2, +2	
	 (C)	 -2, -2	 (D)	 -2, 2

	 7.	 main()
	 {
	 int n;
	 printf(“%d”, scanf (“%d”, & n));
	 }
		 For the above program if input is given as 20. What will

be the output?
	 (A)	 20	 (B)	 1
	 (C)	 2	 (D)	 0

	 8.	 How many times will the following code be executed?
	 {
		 x = 10;
		 while (x = 1)
		 x ++;
	 }
	 (A)	 Never
	 (B)	 Once
	 (C)	 15 times
	 (D)	 Infinite number of times

	 9.	 The following statement
	 printf(“%d”, 9%5); prints
	 (A)	 1.8	 (B)	 1.0
	 (C)	 4	 (D)	 2

	10.	 int a;
	 printf(“%d”, a);
	 What is the output of the above code fragment?
	 (A)	 0	 (B)	 2
	 (C)	 Garbage value	 (D)	 3

	11.	 printf(“%d”, printf(“time”));
	 (A)	 syntax error
	 (B)	 outputs time 4
	 (C)	 outputs garbage
	 (D)	 prints time and terminates abruptly

	12.	 The following program
	 main()
	 {
		 int i = 2;
		 {
		 int i = 4, j = 5;

Chapter 1  •  Programming in C  |  3.11

		 printf (“%d%d”,i,j);
		 }
		 printf (“%d%d”,i,j);
	 }
	 (A)	 Compiler error: unrecognised symbol j;
	 (B)	 Prints 2545
	 (C)	 Print 4525
	 (D)	 None of the above

	13.	 What is the output of the following program fragment?
	 for (i = 3; i < 15; i + = 3);
	 printf (“%d”, i);
	 (A)	 a syntax error	 (B)	 an execution error
	 (C)	 prints 12	 (D)	 prints 15

	14.	 What is the output of the following program segment?
	 int a = 4, b = 6;
	 printf(“%d”, a = b);

	 (A)	 Outputs an error message
	 (B)	 Prints 0
	 (C)	 Prints 1
	 (D)	 None of these

	15.	 The statements:
	 a = 7;
	 printf(“%d”, (a++));
	 prints
	 (A)	 Value of 8	 (B)	 Value of 7
	 (C)	 Value of 0	 (D)	 None of the above

Practice Problems 2
Directions for questions 1 to 12:  Select the correct alterna-
tive from the given choices.
	 1.	 If the condition is missing in a FOR loop of a C pro-

gram then
	 (A)	 It is assumed to be present and taken to be false
	 (B)	 It is assumed to be present and taken to be true
	 (C)	 It results in syntax error
	 (D)	 Execution will be terminated abruptly

	 2.	 Which of the following operators in ‘C’ does not asso-
ciate from the right?

	 (A)	 =	 (B)	 + =
	 (C)	 postfix++	 (D)	 >
	 3.	 In a C programming language x - = y + 1 means
	 (A)	 x = -x - y - 1	 (B)	 x = x - y + 1
	 (C)	 x = x - y - 1	 (D)	 x = -x + y + 1
	 4.	 Minimum number of temporary variables needed to

swap two variables is
	 (A)	 1	 (B)	 2
	 (C)	 3	 (D)	 0

	 5.	 A preprocessor command
	 (A)	 need not start on a new line
	 (B)	 need not start on the first column
	 (C)	 has # as the first character
	 (D)	 comes after the first executable statement

	 6.	 printf (“%d”, printf (“%d”, printf(“time4kids”)));
	 (A)	 Outputs time	 (B)	 Syntax error
	 (C)	 Outputs 9	 (D)	 None of the above

	 7.	 for (i = 1; i < 5; i++)

		 if (i!=3)

		 printf(“%d”, i);

		 Outputs:
	 (A)	 12345	 (B)	 Error
	 (C)	 1245	 (D)	 0000

	 8.	 Which operand in ‘C’ takes only integer operands?
	 (A)	 *	 (B)	 /
	 (C)	 %	 (D)	 +

	 9.	 An unrestricted use of ‘goto’ statement is harmful because
		 (A)	� it results in increasing the executing time of the

program
		 (B)	 it increases the memory of the program
		 (C)	 it decreases the readability and testing of program
		 (D)	 None of the above

	10.	 What will be the output?
	 main()
	 {
	 int i = 0, j = 0;
	 if(i && j ++)
	 printf(“%d..%d”, i++, j);
	 printf(“%d..%d”, i, j);
	 }
	 (A)	 1..1	 (B)	 2..2
	 (C)	 0..0	 (D)	 1..1, 1..1

	11.	 What is the output?
	 main ()
	 {
	 int a = 0;
	 int b = 20;
	 char x = 1;
	 char y = 10;
	 if(a, b, x, y);
	 printf(“hello”);
	 }
	 (A)	 logical error	 (B)	 Garbage value
	 (C)	 hello	 (D)	 20

	12.	 What will be the value of count after executing the
below program:

	 main () {
	 int count = 10, digit = 0;
	 while (digit < = 9) {
	 printf (“%d\n”, ++count);
	 ++digit;
	 }
	 }
	 (A)	 10	 (B)	 11
	 (C)	 20	 (D)	 21

3.12  |  Unit 3  •  Programming and Data Structures

Previous Years’ Questions

	 1.	 Which one of the following are essential features of
an object-oriented programming language?

	 (i)	 Abstraction and encapsulation
	 (ii)	 Strictly-typedness
	 (iii)	 Type-safe property coupled with sub-type rule
	 (iv)	 Polymorphism in the presence of inheritance

� [2005]
	 (A)	 (i) and (ii) only
	 (B)	 (i) and (iv) only
	 (C)	 (i), (ii) and (iv) only
	 (D)	 (i), (iii) and (iv) only

	 2.	 Which of the following are true?

	 (i)	A programming language which does not permit
global variables of any kind and has no nesting of
procedures/functions, but permits recursion can be
implemented with static storage allocation

	 (ii)	Multi-level access link (or display) arrangement is
needed to arrange activation records only if the pro-
gramming language being implemented has nesting
of procedures/functions

	(iii)	Recursion in programming languages cannot be
implemented with dynamic storage allocation

	 (iv)	Nesting procedures/functions and recursion require
a dynamic heap allocation scheme and cannot be
implemented with a stack-based allocation scheme
for activation records

	  (v)	Programming languages which permit a function to
return a function as its result cannot be implemented
with a stack-based storage allocation scheme for acti-
vation records

� [2008]
	 (A)  (ii) and (v) only    (B)  (i), (iii) and (iv) only
	 (C)  (i), (ii) and (v) only   (D)  (ii), (iii) and (v) only

	 3.	 What will be the output of the following C program
segment?

	 char inChar = ‘A’;
	 switch(inChar) {
	 case ‘A’: printf(“choice A\n”):
	 case ‘B’:
	 case ‘C’: printf(“choice B”);
	 case ‘D’
	 case ‘E’:
	 default: printf(“No Choice”);}� [2012]
	 (A)	 No choice
	 (B)	 Choice A
	 (C)	 Choice A
		 Choice B No choice
	 (D)	 Program gives no output as it is erroneous

	 4.	 Suppose n and p are unsigned int variables in a C pro-
gram. We wish to set p to nC

3
. If n is large, which one of

the following statements is most likely to set p correctly?

� [2014]
	 (A)	 p = n * (n - 1) * (n - 2)/6;
	 (B)	 p = n * (n - 1) /2* (n - 2)/3;
	 (C)	 p = n * (n - 1) /3 * (n - 2)/2;
	 (D)	 p = n * (n - 1) * (n - 2)/6.0;

	 5.	 The secant method is used to find the root of an equa-
tion f (x) = 0. It is started from two distinct estimates
x

a
 and x

b
 for the root. It is an iterative procedure

involving linear interpolation to a root. The iteration
stops if f (x

b
) is very small and then x

b
 is the solution.

The procedure is given below. Observe that there is
an expression which is missing and is marked by ?.
Which is the suitable expression that is to put in place
of ? so that it follows all steps of the secant method?

� [2015]

		 Secant

		 Initialize: x
a
, x

b
, ε, N	 // ε = convergence indicator

					 // N = maximum no. of
iterations

		 f
b
 = f (x

b
)

		 i = 0
		 while (i < N and | f

b 
| > ε) do

		 i = i + 1	 // update counter
		 x

t
 = ?	 // missing expression for

			 // intermediate value
		 x

a
 = x

b	
// reset x

a

		 x
b
 = x

t	
// reset x

b

		 f
b
 = f (x

b
)	 // function value at new x

b

		 end while
		 if | f

b 
| > ε then	 // loop is terminated with i = N

		 write “Non-convergence”
		 else
		 write “return x

b
”

		 end if
	 (A)	 x

b
 – ( f

b
 – f (x

a
)) f

b
 / (x

b
 – x

a
)

	 (B)	 x
a
 – (f

a
 – f(x

a
)) f

a
 / (x

b
– x

a
)

	 (C)	 x
b
 – (x

b
– x

a
) f

b
 / ( f

b
– f (x

a
))

	 (D)	 x
a
 – (x

b
 – x

a
) f

a
 / ( f

b
 – f (x

a
))

	 6.	 Consider the following C program:
			 #include<stdio.h>
			 int main()
			 {
			 int i, j, k = 0;
			 j = 2 * 3 / 4 + 2.0 / 5 + 8 / 5;
			 k -= --j;
			 for (i = 0; i < 5; i ++)
			 {
			 switch(i + k)

Chapter 1  •  Programming in C  |  3.13

Answer Keys

Exercises

Practice Problems 1
	 1.  A	 2.  B	 3.  A	 4.  C	 5.  C	 6.  C	 7.  B	 8.  D	 9.  C	 10.  C
	11.  B	 12.  A	 13.  D	 14.  D	 15.  B

Practice Problems 2
	 1.  B	 2.  D	 3.  C	 4.  D	 5.  C	 6.  D	 7.  C	 8.  C	 9.  C	 10.  C
	11.  C	 12.  C

Previous Years’ Questions
	 1.  B	 2.  D	 3.  C	 4.  B	 5.  C	 6.  10	 7.  C	 8.  0

			 {
			 case 1:
			 case 2: printf(“\n%d”, i + k);
			 case 3: printf(“\n%d”, i + k);
			 default: printf((“\n%d”, i + k);
			 }
			 }
			 return 0;
			 }

The number of times printf statement is executed is
_______.� [2015]

	 7.	 Consider the C program fragment below which is
meant to divide x by y using repeated subtractions.
The variables x, y, q and r are all unsigned int.

while (r >= y) {
r = r − y;
q = q + 1;

}
		 Which of the following conditions on the variables x,

y, q and r before the execution of the fragment will

ensure that the loop terminates in a state satisfying the
condition x == (y*q + r)?� [2017]

	 (A)	 (q == r) && (r == 0)
	 (B)	 (x > 0) && (r == x) &&(y > 0)
	 (C)	 (q == 0) && (r == x) && (y > 0)
	 (D)	 (q == 0) && (y > 0)

	 8.	 Consider the following C Program.
#include<stdio.h>
int main () {

int m = 10;
int n, nl ;
n = ++m;
nl = m++;
n−−;
−−nl;
n −= nl;
printf (“%d”, n) ;
return 0;

}

		 The output of the program is ___________.� [2017]

	Unit 3: Programming and Data Structures
	PART A: Programming and Data Structures
	Chapter 1: Programming in C
	Basic Concepts
	Data Types
	Program Structure
	Control Statements
	Exercises
	Previous Years’ Questions
	Answer Keys

