CHAPTER 13

ONSAGER’S RECIPROCAL RELATIONS

§13.01 [Introduction

We recall the fundamental properties of entropy stated in § 1.19. The entropy
of a system can change in two distinct ways namely by external and internal
changes. This is expressed symbolically by

dS=d.S+d,S 13.01.1

where d. S denotes the part of dS due to interaction with the surroundings
and d; S denotes the part due to changes taking place in the system. We have
the now familiar equality

d S=q/T 13.01.2

where T is the thermodynamic temperature of the system. As regards d;S
the only property hitherto stressed is the inequality

d;S>0. 13.01.3

We shall in this chapter consider more quantitatively the value of d;S or
rather of d;S/ds which is the rate of internal production of entropy. Such
considerations constitute a subject often called thermodynamics of irreversible
processes. It is a subject on which whole books* have been written and it is
not practicable to devote sufficient space here for an exhaustive discussion.
For the sake of brevity it has been decided to exclude from the present
discussion the interesting field of thermal diffusion.

§13.02  Electric insulators and conductors

We introduce the subject of internal entropy production by considering
electric conductors which we shall compare and contrast with electric

* De Groot, Thermodynamics of Irreversible Processes, North-Holland 1951; Denbigh,
The Thermodynamics of the Steady State, Methuen 1951; Prigogine and Dzfay, Etude
Thermodynamique des Phénomeénes Irréversibles, Dunod 1947.
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insulators. We begin with the simplest case of isotropic media and then pass
on to the more interesting case of anisotropic media.

The Helmboltz function of an electric insulator is related to the elecrric
field strength E and the electric displacement D, under isothermal conditions,

by
d4&=VEdD. 13.02.1

This follows immediately from formula (11.06.1). We recall that D is related

to E by
D=¢E 13.02.2

where ¢ is the permittivity. Under ordinary conditions ¢ is independent of E
and this will be assumed here.

In an isotropic medium D and E have the same direction and ¢ is a scalar
quantity. In an anisotropic medium D and E generally have different direc-
tions. A quantity such as ¢ relating two non-parallel vectors D and E
according to (2) is called a tensor. Without any prior knowledge of tensors
we can see what this means by considering the cartesian components of
(2). The relations for these components have the form

D,=¢ E,+e,E,+eE, 13.02.3
D,=¢,E,+¢,E,+¢,E, 13.02.4
D,=¢, Ex+e,,E,+¢.,E, 13.02.5

where all the quantities are scalars.
Since we are assuming that ¢ is independent of E, we can substitute (2)
into (1) and integrate obtaining, apart from a trivial integration constant,

A|V=14eE*. 13.02.6

In an isotropic medium ¢ is as we have already mentioned a scalar and there
is no difficulty. In an anisotropic medium the meaning of (6) is by no means
so simple and its interpretation requires at least an elementary knowledge
of tensors. However all that we need to record here is that the existence of
the Helmholtz function related to E and D by (1) requires the symmetry
conditions

=E. 13.02.7

Bxy = 8y.\' gyz = szy 8:X z

In the terminology of tensors we say that ¢ must be a symmetrical tensor.
When the relations (7) are assumed, the expression for the Helmholtz func-
tion becomes

F|V=4e, El+%e, E} +4e.,E} +¢ ,E.E,+e,.EE +¢,,EE,. 13.02.8
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When we assume (8) and (7) we can immediately derive (3), (4), and (5) by
means of (1). Without the relations (7) it is impossible to find any formula
for the Helmholtz function consistent with (1).

We now turn from insulators to conductors. If we denote electric field
by E and current density by J we may write

J=0E 13.02.9

where ¢ denotes the electric conductivity. Under ordinary conditions ¢
is independent of E and we shall assume this. In an isotropic medium
J and E have the same direction and ¢ is a scalar quantity. In an anisotropic
medium J and E generally have different directions so that ¢ is a tensor.
The relations between the cartesian components have the form

Ji=0E.+0,E,+06,,E, 13.02.10
J,=06,E;+0,,E,+0,E, 13.02.11
J.,=0,,E.+0,,E,+0,,E, 13.02.12

where all the quantities are scalars.

Let us now determine the rate of internal production of entropy in the
simple case of an isotropic medium so that J has the same direction as E.
It is simplest to assume that the conductor is maintained at a constant
temperature and that J and E are independent of the time. The conductor is
then maintained in an unchanging state so that

dsS/dt=0. 13.02.13
Substituting from (13.01.1) and (13.01.2) into (13) we obtain
d;S/dt=—d,S/dt=— T 'dq/dt 13.02.14

where —g is the heat given up to the thermostat. From elementary electrical

theory we have
—dgq/dt=VIJE. 13.02.15

Substituting (15) into (14) we obtain
Td;S/dt=VIJE. 13.02.16
Finally substituting (9) into (16) we obtain
Td;S/dt=VoE>. 13.02.17

In the more complicated and more interesting case of an anisotropic con-
ductor, we obtain by similar but more difficult reasoning

V='Td;S/dt=J,E,+J,E,+J,E.. 13.02.18
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Substituting (10), (11), and (12) into (18) we derive
V~'Td;S/dt=0,.E2 +0, E +0,, E?

=y
4+(64y+0,)ELE,+(0,,+0,,)E,E, +(0,,+0,,)E,E,. 13.02.19

If we compare (19) with (8) we notice a superficial resemblance but also
two differences which are interrelated. In the first place 4 occurring on
the left of (8) is a function of the state of the medium while d; S/d¢ occurring
on the left of (19) is not. In the second place, and as a consequence of the
first difference, there is no compelling reason from classical thermodynamics
why relations between the ¢’s analogous to the relations (7), namely

Oyy =0y 0y, =0, 0,, =0y, 13.02.20

should always be true. They must in fact be true for reasons of geometrical
symmetry except for crystals of low symmetry, namely those in which the
only element of symmetry is an axis of rotation. It was however suggested
by Clerk Maxwell* that (20) is always true. Even earlier Stokes' had
surmised the truth of relations analogous to (20) for thermal conductivity.

There are moreover reasons based on the kinetic principle of detailed
balancing’, which we shall not here go into, for assuming such relations
and they are in good agreement with experiment. The equations (20) consti-
tute one of the simplest examples of Onsager’s reciprocal relations.

§13.03 Onsager’s reciprocal relations

We are now ready for a more general statement of Onsager’s reciprocal
relations. We denote by J; the flux in a certain direction of something such
as electric charge, as in the previous section, or a particular molecular or
ionic species, or a quantity of energy. We denote by X, the driving force
corresponding to J;. We make our meaning more precise by the statement
that the rate of internal production of entropy per unit volume is given by

v-iTd, S[dt=Y J, X;. 13.03.1

For example when J, is electric current density, then X; is the electric field.
When J; is the flux of a molecular species 7, then X is minus the gradient
of its chemical potential. When J; is the flux of an ionic species i, then X;

* Maxwell, Electricity and Magnetism, Oxford University, Ist ed. 1873; 3rd ed. 1892 ch. 8.
1 Stokes, Cambridge and Dublin Math. J. 1851 6 235.

t Onsager, Phys. Rev. 1931 37 405; Dz Groot, Tharmodynamics of Irreversible Proces-
ses, North-Holland 1951.
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is minus the gradient of its electrochemical potential. When J; is the flux
of energy then X; must be closely related to the temperature gradient.

Provided the gradients X; are not too great the fluxes J; will generally be
linear functions of the driving forces. This may be expressed as

‘,i=z Lika (Lik const.). 13.03.2
k
In the simple case of only two kinds of flow (2) reduces to
Ji=L X,+L;, X, 13.03.3
J2=L21X1+L22X2. 13-03.4

We now state Onsager’s reciprocal relations in the general form
Ly=L,; (all i, k). 13.03.5
In the simple case of only two kinds of flow (5) reduces to

L12=L21. 13.03.6

§13.04 Electrokinetic effects

Electrokinetic phenomena occur when a liquid which is a poor electric
conductor flows through a tube. Generally the tube walls and the liquid
have opposite electric charges together constituting an electric double
layer. There is a consequent interplay between the flow of matter and the
flow of electric charge.

We consider a tube of length / and uniform cross-section 4. We denote
the electric current density by J and the electric field, which is equal and
opposite to the electric potential gradient, by E. We measure the rate of
flow of liquid by the volume per unit time and we denote this by f4. We
denote the pressure gradient by P,. It can be verified that the rate of inter-
nal production of entropy per unit volume is given by

V'Td,S/dt=JE+fP,. 13.04.1

From the form of (1) we see that we may regard E and P, as the driving for-
ces corresponding to the fluxes J and f respectively. We assume the linear
relations

J=L,E+L,P 13.04.2

f=Ly E+L;P,. 13.04.3
We then have Onsager’s reciprocal relation
Li,=L,,. 13.04.4
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Let us now consider briefly the physical significance of the L’s. In the
absence of a pressure gradient (2) reduces to

J=L,E (P,=0) 13.04.5

from which we see that L, , is just the electric conductivity. In the absence of
an electric field (3) reduces to

f=L22Pl 13.04.6
from which we have according to Poiseuille’s law
L,,=r%8y 13.04.7

where # is the viscosity and r the radius of the tube (or the effective radius
if the cross-section is not circular).

The essential consequence of Onsager’s relation is this. All the electro-
kinetic effects require for their quantitative description a knowledge of
the electric conductivity, the viscosity, and one other coefficient, not two. We
shall now formulate briefly the relations for some of the most important
electrokinetic effects.*

In the first place we have the streaming potential, defined as the electric
potential difference per unit pressure difference in a stationary state with
zero electric current. According to (2) it is given by

E|Pj=—Ly,JL,,  (J=0). 13.04.8
In the second place we have electro-osmosis, which is the flow of liquid per

unit electric current in a state with zero pressure gradient. According to (2)
and (3) it is given by

flI=Ly /Ly (P,=0). 13.04.9

The third effect is the electro-osmotic pressure, which is the pressure difference
per unit potential difference in the stationary state with zero material flow.
According to (3) it is given by

P[/E=_L21/L22 (f=0). 13-04-10

The fourth effect is the streaming current, which is the electric current per
unit material flow for the steady state of zero electric field. According to
(2) and (3) it is given by

J/f=L12/L22 (E=0). 13-04-11

* De Groot, Thermodynamics of Irreversible Processes, North-Holland 1951 p. 187.
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As a consequence of Onsager’s reciprocal relation (4) we deduce from (8)
and (9)
(E|P)y=o=—(fT)p,=0 13.04.12

and from (10) and (11)
(P/E)s=0=—(J/f)g=0- 13.04.13

Formula (13), known as Saxén’s relation, has been verified experimentally
with an accuracy of about 2 per cent*. Formula (12) has also been confirmed
experimentally but only with an accuracy of about 15 per cent.*

§13.05 Electric double layer

We have seen in the previous section how the several electrokinetic effects
can be expressed quantitatively in terms of the conductivity, the viscosity,
and one further parameter denoted by L,,=L,;. It was not necessary to
consider the physical significance of L,,. We shall now show that this quan-
tity is closely related to the strength of the electric double layer at the bound-
ary between the wall of the tube and the liquid in the tube. It does not matter
which of the electrokinetic effects we consider in order to establish the re-
quired relation. We choose to consider electro-osmosis.

We consider a thin strip of liquid near to and parallel to the wall. We
denote by du the difference of velocity along the tube between the inner and
outer surface of this strip. We denote by dt the strength of the electric
double layer in this strip, that is to say the electric moment per unit area of
the strip. We consider a steady state of motion under an applied electric
field E. We now equate the two opposing couples due to the viscous effect
of the velocity gradient on the one hand and the effect of the electric field
on the dipoles on the other. We thus obtain the condition

ndu=Edr. 13.05.1

Integrating from the wall, where the liquid is stationary, to the interior we
obtain for the velocity u in the interior of the liquid

nu=Ezr 13.05.2

where 7 is the strength of the whole double layer, that is to say the total
electric moment per unit area of the wall.
The flow f4 expressed as volume of liquid per unit time is related to u by

fA=ud’ 13.05.3
* Miller, Chem. Rev. 1960 60 20.
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where A’ is an area less than the total internal cross-section A of the tube
but greater than the cross-section of liguid having a velocity inappreciably
different from u. In practice the thickness of the double layer is small com-
pared with the width of the tube and consequently the difference between the
cross-sections 4 and A’ is negligible. We may then regard 4’ as the internal
cross-section of the tube and substituting (2) into (3) we have

S =7E[n 13.05.4
while from (13.04.3) we have
f=L,E (P;=0). 13.05.5
Comparing (4) with (5) we deduce
L, =1/y. 13.05.6

Formula (6) expresses a relation essentially due to Helmholtz* although
he did not use the same notation. Most authors instead of using Helmholtz’s
strength of the double layer here denoted by 7 prefer to consider another
quantity introduced by Perrint and subsequently denoted by { by Freund-
lich.! This quantity has the dimensions of an electric potential and is called
the {-potential. It is derived from t by division by the rational permittivity.
The introduction of this subsidiary quantity adds nothing except unnecessary
complications.}

§13.06 Electrochemical cells with transference

We shall now use Onsager’s reciprocal relations to obtain a stricter deriva-
tion of formula (8.18.16) for the electromotive force of the cell with trans-
ference described by (8.18.2). We shall not repeat the whole of the textual
argument, but shall merely revise the formulae. The first change is that we
replace (8.18.3) by the less restrictive assumption

Ji=_z Ll'kdy‘k/dy’ 13.06-1
k

The condition for zero electric current then becomes instead of (8.18.9)

>3 z;Lydp/dy=0. 13.06.2
i k

* Helmholtz, Ann. Phys. Lpz. 1879 7 337.

T Perrin, J. Chim. Phys. 1904 2 601.

¥ Freundlich, Colloid and Capillary Chemistry, Methuen 1926 p. 242.
§ Guggenheim, Trans. Faraday Soc. 1940 36 139, 722.
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We still have for the electromotive force formula (8.18.7)
FdE[dy=2z&t dug-/dy. 13.06.3
Combining (2) with (3) we have
Z ; 2,2 Ly(—zi ' dpy/dy + 26" dugy-/dy)
=Z;z;sz,-,‘zc_|1-duC|-/dy

=Z Z ZiszideE/dy. 13.06.4
ik

Consequently, instead of (8.18.11) we have
FdE/d,V:; {(—z¢ 'du/dy + 2ot dpci- [dy)(z4 Z Z Lik/; 2 Zi1ZmLim)}
13.06.5

We now, as in §8.18, turn to the different condition where the two electrode
solutions are identical and an external potential difference dE® is applied
across the electrodes. We have by (8.18.12)

zr'dy=FdE*  (all k) 13.06.6
so that by (1)
J"= _Z szideEe/dy- 13.06~7
k

The electric current per unit cross-section carried by the ionic species /
will be

z;FJ;=—z;) z, Ly, F*dE°/dy. 13.06.8
k

The transport number f;, being the fraction of the total current carried by
the ionic species i, is therefore

ti=z ; zeLalY, kz 2,2, Ly . 13.06.9
The transport number of the ionic species k is likewise
h=z, ), ziL,‘i/Zk: Y zzlu=z), z,-L,‘,/; Y zz,L,. 13.06.10
Comparing (5) with (10) we have

FdEjdy=} t,(-z; 'du/dy+zat duc-[dy)y ziLafY z L. 13.06.11
k i i
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Finally by use of Onsager’s relation
Ly=Ly; 13.06.12
(11) reduces to

FAE[dy=Y ty(—z; 'dug/dy +25" dpc-jdy) 13.06.13
k

which is the same as formula (8.18.16).
We note that in the derivation given in §8.18 instead of Onsager’s relation
(12) we used the more restrictive assumption

Lu=0  (i#k). 13.06.14

The author believes that the assumption (14) is in fact true although this
has not been proved.

§13.07 Thermoelectricity

We shall now discuss the most important and most interesting application
of Onsager’s relations to a non-isothermal system, namely a system in which
electric current is coupled with energy flow. This phenomenon is called
thermoelectricity. The following treatment is similar to that of Callen.*

We consider a straight uniform metallic wire in a non-uniform temperature
through which an electric current can result from a flow of electrons. If the
wire lies in the y-direction the rate of internal production of entropy per
unit volume is given by

V=1d;S/dt=—J. d(u/T)/dy+J,d(T~)/dy 13.07.1

where y is the electrochemical potential of the electrons, — FJ,- is the electric
current density, and J, is the energy flux.

From the form of (1) we may regard d(u/T)/dy and d(7~')/dy as the
driving forces corresponding to the fluxes —J,- and J, respectively. We
accordingly assume the linear relations

~Je-=L,,d(y/T)/dy+L,,d(T"")/dy 13.07.2
Jy=L5d(y/T)/dy+L,,d(T™")/dy. 13.07.3

We could use formulae (2) and (3) as the basis of our discussion and should
of course obtain correct results, but by a simple transformation we obtain
formulae in which the coefficients L have a more direct physical significance.

* Callen, Thermodynamics, Wiley 1960 ch. 17.
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We define J, by

J,=Jy—pl.- 13.07.4

and substitute into (2) and (3) obtaining
—Je-=Ly; T™'dp/dy+L,,d(T™")/dy 13.07.5
J,=L,, T~ 'dp/dy+L,,d(T"")/dy 13.07.6

where

L,=L,, 13.07.7
Li,=L,+L,,u 13.07.8
Ly =L, +Lp 13.07.9
Ly,=L,y,+(L,+ Ly )u+L;, p* 13.07.10

We can also verify that the determinant
D=L11L22—'L12L21=L’11E22—U12L,21. 13.07.11

From (8) and (9) we see that Onsager’s relation L),; =L, is equivalent to
Lyy=L,,.

We next determine the physical interpretation of L, and L,,. If we
consider the case of an isothermal flow of current we obtain for the electric
conductivity

o=—F"J,-/(dy/dy) (dT/dy=0) 13.07.12
so that by use of (5)
To/F*=L,,. 13.07.13

Similarly if we consider a flow of energy with zero electric current we obtain
for the thermal conductivity x

k=—Jy/(dT/dy)=—J,/(dT/dy) (J.-=0) 13.07.14
so that from (5) and (6)

T*k=D|L,, . 13.07.15
From (13) and (15) we derive
T ko/F*=D. 13.07.16

§13.08 Seebeck effect and thermoelectric power

When there is no electric current we have according to (13.07.5)
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and integrating from one end of the wire denoted by the subscript 1 to the
other end denoted by the subscript 2 we have

T
ﬂz_IIl: r (L12/L11T)dT 13.08.2
3
or
T2
uz—ul=—Ff edT 13.08.3
Ty
where ¢, called the thermoelectric power, is given by
FT8= _LIZ/LII’ 13.08-4
a
h T

-~ f—

Fig. 13.1. Thermocouple

We now consider the thermocouple, shown in figure 13.1, consisting of a
pair of wires of different metals o and p with their two junctions 1 and 2 at
temperatures T, and T, . Since u is continuous at both metal-metal junctions,
it follows that the difference between the values g and p, of u at the left and
right terminals is given by

T2
o u,=Ff (P—e)dT. 13.08.5
Ty

But since the two terminals are at the same temperature 7" the electric
potential difference between the two terminals or the electromotive force E

of the thermocouple is given by
T2

E=—(u—w)/F=| (=e’)MdT 13.08.6
Ty

The occurrence of this electromotive force in a thermocouple is called the
Seebeck effect.
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From (4) and (13.07.13) we deduce
—T?0e/F=L,,. 13.08.7

§13.09 Peltier effect

Consider an isothermal junction of two metals o and p through which flows
an electric current of density —FJ,-. Then the flux of energy is discontin-
uous across the junction and the difference in energy flux appears as heat
at the junction. Since both u and J,- are continuous across the junction it
follows from (13.07.4) that
Jo=Jh=u=Jt  (T°=TP) 13.09.1
and from (13.07.5) and (13.07.6) that
(ol o) = (Tuld =Y = (Il - = (Tl oY= (Las Ly = (Lag /Ly ).
13.09.2

The Peltier coefficient n°®, defined as the heat that must be supplied per unit
time to the junction to keep its temperature constant when unit electric
current passes from a to B, is given by

Fr®=(Lay/Ly1)* ~(La /L1 )™ 13.09.3

§13.10 Kelvin’s second relation

We recall that the thermoelectric power ¢ of a metal is given by (13.08.4)

FT£=_L12/’L11 13-10.1
so that for a pair of metals
FT(¢?~¢*)=(Ly2/Ly1)* = (L12/L1 1) 13.10.2
The Peltier coefficient n** is given by (13.09.3)
Fﬂp:(Lzl/Ll1)“"(L21/L11)B~ 13.10.3
When we introduce Onsager’s relation
L, =L, 13.10.4 -

into (2) and (3) we obtain

1 =T(e —¢&%) 13.10.5
which is called Kelvin’s second relation. This has been verified within an
accuracy of one per cent or better for about twenty pairs of metals.*

* Miller, Chem. Rev. 1960 60 19.
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§13.11 Thomson effect

Hitherto we have considered a thermocouple on open circuit only. We now
consider a thermocouple balanced by a different cell with an electromotive
force opposite to and differing infinitesimally from that of the thermocouple.
We then have a flow of current which is reversible apart from the Joule
effect which may be neglected because it is proportional to the square of
the current and is consequently a second-order small quantity. When the
electric current flows in a temperature gradient there is a flow of heat
between the wire and its surroundings of the form td7 called the
Thomson heat superposed on the negligible Joule heat.

We now apply the first law of thermodynamics to this thermocouple when
the two metal-metal junctions are at temperatures T and 74 d7. The heat ¢
absorbed is

g=—-m"(T)+dT +n"(T +dT)—PdT 13.11.1
and the work done on the thermocouple is
w=(e’—¢*)dT. 13.11.2
By the first law of thermodynamics we have for a steady state
q+w=0. 13.11.3
Combining (1), (2), and (3) we obtain
dn*®/dT +1*—1P— "+ P =0. 13.11.4

We emphasize that this relation is a consequence of the first law only.
When we combine (4) with (13.10.5) we obtain

Td(e?—&*)/dT=7"—1" 13.11.5

Formula (5) is called Kelvin’s first relation. The author is not aware of its
having been verified experimentally.

§13.12  Interdiffusion of two fluids

We shall now consider briefly the interdiffusion along the y-axis, at constant
temperature and constant pressure, of two fluids denoted by the subscripts
. and , respectively. We denote the mass fractions of the two components
by %, and X, so that

£ +%,=1. 13.12.1

We denote the specific fluxes or fluxes per unit mass by J; and J,. We
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denote the specific chemical potentials or chemical potentials divided by
the proper masses by /i, and ji,. We take as origin for the coordinate y the
centre of mass of the fluid. This implies that

J,+J,=0. 13.12.2
The Gibbs-Duhem relation may be written as
%,di, +%,d,=0. 13.12.3
From (2) and (3) it follows that
= %,J1/(dus/dy) = — %7,/ (df/dy) 13.12.4

and we call this quantity L. We then have, using (1),
Jy=—Jy=L(djio/dy—dfi,/dy)= —(L/%,)dfi, [dy=(L/%,)dfio/dy.  13.12.5

From (5) we see that J, , J, are related to dji,/dy, dji,/dy by the single coeffi-
cient L. Consequently in this system there is no reciprocal relation.

§13.13 Interdiffusion of two solutes in dilute solution

Having seen that the interdiffusion of two fluids is describable by a single
coefficient L, we now turn to a system of three fluids and shall derive the
reciprocal relations. We use the same notation as in §13.12 with the subscripts
15 2, and ; relating to the three components. Taking as origin the centre of
mass of the fluid we have by analogy with (13.12.1), (13.12.2), and (13.12.3)

R+ R+ R=1 13.13.1
Ji+Jy+J3=0 13.13.2
ildﬁl+izdﬁ2+g3dﬁ3=0. 13.13.3

The rate of entropy production ¢ per unit volume is given by
To=—J,dji,/dy—J,dfi,/dy — J;dji5/dy. 13.13.4
Substituting from (1), (2), and (3) into (4) we obtain
—To=(J,+J3){(%2/%1)di,/dy + (%3/%,)dfis/dy} + T, djiz[dy + T3 dfis/dy
=j2{(1+fz/fx)dﬁz/d}'*“(gsly‘l)dﬁdd}’}
+ 3 {(%a/% )i /dy + (1 + %3/%,)diT/dy}. 13.13.5

If we take as origin for the coordinate y the centre of mass of the component
1, which we now call the solvent, instead of the centre of mass of the mixture,
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we have instead of (2)
J,=0 13.13.6

and instead of (4) we have
To=—J,dfi,/dy —J, djis/dy. 13.13.7

For the sake of brevity and simplicity we shall henceforth confine ourselves
to the case of a dilute solution of 2 and 3 in the solvent 1. We then have

R &H,  R&Ey 13.13.8
and we may accordingly replace (5) by the approximation
To=—J,dj1,/dy —J,dji;/dy 13.13.9

which is identical with (7). Moreover if we had chosen a slightly different
origin for y formula (9) would be unaffected.
We now introduce the linear relations

~

Jy=—L,,dji,/dy—L,;dfi;/dy 13.13.10

Jy=—Lj,djI,/dy—L;3dfis/dy 13.13.11
or the equivalent relations

J,=—L,,du,/dy—L,3dus/dy 13.13.12

J3=—Lj,du,/dy—Lysdus/dy 13.13.13

where J, and J; denote the fluxes per unit amount of 2 and 3 respectively.
Onsager’s reciprocal relation is

Lys=L,,. 13.13.14

Whereas the equation (14) relates to a solution of given composition,
with values of L,; or L;, dependent on the composition, the available
experimental measurements give only values of diffusion coefficients
averaged over a wide range of composition. Consequently the attempt*
to verify (14) is unconvincing. The most that can be said is that there is no
experimental evidence at variance with (14).

* Miller, Chem. Rev. 1960 60 19.



