PRACTICE PAPER

Tim	e allowed: 45 minute	es		Maximum Marks: 200					
Gene	eral Instructions: Sam	e as Practice Paper–1.							
Choo	ose the correct option.								
1.	Which of the followin	ng is not satisfied by an	ideal solution?						
	(a) $\Delta_{\text{mix}} V = 0$	ig is not substice by an	(b) $\Delta_{mix} V \neq 0$						
	(c) Obeyance to Raou	lt's Law	(d) $\Delta_{\min} H = 0$						
2.	The vapour pressure	of a liquid in a closed v	vessel depends upon						
	(a) surface area of the		(b) amount of liquid	l					
	(c) temperature		(d) none of the abov	e					
3.				$(molar mass = 60 g mol^{-1})$ in the ual to 1.0 gcm ⁻³ , molar mass of the					
	(a) 210.0 g mol ⁻¹	(b) 90.0 g mol ⁻¹	(c) 115.0 g mol ⁻¹	(d) 105.0 g mol ⁻¹					
		., 0	_						
4.	-		ms present in a simple cube π	-					
	(a) $\frac{\pi}{3\sqrt{2}}$	(b) $\frac{\pi}{4\sqrt{2}}$	(c) $\frac{\pi}{4}$	(d) $\frac{\pi}{6}$					
5.	 The INCORRECT statement for cubic close packed (<i>ccp</i>) three-dimensional structure is (<i>a</i>) The number of neighbours of an atom present in the topmost layer is 12. (<i>b</i>) The efficiency of the atom packing is 74%. (<i>c</i>) The number of octahedral and tetrahedral voids per atom are 1 and 2 respectively. (<i>d</i>) The unit cell edge length is 2√2 times the radius of the atom. 								
6.	Ionic solids with Sch	ottky defects contain in	their structure						
		ation and anion vacancie and anion vacancies. aly.							
7.	Substances whose sol	utions easily diffuse th	rough animal membrane are						
	(a) colloids		(b) crystalloids						
	(c) electrolytes		(d) non-electrolytes						
8.	Given below are two s	statements labelled as S	tatement P and Statement Q:	:					
	Statement P : A sol	of As ₂ S ₃ prepared by th	e action of H ₂ S on As ₂ O ₃ is no	egatively charged.					
	Statement Q: It is d (<i>a</i>) P is true, but Q is f (<i>c</i>) Both P and Q are t	alse	ions in the diffused layer. (b) P is false, but Q is (d) Both P and Q are						

17

9. Match the items of Column I with suitable units given in Column II.

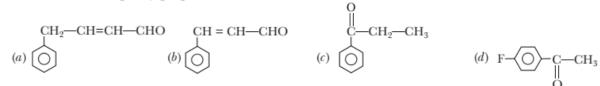
	Column I		Column II				
	A. Conductance	(<i>i</i>)	m ⁻¹				
	B. Molar conductivity	(ii)	Simen(S)				
	C. Cell constant	(iii)	Sm ² mol ⁻¹				
	D. Conductivity	(iv)	Sm ⁻¹				
	(a) A-(ii), B-(iii), C-(i), D-(iv)		(b) A–(iii), B–(iv), C–(i), D–				
	(c) A–(i), B–(iv), C–(iii), D–(ii)		(d) A-(ii), B-(iv), C-(i), D-((iii)			
10.	The cathodic reaction in electrolysis of dilute	H ₂ SO		S			
	(a) oxidation(c) both oxidation and reduction		(b) reduction				
		4h - f-	(d) neutralization	duran and and an al			
11.	The standard reduction potential at 298 K for $Zn^{2+} + 2e^{-} \longrightarrow Zn(s), \qquad E^{\circ} = -0.76 V$	the io	nowing nair reactions are g	iven against each			
	$Cr^{3+} + 3e^{-} \longrightarrow Cr(s), \qquad E^{\circ} = -0.74 V$						
	$2H^+ + 2e^ H_2(g), \qquad E^\circ = 0.0 V$						
	$Fe^{3+} + 3e^{-} - Fe(s), \qquad E^{\circ} = -0.04 V$						
	which of the following is the strongest reducin	ig agei	nt?				
	(a) Zn (b) Cr		(c) H ₂	(<i>d</i>) Fe ³⁺			
12.	The rate of reaction, $A + B \rightarrow$ Products is given order of reaction will be	ı by th	e equation, $r = k[A][B]$. If B	is taken in large excess, the			
	(a) 2 (b) 1		(c) 0	(d) unpredictable			
13.	When a graph is plotted of $\log k \operatorname{vs} \frac{1}{T}$ for an	Arrhe	enius equation, a straight l	ine with a slope -6840 K is			
	obtained. The value of energy of activation for (a) 130.97 kJ mol ⁻¹	the re	(b) 127.7 kJ mol ⁻¹				
	(c) 148 kJ mol ⁻¹		(d) 218 kJ mol ⁻¹				
14.	If the initial concentration of the reactant is do reaction is	ubled	, time for half reaction is al	so doubled. The order of the			
	(a) zero (b) first		(c) second	(d) third			
15.	Standard electrode potentials are						
	$\operatorname{Fe}^{2+}/\operatorname{Fe}(E^{\circ} = -0.44 \text{ V}), \operatorname{Fe}^{3+}/\operatorname{Fe}^{2+}(E^{\circ} = 0.77 \text{ V})$						
	Fe ²⁺ , Fe ³⁺ and Fe blocks are kept together, then						
	(a) Fe^{3+} increases		(b) Fe^{3+} decreases				
	(c) Fe^{2+}/Fe^{3+} remains unchanged		(d) Fe^{2+} decreases				
16.	The standard hydrogen electrode has zero electrode		-	is assumed to be sere			
	(a) hydrogen is easiest to oxidise.(c) hydrogen atom has only one electron.	(b) this electrode potential is assumed to be zero.(d) hydrogen is lightest element.					
17.	The method of refining which is based on the						
	(a) chromatographic method		(b) zone refining				
	(c) Mond process		(d) van Arkel method				
18.	The co-ordination number and oxidation numb		• · ·				
	(a) 10 and 3 (b) 2 and 6		(c) 6 and 3	(d) 6 and 4			
19.	Which of the following compounds has colour $(A = A = A = A = A = A = A = A = A = A =$	but no	-	(h) M-Cl			
	(a) KMnO_4 (b) $\mathrm{K}_2\mathrm{MnO}_4$		(c) MnSO ₄	(d) $MnCl_2$			

		Chemistry									
20.	Given below are two statements labelled as Assertion a	nd Reason:									
	Assertion (A) : Ce ⁴⁺ is used as an oxidising agent in volumetric analysis.										
	Reason (R) : Ce^{4+} has the tendency of attaining +3 oxidation state.										
	(a) Assertion and reason both are correct statements and reason is correct explanation for assertion.										
	(b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.										
	(c) Assertion is correct statement but reason is wrong statement.										
	(d) Assertion is wrong statement but reason is correct statement.										
21.	The thermal stability of the hydrides of group 16(h)	down the group.									
		, 									
) first decreases then increases									
22.	Which of the following options are not in accordance w A. $F_2 > Cl_2 > Br_2 > I_2$	Oxidising power.									
	B. $MI > MBr > MCl > MF$	Ionic character of metal halide.									
	C. $F_2 > Cl_2 > Br_2 > I_2$	Bond dissociation enthalpy.									
	D. HI < HBr < HCl < HF	Hydrogen-halogen bond strength.									
	(a) both A and C (b) both A and D (c)	both B and C (d) both A and B									
23.	Which is the correct increasing order of boiling points	s of the following compounds?									
	1-Iodobutane, 1-Bromobutane, 1-Chlorobutane, Butane	e									
	(a) Butane < 1-Chlorobutane < 1-Bromobutane < 1-Io										
	(b) 1-Iodobutane < 1-Bromobutane < 1-Chlorobutane <										
	(<i>t</i>) Butane < 1-Iodobutane < 1-Bromobutane < 1-Chlor										
	(d) Butane < 1-Chlorobutane < 1-Iodobutane < 1-Bror										
24 .	The correct IUPAC name for H ₃ C—CH—CH ₂ —CH ₂ —Cl is										
	C_2H_5										
) 1-chloro-3-ethylbutane									
	(c) 3-methyl-1-chloropentane (d) 3-ethyl-1-chlorobutane										
25.	Anhydrous Cobalt(II)chloride is blue in colour but o because	on dissolving in water it changes to pink in colour									
) its magnetic character changes.									
) in water it shows coloured solution.									
26.											
		c) Cl ⁻ (d) Br ⁻ as well as Cl ⁻									
27.	Which one of the following will be able to show geome	trical isomerism?									
) MA ₂ B ₂ (Tetrahedral)									
	(c) MABCD (Square planar) (d) MABCD (Tetrahedral)									
28.	2										
		c) Cu (d) Fe									
29.	Geometry of XeOF ₄ molecule is: (a) square planar (b) square purposidal (c)) triangular pyramidal (d) actahadral									
20) triangular pyramidal (d) octahedral									
30.	Identify the compound Y in the following reaction.										
	$\underbrace{\text{NH}_2}_{\text{273-278K}} \xrightarrow{\text{NaNO}_2 + \text{HC1}} \underbrace{\text{NaNO}_2 + \text{HC1}}_{\text{273-278K}}$	$\tilde{N}_2 C \tilde{I}$ $\xrightarrow{Cu_2 C I_2} Y + N_2^{\dagger}$									
	(a) (b) (b) (c)										
	\checkmark										

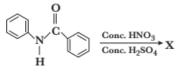
C H E M I S T R Y

31. Given below are two statements labelled as Assertion and Reason:

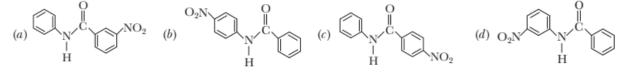
Assertion (A) : The O—O bond length in ozone is identical with that in molecular oxygen.


Reason (R) : The ozone molecule is a resonance hybrid of two canonical structures.

(a) Assertion and reason both are correct statements and reason is correct explanation for assertion.


- (b) Assertion and reason both are correct statements but reason is not correct explanation for assertion.
- (c) Assertion is correct statement but reason is wrong statement.

(d) Assertion is wrong statement but reason is correct statement.


32. The structure of 3-phenylprop-2-enal is

33. In the following reaction:

The structures of the major product X is:

34. The appropriate reagent for the given transformation is

		но СН3 –	→	CH ₂ CH ₃				
	(a) Zn (Hg), HCl	(b) $NH_2 NH_2$, OH^-	(c) Ni/H ₂	(d) $NaBH_4$				
35.	Isopropyl methyl ether	when treated with cold hyd	lrogen iodid	le gives				
	(a) isopropyl iodide and	methyl iodide	(b) isopropyl alcohol and methyl iodide					
	(c) isopropyl alcohol and	methyl alcohol	(d) isopropyl iodide and methyl alcohol					
36.	Acetone on heating with	concentrated H ₂ SO ₄ main	ly gives					
	(a) Mesitylene	(b) Mesityl oxide	(c) Toluer	ne (d) Xylene				
37.	$CH_3CH_2Cl \xrightarrow{NaCN} X$	$\xrightarrow{\text{Ni/H}_2}$ Y						
	Y in the above reaction i	s						
	(a) CH ₃ CH ₂ NHCH ₃		(b) CH ₃ CH ₂ CH ₂ NH ₂					
	(c) CH ₃ CH ₂ CH ₂ CONHC	H_3	(d) CH ₃ CH ₂ CH ₂ CONHCOCH ₃					
38.	Which one of the follow	ng can be oxidised to the	correspondi	ng carbonyl compound?				
	(a) o-Nitrophenol		(b) Pheno	1				
	(c) 2-methyl-2-hydroxyp	ropane	(d) 2-hydi	roxypropane				

Chemistry

39. In the reaction $CH_{2}COOH \xrightarrow{\text{LiAlH}_{4}} CH_{2}CH_{2}OH \xrightarrow{PCl_{5}} B \xrightarrow{\text{Alc. KOH}} C$ The products B and C respectively are (a) Ethyl chloride; Ethene (b) Acetyl chloride; Ethane (d) Ethanoyl chloride; Acetaldehyde (c) Ethyl chloride; Acetaldehyde 40. Which one of the following drugs prevents the interaction of histamine with its receptor? (c) Antibiotics (a) Antihistamines (b) Analgesics (d) Disinfectants 41. Which of the following are not correctly matched? (a) neoprene: $-CH_2-C = CH-CH_2-$ | Cl(b) nylon-66: $-NH-(CH_2)_6-NH-CO(CH_2)_4-C-$ (c) terylene: $\begin{bmatrix} CH_3 \\ | \\ -CH_2 - C - \\ | \\ COOCH_3 \end{bmatrix}_n$ (d) PMMA: 42. Which base is present in RNA but not in DNA? (a) Uracil (b) Cytosine (c) Guanine (d) Thymine 43. When formaldehyde and KOH are heated, then we get (a) Acetylene (b) Methane (c) Methyl alcohol (d) Ethyl formate 44. Anilinium hydrogensulphate on heating with sulphuric acid at 455-475 K produces (a) sulphanilic acid (b) benzenesulphonic acid (c) aniline (d) anthranilic acid 45. Which of the following polymer is stored in the liver of animals? (b) Cellulose (c) Amylopectin (d) Glycogen (a) Amylose 46. Which among the following phenolic compounds is most acidic in nature? (a) p-aminophenol (c) m-nitrophenol (d) p-nitrophenol (b) phenol 47. Which of the following will be readily dehydrated in acidic conditions? 48. The use of chemicals for treatment of diseases is known as (a) Physiotherapy (b) Chemotherapy (c) Homeotherapy (d) Angiotherapy 49. Interparticle forces present in Nylon-66 are: (a) Van der Waals' (b) Hydrogen bonding (c) Dipole-dipole interactions (d) None of the above 50. Which of the following reaction confirms the presence of carbonyl group (> C=O) in glucose? (a) Reaction with HI (b) Reaction with hydroxylamine (c) Reaction with HCN (d) Both (b) and (c)

C H E M I S T R Y

Answers

PRACTICE PAPER — 17													
1.	(b)	2.	(c)	3.	<i>(a)</i>	4.	(d)	5.	<i>(a)</i>	6.	<i>(a)</i>	7.	(<i>b</i>)
8.	<i>(a)</i>	9.	<i>(a)</i>	10.	(b)	11.	<i>(a)</i>	12.	(<i>b</i>)	13.	<i>(a)</i>	14.	<i>(a)</i>
15.	(b)	16.	(<i>b</i>)	17.	(a)	18.	(c)	19.	<i>(a)</i>	20.	<i>(a)</i>	21.	(<i>b</i>)
22.	(c)	23.	(a)	24.	(a)	25.	(c)	26.	(a)	27.	(c)	28.	(c)
29.	(b)	30.	(a)	31.	(d)	32.	(b)	33.	(b)	34.	(b)	35.	(<i>b</i>)
36.	(a)	37.	(b)	38.	(d)	39.	(a)	40.	(a)	41.	(c)	42.	<i>(a)</i>
43.	(c)	44.	(a)	45.	(d)	46.	(d)	47.	(a)	48.	(b)	49.	(<i>b</i>)
50.	(d)												

Solutions

PRACTICE PAPER - 17

- 1. (b) An ideal solution has the following condition:
 - Volume change (ΔV) of mixing should be zero.
 - Enthalpy change (ΔH) of mixing should be zero.
 - Obey's Raoult's law at every range of concentration.
- 2. (c) The vapour pressure of a liquid increases with increase in temperature. This is because, with increase in temperature, the K.E. of the molecules increases and therefore large number of molecules will be available for escaping from the surface of the liquid.

It is independent of surface area and volume of the container.

3. (a) Isotonic solution have same osmotic pressure.

$$\pi_1 = C_1 RT, \pi_2 = C_2 RT$$

$$\Rightarrow \qquad \pi_1 = \pi_2$$
Or,
$$C_1 RT = C_2 RT$$

$$\frac{n_1}{V}RT = \frac{n_2}{V}RT$$

$$\frac{1.5}{60} = \frac{n_2}{M}$$

$$\frac{1.5}{60} = \frac{5.25}{M}$$

$$M = \frac{5.25 \times 60}{1.5} = 210 \text{ g mol}^{-1}$$

1

- (d) The maximum properties of the available volume which may be filled by hard sphere in simple cubic arrangement is given as π/6 or 0.52.
- 5. (a) The atom in the middle layers will have 12 nearest neighbours. But the atom in topmost layer has 9 nearest neighbours (6 atoms in the same layer + 3 atoms in the bottom layer).
- (a) Schottky defect arises when equal number of cations and anions are missing from the lattice so that electrical neutrality is maintained.

- (b) In crystalloids, solutions easily diffuse through animal membrane due to its particle size of molecular dimensions less than 1nm.
- (a) The correct statement Q is, due to preferential adsorption of S²⁻ ion on the surface of As₂S₃ sol, a sol of As₂S₃ prepared by the action of H₂S on As₂O₃ is negatively charged.
- (b) The cathodic reaction in electrolysis of dilute H₂SO₄ with platinum electrode is reduction.

 $H_2SO_4(aq) \longrightarrow 2H^+(aq) + SO_4^{2-}(aq)$

 $H_2O \implies H^+ + OH^-$

At cathode:

 $H^+(aq) + e^- \longrightarrow H(Primary change)$

 $H + H \longrightarrow H_2 \uparrow$ (Secondary change)

- 11. (a) The strongest reducing agent should have the lowest reduction potential. Thus, Zn is the strongest reducing agent among the given options.
- 12. (b) If B is taken in excess, then the order of reaction will be 1. This type of reaction is known as psuedo-first order reaction.
- 13. (a) Arrhenius equation is given as

$$\log k = \log A - \frac{E_a}{2.303RT}$$
Slope = $-\frac{E_a}{2.303RT} = -6840 \text{ K}$

$$\therefore E_a = 2.303 \times 8.314 \text{ J mol}^{-1} \text{ K}^{-1} \times 6840 \text{ K}$$

$$E_a = 130966.45 \text{ J mol}^{-1}$$

$$\Rightarrow E_a = 130.97 \text{ kJ mol}^{-1}$$
[A]₀

14. (a) For zero order reaction,
$$t_{1/2} = \frac{\lfloor A \rfloor_0}{2k}$$

Therefore if the initial concentration of the reactant is doubled, the half life time of the reaction is also doubled.

15. (b) Fe²⁺/Fe acts as a anode as its standard reduction potential is low and Fe³⁺/Fe acts as a cathode as its standard reduction is high.

Thus, the cell formed will be

Fe | Fe²⁺ | | Fe³⁺ | Fe²⁺

 $E_{\text{cell}}^{o} = 0.77 + 0.44 = + 1.21 \text{ V}(\text{As, negative } E^{o} \text{ value indicates oxidation and positive } E^{o} \text{ value indicates reduction})$

Therefore, if Fe²⁺, Fe³⁺ and Fe blocks are kept together, then the concentration of Fe³⁺ is decreased because of reduction.

16. (*b*) In the field of electrochemistry, hydrogen is taken to be the reference to measure the potential and therefore, to form the basis for comparison with all other electrode reactions, the value of standard hydrogen electrode potential is taken to be zero volt at all temperature.

- **17.** (*a*) Chromatographic method is based on the principle that different components of a mixture are differently adsorbed on an adsorbent.
- 18. (c) [Y(SO₄)(NH₃)₅]Cl

As there are 6 ligands attached to the central metal atom Y. Hence, the coordination number of Y will be 6 and the oxidation number of Y can be calculated as $IY(SO_4)(NH_a)_{r}ICI$

$$x - 2 + 5 \times 0 - 1 = 0$$

$$x - 2 - 1 = 0$$

$$x - 3 = 0$$

$$x = +3.$$

Hence, the correct option is (c) 6 and 3.

19. (a) Mn (Z = 25): [Ar] $3d^5 4s^2$

Thus, Mn has 7 electron in the valence shell.

In MnO₄, Mn forms 7 bonds and thus it has no unpaired electrons but it shows colour because of ligand to metal charge transfer.

- **21.** (*b*) Thermal stability decreases down the group because as the size of the atom increases the bond dissociation enthalpy decreases.
- 22. (c) The correct order of ionic character of metal halide is in the order:

MI < MBr < MCl < MF

and the correct order of bond dissociation enthalpy is in the order:

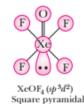
$$Cl_2 > Br_2 > F_2 > I_2$$

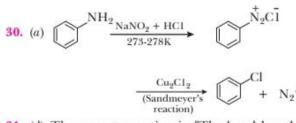
- 23. (a) Boiling point of chlorides, bromides and iodides are higher than those of parent hydrocarbon due to greater polarity and higher molecular mass. Thus, the correct increasing order is Butane < 1-Chlorobutane < 1-Bromobutane < 1-Iodobutane
- **24.** (*a*) The correct IUPAC name of the given compound is

$$H_3C \xrightarrow{3} {}^2 {}^1 H_3C \xrightarrow{1} CH_2 \xrightarrow{1} CH_2 \xrightarrow{1} CH_2 \xrightarrow{1} CH_2 \xrightarrow{1} CH_2 \xrightarrow{1} CH_3 \xrightarrow{1-chloro} 3-methylpentane$$

25. (c) Cobalt(II)chloride has a blue colour in tetrahedral geometry. It changes to pink colour with the change in coordination number to six.

$$\begin{array}{ccc} \operatorname{CoCl}_2(s) & \longrightarrow & \operatorname{CoCl}_2.2\operatorname{H}_2\operatorname{O}(s) \\ & & & \operatorname{Purple} \\ & \longrightarrow & \operatorname{CoCl}_2.6\operatorname{H}_2\operatorname{O}(s) \\ & & & \operatorname{Pink} \end{array}$$

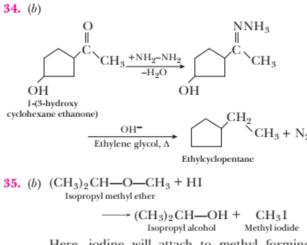

26. (a) [CoCl₃(C₅H₅N)₂]Br


 \longrightarrow [CoCl₃(C₅H₅N)₂]⁺ + Br⁻ Therefore, it can easily give test for Br- ions.

- **27.** (*c*) Tetrahedral complexes do not show geometrical isomerism as relative position of the ligands attached to central metal atom is same with respect to each other (adjacent). Moreover, tetra coordinated square planar complexes of the type [MA₄], [MA₃X], [MAX₃] are incapable of showing geometrical isomerism because all possible arrangements of ligands in each of these complexes are exactly the same.
- (c) The metals extracted by auto reduction process is Cu, Hg, Pb, etc.

$$2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$$

29. (*b*) XeOF₄(sp^3d^2) has square pyramidal geometry. The structure is as follow:



31. (d) The correct assertion is, "The bond length of O—O in molecular oxygen (O₂) is 120.7 pm while in ozone molecule (O₃), it is 128 pm.

IUPAC name: 3-phenylprop-2-enal

33. (b) The —NH group is ortho and para directing while the >C=O group is meta directing due to its electron withdrawing nature. Since the nitration involves electrophilic attack, the NO₂ group will prefer to occupy a position in the left ring to which the —NH group is directly attached. Therefore (b) will be the major product.

Note: NO₂ group is not attached at ortho position due to bulky ring present adjacent to it.

(1, 3, 5 - trimethylbenzene)

36. (a) $(CH_3) = O \xrightarrow{Conc H_2SO_4} (CH_3) \xrightarrow{CH_3} (CH_3) (CH_3) \xrightarrow{CH_3} (CH_3) (CH_3) \xrightarrow{CH_3} (CH_3) \xrightarrow{CH_3} (CH_3) (CH_3)$

37. (b)
$$CH_3CH_2CI \xrightarrow{NaCN} CH_3CH_2CN$$

Ethyl chloride (X)
 $Ni/H_2 \rightarrow CH_3CH_2CH_2NH_2$
 n -Propylamine (Y)

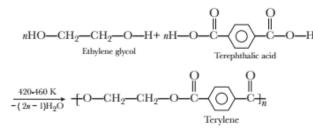
38. (d) Primary alcohol or secondary alcohol (2-hydroxypropane) can be oxidized to the corresponding aldehyde, ketones or carboxylic acids by oxidation.

> 2-hydroxypropane vapour is provided moderately over the Ag dust at 250°C in presence of air to form carbonyl compound.

$$\begin{array}{c} \operatorname{CH}_{3} - \operatorname{CH}(\operatorname{OH}) - \operatorname{CH}_{3} & \xrightarrow{\operatorname{O}_{2}, \operatorname{Ag} \operatorname{dust}} \\ & & \operatorname{CH}_{3} \operatorname{COCH}_{3} + \operatorname{H}_{2} \operatorname{O} \\ & & \operatorname{Ketone} \end{array}$$

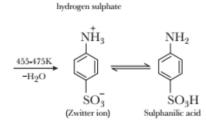
$$\begin{array}{c} \operatorname{S9.}(a) \quad \operatorname{CH}_{3} \operatorname{COOH} & \xrightarrow{\operatorname{LiAlH}_{4}} & \operatorname{CH}_{3} \operatorname{CH}_{2} \operatorname{OH} \\ & & \operatorname{Ethanol} \\ & \xrightarrow{\operatorname{PCl}_{5}} & \operatorname{CH}_{3} \operatorname{CH}_{2} \operatorname{Cl} \\ & & & \operatorname{Ethanol} \end{array}$$

$$\begin{array}{c} \xrightarrow{\operatorname{PCl}_{5}} & \operatorname{CH}_{3} \operatorname{CH}_{2} \operatorname{Cl} \\ & & & & \operatorname{Ethanol} \end{array}$$


$$\begin{array}{c} \xrightarrow{\operatorname{PCl}_{5}} & \operatorname{CH}_{3} \operatorname{CH}_{2} \operatorname{Cl} \\ & & & & & \operatorname{Ethanol} \end{array}$$

$$\begin{array}{c} \xrightarrow{\operatorname{PCl}_{5}} & \operatorname{CH}_{3} \operatorname{CH}_{2} \operatorname{Cl} \\ & & & & & & & \\ \end{array}$$

$$\begin{array}{c} \xrightarrow{\operatorname{Alc.KOH}} & \operatorname{CH}_{2} = \operatorname{CH}_{2} \\ & & & & & & \\ \end{array}$$


40. (a) Antihistamines are drugs which treat allergic rhinitis and other allergies. Antihistamines can give relief when a person has nasal congestion, sneezing, or hives because of pollen, dust mites, or animal allergy. Typically people take antihistamines as an inexpensive, generic, over-the-counter drug with few side effects. As an alternative to taking an antihistamine, people who suffer from allergies can instead avoid the substance which irritates them. However, this is not always possible as some substances, such pollen, are carried in the air, thus making allergic reaction caused by them generally unavoidable.

41. (c) The structure of terylene is

- 42. (a) In RNA, thymine is replaced by uracil.
- **43.** (c) 2HCHO $\xrightarrow{\text{KOH}(50\%)}$ CH₃-OH + HCOO⁻K⁺ Methyl Potassium alcohol formate

44. (a)
$$\bigvee_{\text{Conc.H}_2SO_4}^{\text{NH}_2}$$
 $\xrightarrow{\text{NH}_3^+\text{HSO}_4}_{\text{Aplinium}}$

- 45. (d) Glycogen is present in liver, muscles and brain in animals.
- 46. (d) Deprotonation of *p*-nitrophenol gives *p*-nitrophenoxide ion. The negative charge on O atom is stabilised as strongly electron withdrawing nitro group is present at para position (—R effect). This effect is some what less in *m*-nitrophenol as at *m*-position, —NO₂ groups withdraws electron by weaker —I effect. In case of *p*-aminophenol, deprotonation gives *p*-aminophenoxide ion. The negative charge on O atom is destabilised as electron releasing amino group is present in para position. Therefore, *p*-nitrophenol is most acidic.
- **47.** (*a*) Dehydration of β unsaturated ketones.
- 48. (b) The word 'chemo' means 'chemicals' and 'therapy' means treatment. Thus, chemotherapy is the treatment of disease with the use of chemicals.
- 49. (b) Nylon 6,6 has strong intermolecular forces like hydrogen bonding. These strong forces also lead to close packing of chains and thus impart crystalline nature.
- 50. (d) Glucose reacts with hydroxylamine to form an oxime and adds a molecule of hydrogen cyanide to give cyanohydrin. These reactions confirm the presence of a carbonyl group.