Time allowed: 45 minutes

Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

1. A is a scalar matrix, if

(a)
$$A = [a_{ij}]_n$$
 where $a_{ij} = \begin{cases} 0 & \text{if } i \neq j \\ k & \text{if } i = j \end{cases}$ $k \in \mathbb{R}$.

(b)
$$A = [a_{ij}]_{n'} a_{ij} = \begin{cases} k & \text{if } i \neq j & k \in \mathbb{R} \\ 0 & \text{if } i = j \end{cases}$$

(c)
$$A = [a_{ij}]$$
, where $a_{ij} = k \forall i, j$

(d) None of these

2. Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 then

(a)
$$A^2 = A$$

(b)
$$A^2 = 0$$

(c)
$$A^2 = I$$

(d) None of these

3. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$, then $|AB|$ is

$$(d)$$
 0

4. If
$$y = e^{-x}$$
 then $\frac{d^2y}{dx^2}$ is equal to
(a) y (b) -

$$(b) - y$$

(c)
$$\frac{1}{y}$$

$$(d) - \frac{1}{y}$$

5. The point on the curve $y = 12x - x^2$ where the slope of the tangent is zero will be

(d) None of these

6. The value of $\int \tan^2 x \, dx$ equals

(a)
$$\tan x + x + C$$

(b)
$$\tan x - x + C$$

(c)
$$\cot x + x + C$$

(d)
$$-\tan x + x + C$$

7. The value of $\int \log x \, dx$ is

(a)
$$x \log x - x + C$$

(b)
$$\log x - x + C$$

(c)
$$x \log x + x + C$$

(d)
$$\log x + C$$

8. The value of $\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \, dx$ is

(a)
$$\frac{\pi}{2}$$

$$(d) -1$$

9. The value of $\int_{-1}^{1} \frac{x^3 + |x| + 1}{x^2 + 2|x| + 1} dx$ is equal to

	(a) log 2	(b) 2 log 2		(c) $\frac{1}{2} \log 2$	(d) 4 log	2				
10.	Area of the region (a) 16π sq. units	the region in the first quadrant enclosed by the x-axis, the line $y=x$ and the circle $x^2+y^2=32$ is a units (b) 4π sq. units (c) 32π sq. units (d) 24π sq. units								
11.	Solution of $x^2 + y^2 \frac{dy}{dx} = 4$ is									
		ax ax		(c) $x^3 + y^3 = 3x + C$	(d) $x^3 + y^2$	(d) $x^3 + y^3 = 12x + C$				
12.	The solution of xd.	The solution of $xdx + ydy = x^2ydy - xy^2dx$ is								
	(a) $x^2 - 1 = C(1 + y^2)$	(b) $x^2 + 1$:	$= C(1 - y^2)$	(c) $x^3 - 1 = C(1 + y^3)$	(d) $x^3 + 1$	(d) $x^3 + 1 = C(1 - y^3)$				
13.	The point which does not lie in the half plane $2x + 3y - 12 \le 0$ is									
	(a) (1, 2)	(b) (2, 1)		(c) (2, 3)	(d) (-3, 2)	(d) (-3, 2)				
14.	For the following distribution:									
	X	-4	-3	-2	-1	0				
	P(X)	0.1	0.2	0.3	0.2	0.2				
	E(X) is equal to	(b) -3		(c) -2	(d) - 1.8					
15	(a) - 2			(t) = 2	(u) = 1.5					
15.		For the binomial distribution $B(n, p)$, variance is								
	(a) npq	(b) √npq		(c) np	(d) None	of these				
	Section-B(B1)									
16.	If $A = \{7, 8, 9\}$, then	the relation $R = {$	((8, 9)) in A is							
	(a) Symmetric only	(b) Non-s	ymmetric	(c) Reflexive only	(d) Equiv	alence				
17.	Let $f: (-1, 1) \longrightarrow B$, be a function defined by $f(x) = \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$ then f is both one-one and onto when B is the interval									
	(a) $\left[0, \frac{\pi}{2}\right)$	(b) (0,	$\left(\frac{\pi}{2}\right)$	(c) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	(d) [-	$\frac{\pi}{2}$, $\frac{\pi}{2}$				
18.	Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = \frac{e^{x^2} - e^{-x^2}}{e^{x^2} + e^{-x^2}}$ then									
	(a) $f(x)$ is one-one b	(a) f(x) is one-one but not onto			(b) $f(x)$ is neither one one nor onto					
	(c) f(x) is many one and onto			(d) $f(x)$ is one-one and onto						
19.	If $a * b = a^2 + b^2$, then the value of $(4 * 5) * 3$ is									
	(a) $(4^2 + 5^2) + 3^2$	(b) (4 + 5)	$(x^2 + 3^2)$	(c) $41^2 + 3^2$	(d) (4 + 5	$(5+3)^2$				
20.	Let a*b denotes th		and b if $a.b = a*b$	+ 3, then 4.7 equal						
	(a) 14	(b) 31		(c) 10	(d) 8					
21.		The value of expression $\tan\left(\frac{\sin^{-1}x + \cos^{-1}x}{2}\right)$, where $x = \frac{\sqrt{3}}{2}$ is equal to								
	(a) ∞	(b) 1		(c) -1	(d) none	of these				
22.	1 2	If $\sin (\pi \cos x) = \cos (\pi \sin x)$ then x equals								
	(a) $\frac{1}{2} \sin^{-1} \frac{3}{4}$			(b) $\frac{1}{2}\cos^{-1}\frac{3}{4}$						
	$(c) - \frac{1}{4} \sin^{-1} \frac{3}{4}$			(d) $-\frac{1}{2}\cos^{-1}\frac{3}{4}$						

- 23. The domain of sin⁻¹ [x] is given by
 - (a) [-1, 1]
- (b) [-1, 2)
- $(c) \{-1, 0, 1\}$
- (d) None of these

- 24. $\cot^{-1}[(\cos \alpha)^{1/2}] + \tan^{-1}[(\cos \alpha)^{1/2}] = x$, then $\sin x$ equals
 - (a) 1

- (b) cot²(α/2)
- (c) tan a

(d) cot (α/2)

- 25. If $A = \begin{bmatrix} 0 & \sin \theta \\ \cos \theta & 1 \end{bmatrix}$ and $A = A^T$ then θ is equal to
 - (a) $\frac{\pi}{2}$

(b) $\frac{\pi}{6}$

(c) $\frac{\pi}{4}$

(d) $\frac{\pi}{3}$

- 26. If $A = \begin{bmatrix} 2 & 14 & 17 \\ 0 & \sin 2x & \cos 2x \\ 0 & \cos 2x & \sin 2x \end{bmatrix}$, then |A| equals
 - (a) $\cos 2x$
- (b) -2

- (c) $-2\cos 4x$
- (d) sin 4x

27. The system of linear equations

$$x + 2y + z = 5$$

$$2x + 3y + z = 2$$

$$3x + 5y + 2z = 1$$

has

- (a) a unique solution
- (b) no solution
- (c) exactly 3 solutions
- (d) infinite many solutions.

- 28. The function $f(x) = \begin{cases} \frac{\sin^3 x^2}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is
 - (a) continuous but not derivable at x = 0
- (b) neither continuous nor differentiable at x = 0
- (c) continuous and differentiable at x = 0
- (d) none of these

- 29. Let $f(x) = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ then f(x) is
 - (a) differentiable at x = 1
 - (c) neither continuous nor differentiable at x = 1
- (b) continuous $\forall x \in R$
- (d) continuous but not differentiable at x = 1
- 30. Let $f(x) = \begin{cases} x, & x < 1 \\ 2 x, & 1 \le x \le 2 \text{ then } f(x) \text{ is} \\ -2 + 3x x^2, & x > 2 \end{cases}$
 - (a) differentiable at x = 1

(b) differentiable at x = 2

(c) differentiable at x = 1 and x = 2

(d) none of these

- 31. Let $f(x) = |\sin x|$ then f(x) is
 - (a) continuous everywhere
 - (b) non-differentiable at odd and even multiple of p
 - (c) everywhere continuous but non-differentiable at x = np, n∈Z
 - (d) all of these
- 32. The minimum value of $f(x) = 3\cos^2 x + 4\sin^2 x + \cos\frac{x}{2} + \sin\frac{x}{2}$ is
 - (a) 4

- (b) $3 + \sqrt{2}$
- (c) 4 + √2
- (d) none of these
- 33. $\int_{-1}^{1} [x] dx$, where [.] denotes the greatest integer function, is equal to
 - (a) 1

(b) - 1

(c) 0

(d) none of these

34.	The value of $\int_0^{10\pi} \sin x dx$ is					
	(a) 15	(b) 20	(c) -10	(d) 7		
35.	$\int \tan^4 x dx = A \tan^3 x + B$	$\tan x + f(x)$, then				
	(a) $A = 1/3, B = -1, f(x) =$	= x + C	(b) $A = 2/3, B = -1, f(x) = x + C$			
	(c) $A = 1/3, B = 1, f(x) =$	= x + C	(d) $A = 2/3, B = 1, f(x) = -x + C$			
36.	The area bounded by curves $y^2 = 16x$ and $x^2 = 16y$ is given by					
	(a) $\frac{64}{3}$ sq. units.	(b) $\frac{256}{3}$ sq. units.	(c) $\frac{16}{3}$ sq. units.	(d) None of these		
37.	Which of the following d	lifferential equations has y	$e = C_1 e^x + C_2 e^{-x}$ as the general solution?			
	$(a) \ \frac{d^2y}{dx^2} + y = 0$		$(b) \frac{d^2y}{dx^2} - y = 0$			
	(c) $\frac{d^2y}{dx^2} + 1 = 0$		$(d) \frac{d^2y}{dx^2} - 1 = 0$			
38.	The order of differential	equation $\left(\frac{d^2y}{dx^2}\right)^3 = \left(1 + \frac{dy}{dx}\right)^3$) ^{1/2} is			
	(a) 2	(b) 3	(c) 1/2	(d) 6		
39.	If points $A(60\hat{i}+3\hat{j})$, $B(40\hat{i}-8\hat{j})$ and $C(a\hat{i}-52\hat{j})$ are collinear, then a is equal to					
	(a) 40	(b) 50	(c) -40	(d) none of these		
40.	If \vec{a} , \vec{b} , \vec{c} are three non- \vec{c} , \vec{b} + \vec{c} is collinear with		ich are collinear and the ve	ector $\vec{a} + \vec{b}$ is collinear with		
	(a) c	(b) b	(c) a	(d) none of these		
41.	If \vec{a} , \vec{b} are the vectors for side <i>CD</i> is	rming consecutive sides of a	of a regular hexagon ABCDEF, then the vector representing			
	(a) $\vec{a} + \vec{b}$	(b) $-(\vec{a} + \vec{b})$	(c) $\vec{a} - \vec{b}$	(d) $\vec{b} - \vec{a}$		
42.	The vector $\cos \alpha \cos \beta \hat{i} + \alpha$	$\cos \alpha \sin \beta \hat{j} + \sin \alpha \hat{k}$ is a				
	(a) Unit vector	(b) Null vector	(c) Constant vector	(d) none of these		
43.	If the origin is shifted to (4, 5, - 3) without changing the direction of the axes then the new co-ordinates of the point (0, 8, 5) with respect to new frame is					
	(a) (-4, 3, 8)	(b) (4, -3, -8)	(c) (4, 13, 2)	(d) None of these		
44.	The direction ratios of a l	ne direction ratios of a line segment joining the points $A(x_1, y_1, z_1)$, $B(x_2, y_2, z_2)$ are				
	(a) $\frac{x_1}{y_1'} \frac{x_2}{y_2'} \frac{x_3}{y_3}$		(b) $\frac{x - x_1}{x_2 - x_1'} \frac{y - y_1}{y_2 - y_1'} \frac{z - z_1}{z_2 - z_1}$			
	(c) $x_2 - x_1, y_2 - y_1, z_2 - z_1$		(d) None of these			
45.	The equation of the plan from the origin to the pla		(-3, 1, -2) which is the foot	of the perpendicular drawn		
	$(a) \ 4x - 2y + 3z + 20 = 0$		(b) $3x - y + 2z + 14 = 0$			
	(c) $3x + 2y - 4z - 1 = 0$		(d) $2x - 3y + 4z + 17 = 0$			

(a) $\sin^{-1}\left(\frac{11}{\sqrt{323}}\right)$

(b) $\sin^{-1}\left(\frac{22}{\sqrt{323}}\right)$

(c) $\sin^{-1}\left(\frac{22}{\sqrt{646}}\right)$

- (d) None of these
- 47. A coin is tossed 10 times, probability that on the 10th throw to observe 5th head is
 - (a) ${}^{9}C_{5} \times \frac{1}{2^{5}}$
- (b) $\frac{{}^{9}C_{4}}{2^{10}}$
- (c) $\frac{{}^{9}C_{5}}{2^{9}}$

- (d) none of these
- 48. Let X denotes the number of time tail appear in n tosses of a fair coin.

If P(X = 1), P(X = 2) and P(X = 3) are in AP, then the value of n is

(a) 9

(b) 2

(c) 7

(d) none of these

- 49. If A and B are events such that P(A/B) = P(B/A), then
 - (a) $A \subseteq B$ but $A \neq B$
- (b) A = B
- (c) $A \cap B = \phi$
- (d) P(A) = P(B)
- 50. If $B = \begin{bmatrix} 5 & 2\alpha & 1 \\ 0 & 2 & 1 \\ \alpha & 3 & -1 \end{bmatrix}$ is the inverse of 3×3 matrix A then the sum of values of α for which det (A) + 1 = 0 is
 - (a) 0

(b) - 1

(c) 1

(d) 2

