
Waves 
 

Waves - Transverse and Longitudinal 

Waves 

Continuous disturbance that transfers energy without any net displacement of the 
medium particles 

Types of Wave 

• Mechanical wave 

• Requires a material medium for propagation 

• Examples − sound waves, water waves, etc. 

• Electromagnetic wave 

• Does not require any material medium 

• Examples − light wave, X-rays, etc. 

• Matter wave 

• Associated with electrons, protons, neutrons, atoms 

Types of Mechanical Wave 

• Transverse wave 

• Medium particles oscillate perpendicular to the direction of propagation of wave. 

 

• Transverse waves are transmitted through solids and not through liquids and gases as 
the latter does not possess any internal transverse restoring force (shear strength). 



• Longitudinal waves 

• Medium particles oscillate along the direction of propagation of wave. 

 

• Longitudinal waves can propagate through solids, liquids, and gases. 

Displacement Relation in a Progressive Wave 

• Representation of a sinusoidal wave travelling along the positive x-axis is 

y(x, t) = a sin(kx − ωt + Φ) 

• The equation can also be represented as linear combination of sine and cosine function. 

y(x, t) = A sin(kx − ωt) + B cos(kx − ωt), where a =  and Φ  

Where, 

y(x, t) → Displacement function of position x and time t 

k → Propagation constant or angular wave number 

ω → Angular frequency 

Φ → Initial phase angle 

A, B, a → Amplitude 

• Amplitude (a): Magnitude of the maximum displacement from the equilibrium position 

 

• Wavelength (λ): Minimum distance between two consecutive crest or trough 



 

• Angular wave number or propagation constant (k) 

Displacement at t = 0, taking Φ = 0 

y(x, 0) = a sinkx 

Sine function repeats itself after every (2π). 

 

Therefore, for n = 1, the distance between the two consecutive points in phase is the 
minimum. 

∴  (Unit of k → rad m−1) 

• Frequency (ν) − Number of oscillations per second (Unit → hertz) 

 

ω is angular frequency; unit is rad/s. 

• Period 



 

T → represents the time period 

Unit → s (second) 

Speed of a Transverse Wave on a Stretched String 

• Speed of a Travelling Wave 

Suppose a transverse wave is travelling on a string in the positive direction of x-axis. 
Assume that during a small time interval Δt, the wave moves by a distance Δx. 

Wave speed,  

From the equation of displacement of wave motion, we have 

y (x, t) = a sin(kx - ωt) 

Consider fixed phase point on the wave 

kx - ωt = Constant …. (i) 

Differentiating both sides of the equation (i) w.r.t. time, 

 



 

 

• Speed of a Transverse Wave: Derivation Using Dimensional Analysis 

Speed (v) of a transverse wave on a string depends upon: 

• Restoring force of medium: It is provided by the tension (T) of the string. It is directly 
related to speed. 

• Inertial property of medium: It is the linear mass density (μ) of the string. It is inversely 
related to speed. 

 

Where, k is the dimensionless constant of proportionality 

 

On applying the principle of homogeneity of dimensions, we get 

a + b = 0 

−a + b =1 

Hence,  



Putting these values in equation (i), we get 

 
Power Transmitted by a String Wave, 
 

 
 

Speed of a Longitudinal Wave- Sound Wave 

Speed (v) is determined by 

• restoring force of medium, i.e. bulk modulus (B) of the medium; it is directly related to 
speed 

• inertial property of medium, i.e. mass density (ρ); it is inversely related to speed 

• Derivation using dimensional analysis: 

B = [ML−1 T−2] 

ρ = [ML−3] 

v = [LT−1] 

∴  

 = [L2T−2] 

v = [LT−1] 

∴ v =  

Here, C is a constant. 

Taking C = 1, 



 

• Speed of longitudinal waves in a solid bar: 

 

Here, Y is the Young’s modulus of the bar. 

• Speed of sound in gas: 

For ideal gas, 

PV = NKBT 

Here, 

P → Pressure 

V → Volume 

N → Number of molecules 

KB → Boltzmann constant 

T → Temperature 

An isothermal change gives VΔP + PΔV = 0 

 

∴ Bulk modulus, B = P 

 v =  

∴  



This equation is also called Newton’s formula. 

• Laplace correction: 
 
It was introduced because it was found that sound waves travel under adiabatic 
conditions, not under isothermal conditions. 

• Reason for this consideration: 

Sound waves travel in air rapidly. 

Gas is a bad conductor of heat. 

For adiabatic process, 

PVγ= constant 

Here, γ is the ratio of specific heat. 

∴ Δ(PVγ)= 0 

PγVγ − 1 ΔV + VγΔP = 0 

−  

∴ γP = B (Bulk modulus) 

 
 
Factors affecting velocity of sound: 
 
(i) Effect of density: 
Velocity of sound, 
 

 
 
Hence, velocity of sound is inversely proportional to the square root of density of gas. 
 
(ii) Effect of pressure: 
 



 
 
Boyle's Law is obeyed when temperature T is constant, i.e. PV = constant.  
 
As M and γ are also constant, 
 v = constant 
 
Thus, velocity of sound is independent of pressure, provided the temperature is 
constant. 
 
(iii) Effect of temperature: 
 

 
 
So, velocity of sound in a gas is directly proportional to the square root of absolute 
temperature. 
 
(iv) Effect of humidity: 



 
 
So, vm > vd  
 
Hence, velocity of sound in moist air is greater than velocity of sound in dry air. 
 

The Principle of Superposition of Waves 

• A wave preserves its identity while travelling in space. 

• Two pulses crossing each other combine to produce a resultant pulse. 

• If y1, y2, y3,… are the displacements of waves, then the resultant displacement (y) 
is y = y1 + y2 + y3 + … 

 

Consider two waves differing by some initial phase. 

y1 (x, t) = a sin (kx − ωt) (1) 

y2 (x, t) = a sin (kx − ωt + Φ) (2) 



Net displacement, y (x, t) = a sin (kx − ωt) + a sin (kx − ωt + Φ) 

 

From phase, Φ = 0. 

y (x, t) = 2a sin (kx − ωt) (3) 

Φ = π 

y (x, t) = 0 (4) 

Maximum amplitude = 2a 

Equation (3) represents constructive interference. 

Equation (4) represents destructive interference. 
 
Change of Phase 

• A wave, whether transverse or longitudinal, while travelling in a certain medium 
undergoes a change in phase when it is incident on the boundary of another medium. 
 

• A wave travelling in a rarer medium suffers a change in phase by ππ radians when it is 
incident on the boundary of a denser medium. 
 

• In the above mentioned case, a compression of a longitudinal wave is reflected back as 
a compression and it travelled back. Similarly, a rarefaction is reflected back as a 
rarefaction. 
 

• In case of a transverse wave, a crest is reflected back as a trough and vice versa. 
 

• For a wave travelling in a denser medium like water, there is practically no resistance 
when it is incident on the boundary of a rarer medium like air. 
 

• For a transverse wave, a crest is reflected as a crest and a trough is reflected as a 
trough when the wave is travelling from high density medium to low density medium. 

• In case of a longitudinal wave, a compression is reflected as a rarefaction and a 
rarefaction is reflected as a compression at rearer boundary of another medium. 



Quincke's Tube Experiment 
 

 

• In this experiment, a sound wave is divided into two components having the same 
frequency and zero phase difference and the interference is observed. If the path of one 
of the component waves is altered, the interference pattern is disturbed. 
 

• The apparatus consists of two U tubes—ABC and MNQ—whose limbs can be inserted 
into each other and can be pulled or pushed out. 
 

• Tube ABC is provided with two side tubes: D and E. A sound source is placed near to 
the side tube D. The ear of the listener is held near E. 
 

• Initially, path lengths ABC and MNQ are made equal. The waves arriving at E along the 
two paths are in phase. Hence, a loud sound is heard. 
 

• Now, tube MNQ is gradually pulled out. When the path difference between the waves 
becomes λ/2, the waves reaching E via paths ABC and MNQ becomes 180o, out of 
phase and cancel each other. 
 

• The compression due to one wave overlaps the rarefaction due to the other wave. 
 

• On increasing the path difference, a loud sound is heard again when the path difference 
between the travelling waves becomes λ. 
 

• Whenever the path difference becomes nλ, where n = 0, 1, 2, 3,..., the intensity of 
sound becomes maximum. 
 

• Whenever the path difference becomes (n + 1/2), where n = 0, 1, 2, 3,..., the intensity of 
sound becomes minimum. 

• This experiment, besides illustrating interference, provides a good laboratory method of 
measuring the velocity of sound in air. 

Standing Wave and Normal Modes in a Stretched String 



Reflection of Waves 

• At a rigid boundary, a pulse gets reflected. 

• At the interface of elastic media, a part of the pulse is reflected and the rest is 
transmitted. 

 

• For a rigid boundary, the reflected pulse differs by a phase of π. 

• For a non-rigid boundary, the reflected pulse has the same phase. 
 

• When a longitudinal wave is incident on a rigid wall, the compression of the wave is 
reflected back by the wall as a compression in the opposite direction.  
 

• If a longitudinal wave is incident on a rarer medium, the compression reaching the 
boundary at the other end will be reflected as rarefaction. 

At a rigid boundary 

Incident travelling wave, 

 

 

Standing Wave and Normal Modes in a Stretched String 

• Steady wave pattern in a string is called stationary wave. 

• Incident and reflected waves are represented as 

y = a sin (ωt − kx)   ...(1) 



= −a sin (ωt + kx) ...(2) 

• Applying the principle of superposition, 

y = y1 + y2 

 

• Amplitude = 2a sin kx (varies from point to point) 

• String vibrates in phase with different amplitudes at different points. This give rise to 
standing waves. 

• Nodes − points of zero amplitude 

• Anti-nodes − points of largest amplitude 

• A system has a fixed set of natural frequencies called normal modes of oscillation. 

• Positions of nodes, 

 

• Distance between two successive nodes = . 

• Position of anti-nodes, 

 



• Distance between two successive anti-nodes . 

• Boundary condition of a string: 

 

L = Length of the string 

∴ From equation (3), 

 

• Corresponding frequencies, 

 



 

Vibrating String 

Mode of 
vibration 

Harmonic Tone Nodes  
Anti- 

nodes 
Frequency 

First or 
fundamental 

First Fundamental 2 1 
 

Second Second First 3 2 
 



nth  nth (n − 1) tones n + 1 n 
 

• Fundamental mode − Lowest possible natural frequency of a system 

Laws of Vibrating Strings 
 
The fundamental frequency of the vibrations in a stretched string, 
 

 
 
Here, L is the length of the vibrating string 
            T is the tension in the vibrating string 
            μ is the linear mass density of the vibrating string 
 
1. Law of length: The fundamental frequency of transverse vibration of a stretched 
string is inversely proportional to the length of the vibrating string. This is subject to the 
condition that the tension (T) in the string and the linear density (μ) of the string remain 
constant. 
 

   
2. Law of tension: The fundamental frequency of transverse vibration is directly 
proportional to the square root of the tension (T) in the string if the length of the vibrating 
string (L) and linear density (μ) are kept constant. 
 

 
 
3. Law of linear density: The fundamental frequency of transverse vibration of a 
stretched string is inversely proportional to the square root of the linear density of the 
string if the length of the vibrating string (L) and tension (T) are constant. 



                      

 
Standing Wave and Normal Modes in an Air Column and Beat 

Normal Modes of Oscillation of an Air Column (One end closed and other end 
open) 

• Closed end → Pressure is highest → Displacement of air particles is minimum (zero) → 
Node is formed (x = 0) 

• Open end → Pressure is least → Displacement is maximum → Anti-node is formed 
(x = L) 

•  

 

• Natural frequencies − normal modes 



 

• Fundamental frequency → for n = 0 →  

• Odd harmonics → Higher frequencies → Odd multiples of fundamental frequencies 

 

• When external frequency is close to any of the natural frequencies, system is in 
resonance. 

 



 

Normal modes of an air column − (Only one end open) 

Beats 

• Two sound waves of nearly the same frequency and amplitude produce beats. 

• The resultant sound has alternate maxima and minima. 

Analytical derivation 

Consider two harmonic sound waves: 

S1 = a cos ω1t (1) 

S2 = a cos ω2t (2) 

• Amplitude (a) is equal. 

• Angular frequencies: ω1 > ω2) 

• Displacement is longitudinal. 

Applying the principle of superposition, 

S = S1 + S2 

= a (cos ω1t + cos ω2t) 



 

Let 

 

 

From equation (3), 

• Angular frequency of resultant wave is ωa. 

• Amplitude is (2a cos ωb t ). Therefore, it is not constant. It varies from +1 to −1. 

 

ν → Frequency 

Beat frequency  
 
End Correction 

For the vibration of an air column in a pipe that is open at both the ends or closed at one 
end, the nodes should be formed at the closed end and the anti-nodes should be 
formed at the open end. 
 
But practically, the anti-nodes are not formed at the open end but at a little distance 
beyond it. The distance between the open end and the closed end is known as end 
correction. 

• The end correction is numerically expressed as e =0.3 d. Here, d is the inner diameter 
of the tube. 
 

• The corrected length of the air column is the sum of the length of the air column in the 
pipe and the end correction 



        L = l+0.3d 

• For fundamental mode of vibration of an air column in a pipe closed at one end, v = nλ = 
4nL or 

        v = 4n(l+0.3d). 
 
Cause of End Correction 

• The cause of end correction is that the air particles in the plane of the open end of the 
tube are not free to move in all directions. Therefore, reflection takes place at the plane 
at a small distance outside the tube. 

Calculation of End Correction 
 
(i) Pipe closed at one end: 

 
 
Limitations of End Correction: 
 
The various limitations of end correction are: 

• Inner diameter of the tube must be constant throughout the length of the tube. 
 

• Effects of air outside and that of the temperature of the air outside are to be neglected. 
 

• The tuning fork must be held in a way such that the tip of its prong must be horizontal, 
at the centre and at a small distance above the open end of the tube. 



Doppler Effect 

Relative motion between a source of sound and a listener causes the apparent 
frequency of the sound heard by the listener to be different from the frequency of the 
sound emitted by the source. 

Consider, 

S → Source of sound 

O → Observer 

ν → Frequency of sound emitted by the source 

λ → Wavelength of the emitted sound 

Suppose, the source and observer are at rest. 

Velocity of sound in air, v = νλ . 

 

Here, 

vs → Velocity of the source 

vm → Velocity of the medium 

v0 → Velocity of the observer 

Let the distance between the source and observer = v (That is, ν waves reach the 
observer from the source in 1 s). 

∴ Frequency of the sound heard by the listener = ν . 

When the medium is in motion, the distance travelled by the sound wave = v + vm . 

 



Distance moved by source in one second,  . 

Distance covered by the sound in 1 s = (v + vm) − vs (relative to the source). 

Frequency (ν) remains the same. 

∴ Apparent wavelength,  

Distance travelled by the observer  (in 1 s). 

Distance available in 1 s to  . 

Apparent frequency of sound heard,  . 

From equation (1), 

 

Sign Conversion 

Source → Listener (+ ve velocities) 

Listener → Source (− ve velocity) 

Medium at rest, vm = 0. 

 

Special Cases 

• Source moving towards observer − Observer stationary: 

∴vs = + ve and v0 = 0 



 

• Source moving away from observer − Observer stationary: 

vs = − ve and v0 = 0 

 

• Source stationary − Observer moving away from source: 

 vs = 0 and v0 = + ve 

 

• Source stationary − Observer moving towards source: 

vs = 0 and v0 = − ve 

 

• Source and observer approaching each other: 

vs = + ve and v0 = − ve 

 

• Source and observer moving away from each other: 

vs = − ve and v0 = + ve 

 

 
Applications of Doppler's effect: 



• Doppler's effect is used to measure the velocities of moving objects in diverse areas 
such as military, medical science, astrophysics, etc. 
 

• It is also used by police to check over-speeding of vehicles by using speed guns that 
produce an alarm when the speed exceeds the limit. 
 

• It is used at airports to guide aircraft and in the military to detect enemy aircraft. 
 

• Astrophysicists use it to measure the velocities of stars and also in determining the 
speed of gases in sun 
 

• Doctors use it to study heart beat and blood flow in different parts of the body. 
• When ultrasonic waves enter the body of a person, some of them are reflected back 

and give information about the motion of blood and pulsation of heart valves, as well as 
pulsation of the heart of a foetus in the womb of a pregnant woman. 

Limitations of Doppler's effect: 

• It is applicable when the velocities of the sources of sound and observer are much lower 
than the velocity of sound. 
 

• The source and the observer must move in the same direction. 
 

• The medium must be in rest; otherwise the formulae have to be modified. 


