3

Bipolar Junction Transistor

Multiple Choice Questions

- Q.1 The DC current gain (β) of a BJT is 50. Assuming that the emitter injection efficiency is 0.995. The base transport factor is
 - (a) 0.980
- (b) 0.985
- (c) 0.990
- (d) 0.995
- Q.2 In a uniformly doped BJT, assume that N_E , N_B and N_C are emitter, base and collector doping in atoms/cm³ respectively. If the emitter injection efficiency of the BJT is close to unity which one of the following is true?
 - (a) $N_E = N_B = N_C$
 - (b) $N_E >> N_B, N_B > N_C$
 - (c) $N_E = N_B$ and $N_B < N_C$
 - (d) $N_E < N_B < N_C$
- Q.3 In the transistor shown in figure below, collector to ground voltage is +20 V, which of the following is the probable cause of error

- (a) collector-emitter terminals shorted
- (b) emitter to ground connection open
- (c) $10 \text{ k}\Omega$ resistor open
- (d) collector base terminals shorted

- Q.4 In a bipolar transistor at room temperature. If the emitter current is doubled, the voltage across its base emitter junction
 - (a) doubles
 - (b) halves
 - (c) increases by about 20 mV
 - (d) decreases by about 20 mV
- Q.5 Find the output resistance of BJT for which $V_A = 100 \text{ V}$ at $I_C = 0.1 \text{ mA}$
 - (a) 1 kΩ
- (b) 1 MΩ
- (c) $2 M\Omega$
- (d) $30 \text{ k}\Omega$
- Q.6 Assume the transistor current gain β = 100 and that the breakdown voltage at base collector junction is β V_{CBO} is 120 V. Assume constant n = 3. Then β V_{CEO} is
 - (a) 20 V
- (b) 25.9 V
- (c) 35 V
- (d) 40 V
- Q.7 The reverse saturation current of collector base junction (I_{CBO}) of a BJT is found to be 10 nA at lower collector voltages. The low voltage current amplification factor (α) is 0.98. Find reverse saturation current with base open (I_{CEO})
 - (a) 1 µA
- (b) 0.5 µA
- (c) 2 µA
- (d) 3 µA
- Q.8 The phenomenon known as "Early effect in a bipolar transistor refers to a reduction of the effective width caused by"
 - (a) electron-hole recombination at the base
 - (b) the reverse biasing of base collector junction
 - (c) the forward biasing of emitter-base junction
 - (d) the early removal of stored base charge during saturation to cut-off switching

Numerical Data Type Questions

- Q.9 A transistor has a current gain of 0.99 in the CB mode. Its current gain in the CC mode is _____.
- Q.10 The neutral base width of a bipolar transistor, biased in the active region, is 0.5 μ m. The maximum electron concentration and the diffusion constant in the base are $10^{14}/\text{cm}^3$ and $D_n = 25 \text{ cm}^2/\text{sec}$ respectively. Assuming negligible recombination in the base, the collector current density is _____ A/cm^2. (the electron charge is 1.6×10^{-19} Coulomb)
- Q.11 A transistor having β = 49 has emitter cut-off current of 5 μ A. The base cut-off current is ____.
- Q.12 For a BJT, the common-base current gain $\alpha=0.98$ and the collector base junction reverse bias saturation current $I_{CO}=0.6\,\mu\text{A}$. This BJT is connected in the common emitter mode and operated in the active region with a base drive current $I_{B}=20\,\mu\text{A}$. The collector current I_{C} for this mode of operation is _____ mA.
- Q.13 If the α of a transistor changes 0.75% from its nominal value of 0.95, The percentage change in β will be____%.

Try Yourself

- T1. The leakage currents of a transistor are $I_{\rm CBO}=3~\mu{\rm A}$ and $I_{\rm CEO}=0.6~{\rm mA}$ and $I_{\rm B}=10~\mu{\rm A}$, then the value of β is
 - (a) 79
- (b) 80
- (c) 199
- (d) 200

T2. Consider the circuits shown below,

then, which of the following options is correct?

- (a) I \rightarrow Active
 - II → Reverse Active
 - $\Pi \rightarrow Active$
- IV → Reverse Active
- (b) $I \rightarrow Active$
 - II → Saturation
 - $III \rightarrow Active$
 - $IV \rightarrow Active$
- (c) I → Active
 - II → Saturation
- $IV \rightarrow Cut off$
- d) I → Saturation
- II → Saturation
- IV → Reverse Active

- T3. For a Si transistor β = 100 has a base to collector leakage current I_{CBO} of 15 μA. If the transistor is connected for common-emitter operation, the collector current considering $I_B = 0$ will be.
 - (a) $148.5 \,\mu\text{A}$
- (b) 148.5 mA
- (c) 1.515 µA
- (d) 1.515 mA
- T4. Out of the following statements which one of the following is not true for getting a high value of β.
 - (a) The concentration on the emitter side should be greater than that of base
 - (b) The length of emitter should be greater than the length of base
 - (c) The length of base should be greater than the diffusion length of the carrier in the base.
 - (d) The recombinations at the base should be kept minimum.

T5. In a transistor, collector to base reverse bias current when emitter is open $I_{CBO} = 3 \, \mu \text{A}$ and the collector to emitter is reverse bias current when base is open $I_{CEO} = 0.6 \, \text{mA}$ and base current $I_B = 10 \, \mu \text{A}$, then the value of collector current I_C will be _____ mA.

등 후 열 중