Fluctuations and noise 5.6

Thermodynamic fluctuations^a

Fluctuation probability	$\operatorname{pr}(x) \propto \exp[S(x)/k]$ $\propto \exp\left[\frac{-A(x)}{kT}\right]$	(5.130) (5.131)	pr x S A	probability density unconstrained variable entropy availability
General variance	$\operatorname{var}[x] = kT \left[\frac{\partial^2 A(x)}{\partial x^2} \right]^{-1}$	(5.132)	var[·]	mean square deviation Boltzmann constant temperature
Temperature fluctuations	$\operatorname{var}[T] = kT \frac{\partial T}{\partial S} \Big _{V} = \frac{kT^{2}}{C_{V}}$	(5.133)	V C_V	volume heat capacity, V constant
Volume fluctuations	$\operatorname{var}[V] = -kT \frac{\partial V}{\partial p} \Big _{T} = \kappa_T V k T$	(5.134)	$p \\ \kappa_T$	pressure isothermal compressibility
Entropy fluctuations	$\operatorname{var}[S] = kT \frac{\partial S}{\partial T} \Big _{p} = kC_{p}$	(5.135)	C_p	heat capacity, p constant
Pressure fluctuations	$\operatorname{var}[p] = -kT \frac{\partial p}{\partial V} \Big _{S} = \frac{K_{S}kT}{V}$	(5.136)	K_S	adiabatic bulk modulus
Density fluctuations	$var[n] = \frac{n^2}{V^2} var[V] = \frac{n^2}{V} \kappa_T k T$	(5.137)	n	number density

^aIn part of a large system, whose mean temperature is fixed. Quantum effects are assumed negligible.

Noise

Nyquist's noise theorem	$dw = kT \cdot \beta \epsilon (e^{\beta \epsilon} - 1)^{-1} dv$ $= kT_{N} dv$ $\simeq kT dv (hv \ll kT)$	(5.138) (5.139) (5.140)	$egin{array}{cccc} w & & & & & \\ k & & T & & & & \\ T_{\mathrm{N}} & & & & & \\ \beta \epsilon & & & & & \\ v & & & & & \\ h & & & & & \\ \end{array}$	exchangeable noise power Boltzmann constant temperature noise temperature $=hv/(kT)$ frequency Planck constant
Johnson (thermal) noise voltage ^a	$v_{\rm rms} = (4k T_{\rm N} R \Delta v)^{1/2}$	(5.141)	$v_{ m rms}$ R Δv	rms noise voltage resistance bandwidth
Shot noise (electrical)	$I_{\rm rms} = (2eI_0\Delta v)^{1/2}$	(5.142)	$I_{\rm rms}$ $-e$ I_0	rms noise current electronic charge mean current
Noise figure ^b	$f_{\rm dB} = 10\log_{10}\left(1 + \frac{T_{\rm N}}{T_0}\right)$	(5.143)	f_{dB} T_0	noise figure (decibels) ambient temperature (usually taken as 290 K)
Relative power	$G = 10\log_{10}\left(\frac{P_2}{P_1}\right)$	(5.144)	G P_1, P_2	decibel gain of P_2 over P_1 power levels

^aThermal voltage over an open-circuit resistance. ^bNoise figure can also be defined as $f = 1 + T_N/T_0$, when it is also called "noise factor."