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Interference and Diffraction

All waves display the phenomena of interference and diffraction which arise from the

superposition of more than one wave. At each point of observation within the interference

or diffraction pattern the phase difference between any two component waves of the same

frequency will depend on the different paths they have followed and the resulting

amplitude may be greater or less than that of any single component. Although we speak of

separate waves the waves contributing to the interference and diffraction pattern must

ultimately derive from the same single source. This avoids random phase effects from

separate sources and guarantees coherence. However, even a single source has a finite size

and spatial coherence of the light from different parts of the source imposes certain

restrictions if interference effects are to be observed. This is discussed in the section on

spatial coherence on p. 360. The superposition of waves involves the addition of two or

more harmonic components with different phases and the basis of our approach is that laid

down in the vector addition of Figure 1.11. More formally in the case of diffraction we

have shown the equivalence of the Fourier transform method on p. 287 of Chapter 10.

Interference

Interference effects may be classified in two ways:

1. Division of amplitude

2. Division of wavefront

1. Division of amplitude. Here a beam of light or ray is reflected and transmitted at a

boundary between media of different refractive indices. The incident, reflected and

transmitted components form separate waves and follow different optical paths. They

interfere when they are recombined.

2. Division of wavefront. Here the wavefront from a single source passes simultaneously

through two or more apertures each of which contributes a wave at the point of

superposition. Diffraction also occurs at each aperture.
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The difference between interference and diffraction is merely one of scale: in optical

diffraction from a narrow slit (or source) the aperture is of the order of the wavelength of

the diffracted light. According to Huygens Principle every point on the wavefront in the

plane of the slit may be considered as a source of secondary wavelets and the further

development of the diffracted wave system may be obtained by superposing these wavelets.

In the interference pattern arising from two or more such narrow slits each slit may be

seen as the source of a single wave so the number of superposed components in the final

interference pattern equals the number of slits (or sources). This suggests that the complete

pattern for more than one slit will display both interference and diffraction effects and we

shall see that this is indeed the case.

Division of Amplitude

First of all we consider interference effects produced by division of amplitude. In Fig-

ure 12.1 a ray of monochromatic light of wavelength � in air is incident at an angle i on a

plane parallel slab of material thickness t and refractive index n > 1. It suffers partial

reflection and transmission at the upper surface, some of the transmitted light is reflected at

the lower surface and emerges parallel to the first reflection with a phase difference

determined by the extra optical path it has travelled in the material. These parallel beams

meet and interfere at infinity but they may be brought to focus by a lens. Their optical path

difference is seen to be

nðABþ BDÞ � AC ¼ 2nAB� AC

¼ 2nt=cos �� 2t tan � sin i

¼ 2nt

cos �
ð1� sin2�Þ ¼ 2nt cos �

(because sin i ¼ n sin �Þ:

S

C

t constant

DA

B

q

q
n > 1

Figure 12.1 Fringes of constant inclination. Interference fringes formed at infinity by division of
amplitude when the material thickness t is constant. The mth order bright fringe is a circle centred at
S and occurs for the constant � value in 2nt cos � ¼ ðmþ 1

2Þ�
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This path difference introduces a phase difference

� ¼ 2�

�
2nt cos �

but an additional phase change of � rad occurs at the upper surface.

The phase difference � between the two interfering beams is achieved by writing the

beam amplitudes as

y1 ¼ aðsin!t þ �=2Þ and y2 ¼ a sin ð!t � �=2Þ

with a resultant amplitude

R ¼ a½sin ð!t þ �=2Þ þ sin ð!t � �=2Þ
¼ 2a sin!t cos �=2

and an intensity

I ¼ R2 ¼ 4a2 sin2 !t cos2 �=2

Figure 12.2 shows the familiar cos2 �=2 intensity fringe pattern for the spatial part of I.

Thus, if 2nt cos � ¼ m� (m an integer) the two beams are anti-phase and cancel to give

zero intensity, a minimum of interference. If 2nt cos � ¼ ðmþ 1
2
Þ� the amplitudes will

reinforce to give an interference maximum.

Since t is constant the locus of each interference fringe is determined by a constant value

of � which depends on a constant angle i. This gives a circular fringe centred on S. An

extended source produces a range of constant � values at one viewing position so the

complete pattern is obviously a set of concentric circular fringes centred on S and formed

at infinity. They are fringes of equal inclination and are called Haidinger fringes. They

are observed to high orders of interference, that is values of m, so that t may be relatively

large.

4a 2

m

δ –4π

–2 –1 0 1 2

–4π 0 2π 4π

Figure 12.2 Interference fringes of cos2 intensity produced by the division of amplitude in Figure
12.1. The phase difference � ¼ 2�nt cos �=� and m is the order of interference
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When the thickness t is not constant and the faces of the slab form a wedge, Figure 12.3a

and b the interfering rays are not parallel but meet at points (real or virtual) near the wedge.

The resulting interference fringes are localized near the wedge and are almost parallel to

the thin end of the wedge. When observations are made at or near the normal to the wedge

cos � � 1 and changes slowly in this region so that 2nt cos � � 2nt: The condition for bright
fringes then becomes

2nt ¼ ðmþ 1
2
Þ�

and each fringe locates a particular value of the thickness t of the wedge and this defines

the patterns as fringes of equal thickness. As the value of m increases to mþ 1 the thickness

of the wedge increases by �=2n so the fringes allow measurements to be made to within a

fraction of a wavelength and are of great practical importance.

t varying

t varying

n > 1

n > 1

(a)

(b)

Figure 12.3 Fringes of constant thickness. When the thickness t of the material is not constant the
fringes are localized where the interfering beams meet (a) in a real position and (b) in a virtual
position. These fringes are almost parallel to the line where t ¼ 0 and each fringe defines a locus of
constant t
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The spectral colours of a thin film of oil floating on water are fringes of constant

thickness. Each frequency component of white light produces an interference fringe at that

film thickness appropriate to its own particular wavelength.

In the laboratory the most familiar fringes of constant thickness are Newton’s Rings.

Newton’s Rings

Here the wedge of varying thickness is the air gap between two spherical surfaces of

different curvature. A constant value of t yields a circular fringe and the pattern is one of

concentric fringes alternately dark and bright. The simplest example, Figure 12.4, is a

plano convex lens resting on a plane reflecting surface where the system is illuminated

from above using a partially reflecting glass plate tilted at 45�. Each downward ray is

partially reflected at each surface of the lens and at the plane surface. Interference takes

Incident
light

Interfering
beams

OPTICAL FLAT

L

Focal plane
of L

Semi-silvered
reflector

Figure 12.4 Newton’s rings of interference formed by an air film of varying thickness between the
lens and the optical flat. The fringes are circular, each fringe defining a constant value of the air film
thickness
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place between the light beams reflected at each surface of the air gap. At the lower (air to

glass) surface of the gap there is a � rad phase change upon reflection and the centre of the

interference fringe pattern, at the point of contact, is dark. Moving out from the centre,

successive rings are light and dark as the air gap thickness increases in units of �=2. If R is

the radius of curvature of the spherical face of the lens, the thickness t of the air gap at a

radius r from the centre is given approximately by t � r 2=2R. In the mth order of

interference a bright ring requires

2t ¼ ðmþ 1
2
Þ� ¼ r 2=R

and because t / r 2 the fringes become more crowded with increasing r. Rings may be

observed with very simple equipment and good quality apparatus can produce fringes for

m > 100:

(Problem 12.1)

Michelson’s Spectral Interferometer

This instrument can produce both types of interference fringes, that is, circular fringes of

equal inclination at infinity and localized fringes of equal thickness. At the end of the

nineteenth century it was one of the most important instruments for measuring the structure

of spectral lines.

As shown in Figure 12.5 it consists of two identical plane parallel glass plates G1 and G2

and two highly reflecting plane mirrors M1 and M2. G1 has a partially silvered back face,

G2 does not. In the figure G1 and G2 are parallel and M1 and M2 are perpendicular. Slow,

accurately monitored motion of M1 is allowed in the direction of the arrows but the

mounting of M2 is fixed although the angle of the mirror plane may be tilted so that M1

and M2 are no longer perpendicular.

The incident beam from an extended source divides at the back face of G1. A part of it is

reflected back through G1 to M1 where it is returned through G1 into the eye or detector.

The remainder of the incident beam reaches M2 via G2 and returns through G2 to be

reflected at the back face of G1 into the eye or detector where it interferes with the beam

from the M1 arm of the interferometer. The presence of G2 assures that each of the two

interfering beams has the same optical path in glass. This condition is not essential for

fringes with monochromatic light but it is required with a white light source where

dispersion in glass becomes important.

An observer at the detector looking into G1 will see M1, a reflected image of M2 (M
0
2,

say) and the images S1 and S 0
2 of the source provided by M1 and M2. This may be

represented by the linear configuration of Figure 12.6 which shows how interference takes

place and what type of firnges are produced.

When the optical paths in the interferometer arms are equal and M1 and M2 are

perpendicular the planes of M1 and the image M 0
2 are coincident. However a small optical

path difference t between the arms becomes a difference of 2t between the mirrored images

of the source as shown in Figure 12.6. The divided ray from a single point P on the

extended source is reflected at M1 and M2 (shown as M 0
2) but these reflections appear to
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come from P1 and P 0
2 in the image planes of the mirrors. The path difference between the

rays from P1 and P 0
2 is evidently 2t cos �. When 2t cos � ¼ m� a maximum of interference

occurs and for constant � the interference fringe is a circle. The extended source produces a
range of constant � values and a pattern of concentric circular fringes of constant

inclination.

If the path difference t is very small and the plane of M2 is now tilted, a wedge is formed

and straight localized fringes may be observed at the narrowest part of the wedge. As the

wedge thickens the fringes begin to curve because the path difference becomes more

strongly dependent upon the angle of observation. These curved fringes are always convex

towards the thin end of the wedge.

M1

G1 G2

M2

Allowed
movement
of M1

Source
S

Eye or detector

Figure 12.5 Michelson’s Spectral Interferometer. The beam from source S splits at the back face of
G1, and the two parts are reflected at mirrors M1 and M2 to recombine and interfere at the eye or
detector. G2 is not necessary with monochromatic light but is required to produce fringes when S is a
white light source
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The Structure of Spectral Lines

The discussion on spatial coherence, p. 362, will show that two close identical sources

emitting the same wavelength � produce interference fringe systems slightly displaced

from each other (Figure 12.17).

The same effect is produced by a single source, such as sodium, emitting two

wavelengths, � and ���� so that the maxima and minima of the cos2 fringes for � are

slightly displaced from those for ����. This displacement increases with the order of

interference m until a value of m is reached when the maximum for � coincides with a

minimum for ���� and the fringes disappear as their visibility is reduced to zero.

In 1862, Fizeau, using a sodium source to produce Newton’s Rings, found that the

fringes disappeared at the order m ¼ 490 but returned to maximum visibility at m ¼ 980.

He correctly identified the presence of two components in the spectral line.

The visibility

ðImax � IminÞ=ðImax þ IminÞ

equals zero when

m� ¼ ðmþ 1
2
Þð����Þ

and for � ¼ 0:5893 mm and m ¼ 490 we have �� ¼ 0:0006mm (6 Å), which are the

accepted values for the D lines of the sodium doublet.

Using his spectral interferometer, Michelson extended this work between the years 1890

and 1900, plotting the visibility of various fringe systems and building a mechanical

harmonic analyser into which he fed different component frequencies in an attempt to

M1S S1

P1

~2 t cosq

′M2
′S2

′P2

q

P

t 2t

Figure 12.6 Linear configuration to show fringe formation by a Michelson interferometer. A ray
from point P on the extended source S reflects at M1, and appears to come from P1 in the reflected
plane S1. The ray is reflected from M2 (shown here as M 0

2) and appears to come from P 0
2 in the

reflected plane S 0
2. The path difference at the detector between the interfering beams is effectively

2t cos � where t is the difference between the path lengths from the source S to the separate mirrors
M1 and M2
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reproduce his visibility curves. The sodium doublet with angular frequency components !
and !þ�! produced a visibility curve similar to that of Figures 1.7 and 4.4 and was easy

to interpret. More complicated visibility patterns were not easy to reproduce and the

modern method of Fourier transform spectroscopy reverses the procedure by extracting the

frequency components from the observed pattern.

Michelson did however confirm that the cadmium red line, � ¼ 0:6438 mm was highly

monochromatic. The visibility had still to reach a minimum when the path difference in his

interferometer arms was 0.2 m.

Fabry -- Perot Interferometer

The interference fringes produced by division of amplitude which we have discussed so far

have been observed as reflected light and have been produced by only two interfering

beams. We now consider fringes which are observed in transmission and which require

multiple reflections. They are fringes of constant inclination formed in a pattern of

concentric circles by the Fabry–Perot interferometer. The fringes are particularly narrow

and sharply defined so that a beam consisting of two wavelengths � and ���� forms two

patterns of rings which are easily separated for small ��. This instrument therefore has an

extremely high resolving power. The main component of the interferometer is an etalon

Figure 12.7 which consists of two plane parallel glass plates with identical highly reflecting

inner surfaces S1 and S2 which are separated by a distance d.

Suppose a monochromatic beam of unit amplitude, angular frequency ! and wavelength

(in air) of � strikes the surface S1 as shown. A fraction t of this beam is transmitted in

passing from glass to air. At S2 a further fraction t 0 is transmitted in passing from air to

glass to give an emerging beam of amplitude tt 0 ¼ T . The reflection coefficient at the air–

S1 and air–S2 surfaces is r so each subsequent emerging beam is parallel but has an

amplitude factor r 2 ¼ R with respect to its predecessor. Other reflection and transmission

losses are common to all beams and do not affect the analysis. Each emerging beam has a

phase lag � ¼ 4�d cos �=� with respect to its predecessor and these parallel beams interfere

when they are brought to focus via a lens.

The vector sum of the transmitted interfering amplitudes together with their appropriate

phases may be written

A ¼ T ei!t þ TR e ið!t��Þ þ TR2 e ið!t�2�Þ . . .

¼ T ei!t½1þ R e�i� þ R2 e�i2� . . .

which is an infinite geometric progression with the sum

A ¼ T ei!t=ð1� R e�i�Þ

This has a complex conjugate

A� ¼ T e�i!t=ð1� R ei�Þ
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If the incident unit intensity is I0 the fraction of this intensity in the transmitted beam may

be written

I t

I0
¼ AA�

I0
¼ T 2

ð1� R e�i�Þð1� R ei�Þ ¼
T 2

ð1þ R2 � 2R cos �Þ

or, with

cos � ¼ 1� 2 sin2 �=2

Glass

S1 S2

Glass

Air

I

t

d

q
q
q
q

t t ′ = T

r 2 t t ′ = RT

r 2t

r t

r 4 t t ′ = R 2T

r 6 t t ′ = R 3T

Figure 12.7 S1 and S2 are the highly reflecting inner surfaces of a Fabry--Perot etalon with a
constant air gap thickness d. Multiple reflections produce parallel interfering beams with amplitudes
T, RT, R2T , etc. each beam having a phase difference

� ¼ 4�d cos �=�

with respect to its neighbour
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as

I t

I0
¼ T 2

ð1� RÞ2 þ 4R sin2 �=2
¼ T 2

ð1� RÞ2
1

1þ ½4R sin2 �=2=ð1� RÞ2�

But the factor T 2=ð1� RÞ2 is a constant, written C so

I t

I0
¼ C � 1

1þ ½4R sin2 �=2=ð1� RÞ2�

Writing CI0 ¼ Imax, the graph of I t versus � in Figure 12.8 shows that as the reflection

coefficient of the inner surfaces is increased, the interference fringes become narrow and

more sharply defined. Values of R > 0:9 may be reached using the special techniques of

multilayer dielectric coating. In one of these techniques a glass plate is coated with

alternate layers of high and low refractive index materials so that each boundary presents a

large change of refractive index and hence a large reflection. If the optical thickness of

each layer is �=4 the emerging beams are all in phase and the reflected intensity is high.

Resolving Power of the Fabry -- Perot Interferometer

Figure 12.8 shows that a value of R ¼ 0:9 produces such narrow and sharply defined

fringes that if the incident beam has two components � and ���� the two sets of fringes

should be easily separated. The criterion for separation depends on the shape of the fringes:

R = 0.04 R = 0.04

R = 0.9

R = 0.5

R = 0.9

R = 0.5

I max

I t

> δ

Figure 12.8 Observed intensity of fringes produced by a Fabry--Perot interferometer. Transmitted
intensity I t versus �: R ¼ r 2 where r is the reflection coefficient of the inner surfaces of the etalon.
As R increases the fringes become narrower and more sharply defined
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the diffraction grating of p. 373 uses the Rayleigh criterion, but the fringes here are so

sharp that they are resolved at a much smaller separation than that required by Rayleigh.

Here the fringes of the two wavelengths may be resolved when they cross at half their

maximum intensities; that is, at I t ¼ Imax=2 in Figure 12.9.

Using the expression

I t ¼ Imax � 1

1þ 4R sin2 �=2

ð1� RÞ2

we see that I t ¼ Imax when � ¼ 0 and I t ¼ Imax=2 when the factor

4R sin2 �=2=ð1� RÞ2 ¼ 1

The fringes are so narrow that they are visible only for very small values of � so we may

replace sin �=2 by �=2 in the expression

4R sin2 �=2=ð1� RÞ2 ¼ 1

∆m

∆m

λ λ – ∆λ

m + ∆m m + 1mOrder

In
te

ns
ity

Phase

Order

Phase0

0.5

1.0

2 pδ 1
2

2δ1
2

∆m

I max

Figure 12.9 Fabry--Perot interference fringes for two wavelength � and ���� are resolved at
order m when they cross at half their maximum intensity. Moving from order m to mþ 1 changes the
phase � by 2� rad and the full ‘half-value’ width of each maximum is given by �m ¼ 2� 1=2 which is
also the separation between the maxima of � and ���� when the fringes are just resolved
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to give the value

�1=2 ¼ ð1� RÞ
R1=2

as the phase departure from the maximum, � ¼ 0, which produces the intensity I t ¼ Imax=2
for wavelength �. Our criterion for resolution means, therefore, that the maximum intensity

for ���� is removed an extra amount �1=2 along the phase axis of Figure 12.9. This axis

also shows the order of interference m at which the wavelengths are resolved, together with

the order mþ 1 which represents a phase shift of � ¼ 2� along the phase axis.

In the mth order of interference we have

2d cos � ¼ m�

and for fringes of equal inclination (� constant), logarithmic differentiation gives

�=�� ¼ �m=�m

Now �m ¼ 1 represents a phase change of � ¼ 2� and the phase difference of 2:�1=2
which just resolves the two wavelengths corresponds to a change of order

�m ¼ 2:�1=2=2�

Thus, the resolving power, defined as

�

��
¼ m

�m

��� ��� ¼ m�

�1=2
¼ m�R1=2

ð1� RÞ
The equivalent expression for the resolving power in the mth order for a diffracting

grating of N lines (interfering beams) is shown on p. 376 to be

�

��
¼ mN

so we may express

N 0 ¼ �R1=2=ð1� RÞ
as the effective number of interfering beams in the Fabry–Perot interferometer.

This quantityN 0 is called the finesse of the etalon and is a measure of its quality.We see that

N 0 ¼ 2�

2�1=2
¼ 1

�m
¼ separation between orders m and mþ 1

‘half value’ width of mth order

Thus, using one wavelength only, the ratio of the separation between successive fringes to

the narrowness of each fringe measures the quality of the etalon. A typical value of N 0 � 30.

Free Spectral Range

There is a limit to the wavelength difference �� which can be resolved with the Fabry–

Perot interferometer. This limit is reached when �� is such that the circular fringe for � in
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the mth order coincides with that for ���� in the mþ 1th order. The pattern then loses its

unique definition and this value of �� is called the free spectral range.

From the preceding section we have the expression

�

��
¼ � m

�m

and in the limit when �� represents the free spectral range then

�m ¼ 1

and

�� ¼ ��=m

But m� ¼ 2d when � ’ 0 so the free spectral range

�� ¼ ��2=2d

Typically d � 10�2 m and for � (cadmium red) ¼ 0:6438 microns we have, from 2d ¼ m�,
a value of

m � 3� 104

Now the resolving power

�

��
¼ mN 0

so, for

N 0 � 30

the resolving power can be as high as 1 part in 106.

Central Spot Scanning

Early interferometers recorded flux densities on photographic plates but the non-linear

response of such a technique made accurate resolution between two wavelengths tedious

and more difficult. This method has now been superseded by the use of photoelectronic

detectors which have the advantage of a superior and more reliable linearity. Moreover, the

response of such a device with controlled vibration of one mirror of the etalon allows the

variation of the intensity across the free spectral range to be monitored continuously.

The vibration of the mirror, originally electro-mechanical, is now most often produced

by using a piezoelectric material on which to mount one of the etalon mirrors. When a

voltage is applied to such a material it changes its length and the distance d between the

etalon mirrors can be varied. The voltage across the piezoelectric mount is tailored to

produce the desired motion.

Changing d by �=2 is equivalent to changing �m by 1, which corresponds to a scan of

the free spectral range, ��, when �=�� ¼ jm=�mj (Figure 12.9).
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One of the most common experimental arrangements is that of central spot scanning

(Figure 12.10). Where the earlier photographic technique recorded the flux density over a

wide region for a short period, central spot scanning focuses on a single point in space for a

long period over many cycles of the etalon vibration. Matching the time base of the

oscilloscope to the vibration period of the etalon produces a stationary trace on the screen

which can be measured directly in addition to being filmed for record purposes.

The Laser Cavity

The laser cavity is in effect an extended Fabry–Perot etalon. Mirrors coated with multi-

dielectric films described in the next section can produce reflection coefficients R � 0:99
and the amplified stimulated emission in the laser produces a beam which is continuously

reflected between the mirror ends of the cavity. The high value of R allows the amplitudes

of the beam in opposing directions to be taken as equal, so a standing wave system is

generated (Figure 12.11) to form a longitudinal mode in the cavity.

The superposed amplitudes after a return journey from one mirror to the other and back

are written for a wave number k and a frequency ! ¼ 2�� as

E ¼ A1ðeið!t�kxÞ � eið!tþkxÞÞ
¼ A1ðe�ikx � eikxÞ ei!t ¼ �2iA1 sin kx e

i!t

of which the real part is E ¼ 2A1 sin kx sin!t.

E = Etalon
S = Source
Sc = Screen

P = Pinhole
D = Detector

P
D

Sc

E

P
S

Sc

Figure 12.10 Fabry--Perot etalon central spot scanning. The distance between the etalon mirrors
changes when one mirror vibrates on its piezoelectric mount. The free spectral range is scanned
over many vibration cycles at a central spot and a stationary trace is obtained on the oscilloscope
screen
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If the cavity length is L, one round trip between the mirrors creates a phase change of

� ¼ �2Lk þ 2� ¼ � 4�L

c
� þ 2�

where � is the phase change on reflection at each mirror.

For this standing wave mode to be maintained, the phase change must be a multiple of

2�, so for m an integer

� ¼ m2� ¼ 4�L

c
� � 2�

or

� ¼ mc

2L
þ �c

2�L

When m changes to mþ 1, the phase change of 2� corresponds to an extra wavelength �
for the return journey; that is, an extra �=2 in the standing wave mode. A series of

longitudinal modes can therefore exist with frequency intervals �� ¼ c=2L determined by

a unit change in m.

The intensity profile for each mode and the separation �� is best seen by reference to

Figure 12.9, where � 	 � is given by the unit change in the order of interference from m to

mþ 1.

The intensity profile for each cavity mode is that of Figure 12.9, where the full width at

half maximum intensity is given by the phase change

2�1=2 ¼ 2ð1� RÞ
R1=2

where R is the reflection coefficient. This corresponds to a full width intensity change over

a frequency d� generated by the phase change

d� ¼ 4�L

c
d� in the expression for � above

M = Highly reflecting mirror

M M

Figure 12.11 A longitudinal mode in a laser cavity which behaves as an extended Fabry--Perot
etalon with highly reflecting mirrors at each end. The standing wave system acquires an extra �=2 for
unit change in the mode number m. A typical output is shown in Figure 12.12
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The width at half maximum intensity for each longitudinal mode is therefore given by

4�L

c
d� ¼ 2ð1� RÞ

R1=2

or

d� ¼ ð1� RÞc
R1=22�L

For a laser 1 m long with R ¼ 0:99, the longitudinal modes are separated by frequency

intervals

�� ¼ c

2L
¼ 1:5� 108 Hz

Each mode intensity profile has a full width at half maximum of

d� ¼ 10�2 c

2�
� 4:5� 105 Hz

For a He–Ne laser the mean frequency of the output at 632.8 nm is 4:74� 1014 Hz. The

pattern for �� and d� is shown in Figure 12.12, where the intensities are reduced under the

dotted envelope as the frequency difference from the mean is increased.

The finesse of the laser cavity is given by

��

d�
¼ 1:5� 108

4:5� 105
� 300

for the example quoted.

In
te

ns
ity

Mean frequency

>
dν
<

∆ν ν< >

Figure 12.12 Output of a laser cavity. A series of longitudinal modes separated by frequency
intervals �� ¼ c=2L, where c is the velocity of light and L is the cavity length. The modes are
centred about the mean output frequency and are modulated under the dotted envelope. For a He--Ne
laser 1 m long the separation�� between the modes � 300 full widths of a mode intensity profile at
half its maximum value
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The intensity of each longitudinal mode is of course, amplified by each passage of the

stimulated emission. Radiation allowed from out of one end represents the laser output but

the amplification process is dominant and the laser produces a continuous beam.

Multilayer Dielectric Films

We have just seen that in the mth order of interference the resolving power of a Fabry–

Perot interferometer is given by

�=�� 	 mN 0

where the finesse or number of interfering beams

N 0 ¼ �R1=2=ð1� RÞ ¼ �r=ð1� r 2Þ

and r is the reflection coefficient of the inner surfaces of the etalon.

It is evident that as r ! 1 the values of N 0 and the resolving power become much larger.

The value of r can be increased to more than 99% by using a metallic coating on the inner

surfaces of the etalon or by depositing on them a multilayer of dielectric films with

alternating high and low refractive indices. For a given monochromatic electromagnetic

wave each layer or film has an optical thickness of �=4.
The reflection coefficient r for such a wave incident on the surface of a higher refractive

index film is increased because the externally and internally reflected waves are in phase; a

phase change of � occurs only on the outer surface and is reinforced by the � phase change

of the wave reflected at the inner surface which travels an extra �=2 optical distance.

High values of r result from films of alternating high and low values of the refractive

index because reflections from successive boundaries are in phase on return to the front

surface of the first film. Those retarded an odd multiple of � by the extra optical path length

per film also have a � phase change on reflection to make a total of 2� rad.

We consider the simplest case of a monochromatic electromagnetic wave in a medium of

refractive index n1, normally incident on a single film of refractive index n 0
1, and thickness

d 0
1. This film is deposited on the surface of a material of refractive index n 0

2, which is called

a substrate (Figure 12.13). The phase lag for a single journey across the film is written �.
The boundary conditions are that the components of the E and H fields parallel to a

surface are continuous across that surface. We write these field amplitudes as Ef and

Hf ¼ nEf for the forward-going wave to the right in Figure 12.13 and Er and Hr ¼ nEr for

the reflected wave going to the left.

We see that at surface 1 the boundary conditions for the electric field E are

Ef1 þ Er1 ¼ E 0
f1 þ E 0

r1 ð12:1aÞ
and for the magnetic field

n1Ef1 � n1Er1 ¼ n 0
1E

0
f1 � n 0

1E
0
r1 ð12:1bÞ

where the negative sign for the reflected amplitude arises when the E�H direction of the

wave is reversed (see Figure 8.7).

350 Interference and Diffraction



At surface 2 in Figure 12.13, E 0
f1 arrives with a phase lag of � with respect to E 0

f1 at

surface 1 but the E 0
r1 wave at surface 2 has a phase � in advance of E 0

r1 at surface 1, so we

have the boundary conditions

E 0
f1 e

�i� þ E 0
r1 e

i� ¼ E 0
f2 ð12:1cÞ

and

n 0
1E

0
f1 e

�i� � n 0
1E

0
r1 e

i� ¼ n 0
2E

0
f2 ð12:1dÞ

We can eliminate E 0
f1 and E 0

r1 from equations (12.1a)–(12.1d) to give

1þ Er1

Ef 1

¼ cos � þ i
n 0
2

n 0
1

sin �

� �
E 0

f2

Ef1

ð12:2Þ

and

n1 � n1

Er1

Ef1

¼ ðin 0
1 sin � þ n 0

2 cos �Þ
E 0

f2

Ef1

ð12:3Þ

which we can express in matrix form

1

n1

� �
þ 1

�n1

� �
Er1

Ef1

¼ cos � i sin �=n 0
1

in 0
1 sin � cos �

� �
1

n 0
2

� �
E 0

f2

Ef1

E f 1

Film Substrate

E r 1

E ′f 1

d ′1

n ′1n 1 n ′2

E ′f 2

E ′r 1

Figure 12.13 A thin dielectric film is deposited on a substrate base. At each surface an
electromagnetic wave is normally incident, as Efi, in a medium of refractive index n i and is reflected
as E ri. A multilayer stack of such films, each of optical thickness �=4 and of alternating high and low
refractive indices can produce reflection coefficients >99%
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We write this as

1

n1

� �
þ 1

�n1

� �
r ¼ M1

1

n 0
2

� �
t

where r ¼ Er1=Ef1 is the reflection coefficient at the first surface and t ¼ E 0
f2=Ef1 is the

transmitted coefficient into medium n 0
2 (a quantity we shall not evaluate).

The 2�2 matrix

M1 ¼ cos � i sin �=n 0
1

in 0
1 sin � cos �

� �

relates r and t across the first film and is repeated with appropriate values of n0i for each
successive film. The product of these 2� 2 matrices is itself a 2� 2 matrix as with the

repetitive process we found in the optical case of p. 325.

Thus, for N films we have

1

n1

� �
þ 1

�n1

� �
R ¼ M1M2M3 � � �MN

1

n 0
Nþ1

� �
T ; ð12:4Þ

where R ¼ Er1=Ef1 as before and T ¼ E 0
f ðNþ1Þ=Ef1 the transmitted coefficient

after the final film. Note, however, that Er1 in R is now the result of reflection from all the

film surfaces and that these are in phase.

The typical matrix M3 relates r to t across the third film and the product of the matrices

M1M2M3 � � �MN ¼ M ¼ M11 M12

M21 M22

� �

is a 2�2 matrix.

Eliminating T from the two simultaneous equations (12.4) we have, in terms of the

coefficients of M

R ¼ A� B

Aþ B
ð12:5Þ

where

A ¼ n1ðM11 þM12n
0
Nþ1Þ

and

B ¼ ðM21 þM22n
0
Nþ1Þ

If we now consider a system of two films, the first of higher refractive index nH and the

second of lower refractive index nL, where each has an optical thickness d ¼ �=4, then the

phase � ¼ �=2 for each film and

M1M2 ¼ 0

inH

i=nH

0

� �
0 i=nL

inL 0

� �
¼ �nL=nH 0

0 �nH=nL

� �
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A stack of N such pairs, 2N films in all with alternating nH and nL, produces

M1M2 � � �M2N ¼ ½M1M2�N ¼
�nL

nH

� �N

0

0
�nH

nL

� �N

2
6664

3
7775

giving R the total reflection coefficient from equation (12.5) equal to

R ¼
�nL

nH

� �N

� �nH

nL

� �N

�nL

nH

� �N

þ �nH

nL

� �N

We see that as long as nH 6¼ nL, then as N ! 1, R ! 1 and this value may be used in

our derivation of the expressions for the finesse and resolving power of the Fabry–Perot

interferometer.

Multilayer stacks using zinc sulphate ðnH ¼ 2:3Þ and cryolite ðnL ¼ 1:35Þ have achieved
R values > 99.5%.

Note that all the 2�2 matrices and their products have determinants equal to unity which

states that the column vectors represent a quantity which remains invariant throughout the

matrix transformations.

(Problem 12.2)

The Thin Film Optical Wave Guide

Figure 12.14 shows a thin film of width d and refractive index n along which light of

frequency � and wave number k is guided by multiple internal reflections. The extent of the

P

θ θ

θ θ
Q

O

n ′

n d

Figure 12.14 A thin dielectric film or fibre acts as an optical wave guide. The reflection angle �
must satisfy the relation n sin �
 n 0, where n 0 is the refractive index of the coating over the film of
refractive index n. Propagating modes have standing wave systems across the film as shown and
constructive interference occurs on the standing wave axis where the amplitude is a maximum.
Destructive interference occurs at the nodes
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wave guide is infinite in the direction normal to the page. The internal reflection angle �
must satisfy

n sin �
 n 0

where n 0 is the refractive index of the medium bounding the thin film surfaces. Each

reflected ray is normal to a number of wave fronts of constant phase separated by �, where
k ¼ 2�=� and constructive interference is necessary for any mode to propagate. Reflections

may take place at any pair of points P and O along the film and we examine the condition

for constructive interference by considering the phase difference along the path POQ,

taking into account a phase difference � introduced by reflection at each of P and Q.

Now

PO ¼ cos �=d

and

OQ ¼ PO cos 2�

so with

cos 2� ¼ 2 cos2 �� 1

we have

POþ OQ ¼ 2d cos �

giving a phase difference

�� ¼ �Q � �P ¼ � 2��

c
ðn 2d cos �Þ þ 2�

Constructive interference requires

�� ¼ m 2�

where m is an integer, so we write

m 2� ¼ 2��

c
n 2d cos �� 2��m

where

�m ¼ 2�=2�

represents the phase change on reflection.

Radiation will therefore propagate only when

cos � ¼ cðmþ�mÞ
� 2nd

for m ¼ 0; 1; 2; 3.
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The condition n sin �
 n 0 restricts the values of the frequency � which can propagate. If

� ¼ �m for mode m and

cos �m ¼ ð1� sin2 �mÞ1=2

then

n sin �m 
 n 0

becomes

cos �m � 1� n 0

n

� �2
" #1=2

and � must satisfy

�
 cðmþ�mÞ
2dðn2 � n 02Þ1=2

The mode m ¼ 0 is the mode below which � will not propagate, while �m is a constant

for a given wave guide. Each mode, Figure 12.14, is represented by a standing wave system

across the wave guide normal to the direction of propagation. Constructive interference

occurs on the axis of this wave system where the amplitude is a maximum and destructive

interference is indicated by the nodes.

Division of Wavefront

Interference Between Waves from Two Slits or Sources

In Figure 12.15 let S1 and S2 be two equal sources separated by a distance f, each

generating a wave of angular frequency ! and amplitude a. At a point P sufficiently distant

from S1 and S2 only plane wavefronts arrive with displacements

y1 ¼ a sin ð!t � kx1Þ from S1

and

y2 ¼ a sin ð!t � kx2Þ from S2

so that the phase difference between the two signals at P is given by

� ¼ kðx2 � x1Þ ¼ 2�

�
ðx2 � x1Þ

This phase difference �, which arises from the path difference x2 � x1, depends only on x1,

x2 and the wavelength � and not on any variation in the source behaviour. This requires that

there shall be no sudden changes of phase in the signal generated at either source – such

sources are called coherent.
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The superposition of displacements at P gives a resultant

R ¼ y1 þ y2 ¼ a½sin ð!t � kx1Þ þ sin ð!t � kx2Þ�

Writing X 	 ðx1 þ x2Þ=2 as the average distance from the two sources to point P we

obtain

kx1 ¼ kX � �=2 and kx2 ¼ kX þ �=2

to give

R ¼ a½sin ð!t � kX þ �=2Þ þ sin ð!t � kX � �=2Þ�
¼ 2a sin ð!t � kXÞ cos �=2

and an intensity

I ¼ R2 ¼ 4a2 sin2 ð!t � kXÞ cos2 �=2

S1

X2 – X1 = 0

X 1 X 2

S2
f

(X2 – X1) = Constantδ = 2 p
λ

(X2 – X1)δ = 2 p
λ

 = Constant
P

Figure 12.15 Interference at P between waves from equal sources S1 and S2, separation f, depends
only on the path difference x 2 � x1. Loci of points with constant phase difference � ¼ ð2�=�Þ
ðx 2 � x1Þ are the family of hyperbolas with S1 and S2 as foci
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When

cos
�

2
¼ �1

the spatial intensity is a maximum,

I ¼ 4a2

and the component displacements reinforce each other to give constructive interference.

This occurs when

�

2
¼ �

�
ðx2 � x1Þ ¼ n�

that is, when the path difference

x2 � x1 ¼ n�

When

cos
�

2
¼ 0

the intensity is zero and the components cancel to give destructive interference. This

requires that

�

2
¼ ð2nþ 1Þ�

2
¼ �

�
ðx2 � x1Þ

or, the path difference

x2 � x1 ¼ ðnþ 1
2
Þ�

The loci or sets of points for which x2 � x1 (or �) is constant are shown in Figure 12.15 to

form hyperbolas about the foci S1 and S2 (in three dimensions the loci would be the

hyperbolic surfaces of revolution).

Interference from Two Equal Sources of Separation f

Separation f  �. Young’s Slit Experiment

One of the best known methods for producing optical interference effects is the Young’s slit

experiment. Here the two coherent sources, Figure 12.16, are two identical slits S1 and S2

illuminated by a monochromatic wave system from a single source equidistant from S1 and

S2. The observation point P lies on a screen which is set at a distance l from the plane of

the slits.

The intensity at P is given by

I ¼ R2 ¼ 4a2 cos2
�

2

Interference from Two Equal Sources of Separation f 357



and the distances PP0 ¼ z and slit separation f are both very much less than l (experi-

mentally � 10�3 lÞ: This is indicated by the break in the lines x1 and x2 in Figure 12.16

where S1P and S2P may be considered as sufficiently parallel for the path difference to be

written as

x2 � x1 ¼ f sin � ¼ f
z

l

to a very close approximation.

Thus

� ¼ 2�

�
ðx2 � x1Þ ¼ 2�

�
f sin � ¼ 2�

�
f
z

l

If

I ¼ 4a2 cos2
�

2

then

I ¼ I0 ¼ 4a2 when cos
�

2
¼ 1

that is, when the path difference

f
z

l
¼ 0; ��; �2�; . . .� n�

to P

to P

to P

P

S1

f

S2

X 1

q

q

X 1

X 2

Z 0 P0

X 2

l

f sin q ≈ f z
l

Z

Figure 12.16 Waves from equal sources S1 and S2 interfere at P with phase difference � ¼ ð2�=�Þ
ðx 2 � x1Þ ¼ ð2�=�Þ f sin � � ð2�=�Þ f ðz=lÞ. The distance l  z and f so S1P and S2P are effectively
parallel. Interference fringes of intensity I ¼ I 0 cos

2 �=2 are formed in the plane PP0
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and

I ¼ 0 when cos
�

2
¼ 0

that is, when

f
z

l
¼ ��

2
; � 3�

2
; �ðnþ 1

2
Þ�

Taking the point P0 as z ¼ 0, the variation of intensity with z on the screen P0P will be

that of Figure 12.16, a series of alternating straight bright and dark fringes parallel to the

slit directions, the bright fringes having I ¼ 4a2 whenever z ¼ n�l=f and the dark fringes

I ¼ 0, occurring when z ¼ ðnþ 1
2
Þ�l=f , n being called the order of interference of the

fringes. The zero order n ¼ 0 at the point P0 is the central bright fringe. The distance on the

screen between two bright fringes of orders n and nþ 1 is given by

znþ1 � zn ¼ ½ðnþ 1Þ � n��l
f
¼ �l

f

which is also the physical separation between two consecutive dark fringes. The spacing

between the fringes is therefore constant and independent of n, and a measurement of the

spacing, l and f determines �.
The intensity distribution curve (Figure 12.17) shows that when the two wave trains

arrive at P exactly out of phase they interfere destructively and the resulting intensity or

energy flux is zero. Energy conservation requires that the energy must be redistributed, and

that lost at zero intensity is found in the intensity peaks. The average value of cos2 �=2 is 1
2
,

and the dotted line at I ¼ 2a2 is the average intensity value over the interference system

which is equal to the sum of the separate intensities from each slit.

There are two important points to remember about the intensity interference fringes

when discussing diffraction phenomena; these are

� The intensity varies with cos2 �=2.

� The maxima occur for path differences of zero or integral numbers of the wavelength,

whilst the minima represent path differences of odd numbers of the half-wavelength.

4a 22a 2

δ–5π –3π –π 0 5π3ππ

Figure 12.17 Intensity of interference fringes is proportional to cos2 �=2, where � is the phase
difference between the interfering waves. The energy which is lost in destructive interference
(minima) is redistributed into regions of constructive interference (maxima)
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Spatial Coherence In the preceding section nothing has been said about the size of the

source producing the plane wave which falls on S1 and S2. If this source is an ideal point

source A equidistant from S1 and S2, Figure 12.18, then a single set of cos2 fringes is

produced. But every source has a finite size, given by AB in Figure 12.18, and each point

on the line source AB produces its own set of interference fringes in the plane PP0; the eye

observing the sum of their intensities.

If the solid curve A 0C0 is the intensity distribution for the point A of the source and the

broken curves up to B 0 represent the corresponding fringes for points along AB the

resulting intensity curve is DE. Unless A 0B 0 extends to C the variations of DE will be seen

as faint interference bands. These intensity variations were quantified by Michelson, who

defined the

Visibility ¼ Imax � Imin

Imax þ Imin

A
d

f

B

d >> f

S1

P0

P

A′

B′

C′

C

D

E
S2

gg
cos

2

intensity

R
esultant

intensity

I maxI min

Figure 12.18 The point source A produces the cos2 interference fringes represented by the solid
curve A 0C0. Other points on the line source AB produce cos2 fringes (the displaced broken curves B 0)
and the observed total intensity is the curve DE. When the points on AB extend A 0B 0 to C the fringes
disappear and the field is uniformly illuminated
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The cos2 fringes from a point source obviously have a visibility of unity because the

minimum intensity Imin ¼ 0.

When A 0B 0 of Figure 12.18 ¼ A 0C, the point source fringe separation (or a multiple of

it) the field is uniformly illuminated, fringe visibility ¼ 0 and the fringes disappear.

This occurs when the path difference

AS2 � BS1 � AB sin � ¼ �=2 where AS2 ¼ AS1:

Thus, the requirement for fringes of good visibility imposes a limit on the finite size of the

source. Light from points on the source must be spatially coherent in the sense that

AB sin � � �=2 in Figure 12.18.

But for f � d,

sin � � f=2d

so the coherence condition becomes

sin � ¼ f=2d � �=2AB

or

AB=d � �=f

where AB/d measures the angle subtended by the source at the plane S1S2.

Spatial coherence therefore requires that the angle subtended by the source

� �=f

where f is the linear size of the diffracting system. (Note also that �=f measures �ð� z=lÞ
the angular separation of the fringes in Figure 12.16.)

As an example of spatial coherence we may consider the production of Young’s

interference fringes using the sun as a source.

The sun subtends an angle of 0.018 rad at the earth and if we accept the approximation

AB

d
� �

f
� �

4 f

with � ¼ 0:5 mm ,

we have

f � 0:5

4ð0:018Þ � 14mm

This small value of slit separation is required to meet the spatial coherence condition.

Separation f � �ðk f � 1 where k ¼ 2�=�Þ
If there is a zero phase difference between the signals leaving the sources S1 and S2 of

Figure 12.16 then the intensity at some distant point P may be written

I ¼ 4a2 cos2
�

2
¼ 4I s cos

2 k f sin �

2
� 4I s;
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where the path difference S2P� S1P ¼ f sin � and I s ¼ a2 is the intensity from each

source.

We note that, since f � �ðk f � 1Þ, the intensity has a very small � dependence and the

two sources may be effectively replaced by a single source of amplitude 2a.

Dipole Radiation ð f � �Þ
Suppose, however, that the signals leaving the sources S1 and S2 are anti-phase so that their

total phase difference at some distant point P is

� ¼ ð�0 þ k f sin �Þ
where �0 ¼ � is the phase difference introduced at source.

The intensity at P is given by

I ¼ 4 I s cos
2 �

2
¼ 4 Is cos

2 �

2
þ k f sin �

2

� �

¼ 4 I s sin
2 k f sin �

2

� �
� I sðk f sin �Þ2

because

k f � 1

Two anti-phase sources of this kind constitute a dipole whose radiation intensity I � I s
the radiation from a single source, when k f � 1. The efficiency of radiation is seen to

depend on the product kf and, for a fixed separation f the dipole is a less efficient radiator at

low frequencies (small k) than at higher frequencies. Figure 12.19 shows the radiation

intensity I plotted against the polar angle � and we see that for the dipole axis along the

direction � ¼ �=2, completely destructive interference occurs only on the perpendicular

axis � ¼ 0 and � ¼ �. There is no direction (value of �) giving completely constructive

interference. The highest value of the radiated intensity occurs along the axis � ¼ �=2 and

� ¼ 3�=2 but even this is only

I ¼ ðk f Þ2I s;
where

k f � 1

The directional properties of a radiating dipole are incorporated in the design of

transmitting aerials. In acoustics a loudspeaker may be considered as a multi dipole source,

the face of the loudspeaker generating compression waves whilst its rear propagates

rarefactions. Acoustic reflections from surrounding walls give rise to undesirable

interference effects which are avoided by enclosing the speaker in a cabinet. Bass reflex

or phase inverter cabinets incorporate a vent on the same side as the speaker face at an

acoustic distance of half a wavelength from the rear of the speaker. The vent thus acts as a

second source in phase with the speaker face and radiation is improved.
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(Problems 12.3, 12.4, 12.5)

Interference from Linear Array of N Equal Sources

Figure 12.20 shows a linear array of N equal sources with constant separation f generating

signals which are all in phase ð�0 ¼ 0Þ. At a distant point P in a direction � from the

sources the phase difference between the signals from two successive sources is given by

� ¼ 2�

�
f sin �

and the resultant at P is found by superposing the equal contribution from each source with

the constant phase difference � between successive contributions.

But we found from Figure 1.11 that the resultant of such a superposition was given by

R ¼ a
sin ðN�=2Þ
sin ð�=2Þ

I max = I s (k f )2

I = I s (k f sin q )2

q

f << λ

kf << 1

q = p
2

q = p q = 0

dipole
axis

Figure 12.19 Intensity I versus direction � for interference pattern between waves from two equal
sources, � rad out of phase (dipole) with separation f � �. The dipole axis is along the direction
� ¼ ��=2
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where a is the signal amplitude at each source, so the intensity may be written

I ¼ R2 ¼ a2 sin
2 ðN�=2Þ

sin2 ð�=2Þ ¼ I s
sin2 ðN�f sin �=�Þ
sin2 ð�f sin �=�Þ

¼ I s
sin2 N	

sin2 	

where I s is the intensity from each source and 	 ¼ �f sin �=�.
If we take the case of N ¼ 2, then

I ¼ I s
sin2 2	

sin2 	
¼ 4I s cos

2 	 ¼ 4I s cos
2 �

2

which gives us the Young’s Slit Interference pattern.

We can follow the intensity pattern for N sources by considering the behaviour of the

term sin2 N	=sin2 	.

Nf sin q
sin q

Nf

f

q

q

f

f

f

Figure 12.20 Linear array of N equal sources separation f radiating in a direction � to a distant
point P. The resulting amplitude at P (see Figure 1.11) is given by

R ¼ a½sin Nð�=2Þ=sin ð�=2Þ�
where a is the amplitude from each source and

� ¼ ð2�=�Þ f sin �
is the common phase difference between successive sources
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We see that when

	 ¼ �

�
sin � ¼ 0� �� 2�; etc:

i.e. when

f sin � ¼ 0; ��; �2� . . .� n�

constructive interference of the order n takes place, and

sin2 N	

sin2 	
! N 2	 2

	 2
! N 2

giving

I ¼ N 2I s

that is, a very strong intensity at the Principal Maximum condition of

f sin � ¼ n�

We can display the behaviour of the sin2 N	=sin2 	 term as follows

Numerator sin2 N	 is zero for N	 ! 0� . . .N� . . . 2N�

# # #
Denominator sin2 	 is zero for 	 ! 0 . . . � . . . 2�

The coincidence of zeros for both numerator and denominator determine the Principal

Maxima with the factor N 2 in the intensity, i.e. whenever f sin � ¼ n�.
Between these principal maxima are N � 1 points of zero intensity which occur

whenever the numerator sin2 N	 ¼ 0 but where sin2 	 remains finite.

These occur when

f sin � ¼ �

N
;

2�

N
. . . ðn� 1Þ �

N

The N � 2 subsidiary maxima which occur between the principal maxima have much

lower intensities because none of them contains the factor N 2. Figure 12.21 shows the

intensity curves for N ¼ 2; 4; 8 and N ! 1.

Two scales are given on the horizontal axis. One shows how the maxima occur at the

order of interference n ¼ f sin �=�. The other, using units of sin � as the ordinate displays

two features. It shows that the separation between the principal maxima in units of sin � is
�=f and that the width of half the base of the principal maxima in these units is �=N f (the

same value as the width of the base of subsidiary maxima). As N increases not only does

the principal intensity increase as N 2 but the width of the principal maximum becomes

very small.

As N becomes very large, the interference pattern becomes highly directional, very

sharply defined peaks of high intensity occurring whenever sin � changes by �=f .
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The directional properties of such a linear array are widely used in both transmitting and

receiving aerials and the polar plot for N ¼ 4 (Figure 12.22) displays these features. For N

large, such an array, used as a receiver, forms the basis of a radio telescope where the

receivers (sources) are set at a constant (but adjustable) separation f and tuned to receive a

fixed wavelength. Each receiver takes the form of a parabolic reflector, the axes of which

are kept parallel as the reflectors are oriented in different directions. The angular separation

between the directions of incidence for which the received signal is a maximum is given by

sin � ¼ �=f :

(Problems 12.6, 12.7)

Diffraction

Diffraction is classified as Fraunhofer or Fresnel. In Fraunhofer diffraction the pattern is

formed at such a distance from the diffracting system that the waves generating the pattern

may be considered as plane. A Fresnel diffraction pattern is formed so close to the

diffracting system that the waves generating the pattern still retain their curved

characteristics.
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Figure 12.21 Intensity of interference patterns from linear arrays of N equal sources of separation
f. The horizontal axis in units of f sin �=� gives the spectral order n of interference. The axis in units
of sin � shows that the separation between principal maxima is given by sin � ¼ �=f and the half-
width of the principal maximum is given by sin � ¼ �=Nf
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Fraunhofer Diffraction

The single narrow slit. Earlier in this chapter it was stated that the difference between

interference and diffraction is merely one of scale and not of physical behaviour.

Suppose we contract the scale of the N equal sources separation f of Figure 12.20 until

the separation between the first and the last source, originally Nf, becomes equal to a

distance d where d is now assumed to be the width of a narrow slit on which falls a

monochromatic wavefront of wavelength � where d � �. Each of the large number N equal

sources may now be considered as the origin of secondary wavelets generated across the

plane of the slit on the basis of Huygens’ Principle to form a system of waves diffracted in

all directions.

When these diffracted waves are focused on a screen as shown in Figure 12.23 the

intensity distribution of the diffracted waves may be found in terms of the aperture of the

slit, the wavelength � and the angle of diffraction �. In Figure 12.23 a plane light wave falls
normally on the slit aperture of width d and the waves diffracted at an angle � are brought

to focus at a point P on the screen PP0. The point P is sufficiently distant from the slit for all

wavefronts reaching it to be plane and we limit our discussion to Fraunhofer Diffraction.

Finding the amplitude of the light at P is the simple problem of superposing all the small

contributions from the N equals sources in the plane of the slit, taking into account the

phase differences which arise from the variation in path length from P to these different

sources. We have already solved this problem several times. In Chapter 10 we took it as an

example of the Fourier transform method but here we reapply the result already used in this

chapter on p. 364, namely that the intensity at P is given by

I ¼ I s
sin2 N	

sin2 	
where N	 ¼ �

�
N f sin �

is half the phase difference between the contributions from the first and last sources. But

now N f ¼ d the slit width, and if we replace 	 by � where � ¼ ð�=�Þ d sin � is now half

Sources

f

q = p
2

λ
2

q = p
6

q = p
6

q = p q = 0

Figure 12.22 Polar plot of the intensity of the interference pattern from a linear array of four
sources with common separation f ¼ �=2. Note that the half-width of the principal maximum is
� ¼ �=6 satisfying the relation sin � ¼ �=Nf and that the separation between principal maxima
satisfies the relation that the change in sin � ¼ �=f
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the phase difference between the contributions from the opposite edges of the slit, the

intensity of the diffracted light at P is given by

I ¼ I s ¼ sin2 ð�=�Þd sin �
sin2 ð�=�NÞd sin � ¼ I s

sin2 �

sin2 ð�=NÞ

For N large

sin2 �

N
! �

N

� �2

and we have

I ¼ N 2I s
sin2 �

�2
¼ I0

sin2 �

�2

(recall that in the Fourier Transform derivation on p. 289,

I0 ¼ d 2h2

4�2

where h was the amplitude from each source).

Plotting I ¼ I0ðsin2 �=�2Þ with � ¼ ð�=�Þd sin � in Figure 12.24 we see that its pattern

is symmetrical about the value

� ¼ � ¼ 0

where I ¼ I0 because sin�=� ! 1 as � ! 0. The intensity I ¼ 0 whenever sin� ¼ 0 that

is, whenever � is a multiple of � or

� ¼ �

�
d sin � ¼ �� � 2� � 3�; etc:

Source of
monochromatic
light

Condenser
lens

Slit of
width d

Focusing
lens

Plane of
diffraction
pattern

d sin q

qd
P

P0

Figure 12.23 A monochromatic wave normally incident on a narrow slit of width d is diffracted
through an angle � and the light in this direction is focused at a point P. The amplitude at P is the
superposition of all the secondary waves in the plane of the slit with their appropriate phases. The
extreme phase difference from contributing waves at opposite edges of the slit is � ¼
2�d sin �=� ¼ 2�
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giving

d sin � ¼ �� � 2� � 3�; etc:

This condition for diffraction minima is the same as that for interference maxima

between two slits of separation d, and this is important when we consider the problem of

light transmission through more than one slit.

The intensity distribution maxima occur whenever the factor sin2 �=�2 has a maximum;

that is, when

d

d�

sin�

�

� �2

¼ d

d�

sin�

�

� �
¼ 0

or

cos�

�
� sin�

�2
¼ 0

This occurs whenever � ¼ tan�, and Figure 12.25 shows that the roots of this equation

are closely approximated by � ¼ �3�=2;�5�=2, etc. (see problem at end of chapter on

exact values).

Table 12.1 shows the relative intensities of the subsidiary maxima with respect to the

principal maximum I0.

The rapid decrease in intensity as we move from the centre of the pattern explains why

only the first two or three subsidiary maxima are normally visible.

Scale of the Intensity Distribution

The width of the principal maximum is governed by the condition d sin � ¼ ��. A constant

wavelength � means that a decrease in the slit width d will increase the value of sin � and

will widen the principal maximum and the separation between subsidiary maxima. The

narrower the slit the wider the diffraction pattern; that is, in terms of a Fourier transform the

narrower the pulse in x-space the greater the region in k- or wave number space required to

represent it.

λ 2λ

–2π –π 0 2ππ

I 0

I 0

sin2a
a 

2

d sin q

λ
p d sin qα =

α

Figure 12.24 Diffraction pattern from a single narrow slit of width d has an intensity I ¼
I0 sin

2 �=�2 where � ¼ � d sin �=�
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(Problems 12.8, 12.9)

Intensity Distribution for Interference with Diffraction
from N Identical Slits

The extension of the analysis from the example of one slit to that of N equal slits of width d

and common spacing f, Figure 12.26, is very simple.

3π
2

0
0 π

2

tan a

tan a

y

y = a

Figure 12.25 Position of principal and subsidiary maxima of single slit diffraction pattern is given
by the intersections of y ¼ � and y ¼ tan�

Table 12.1

�
sin2 �

� 2

I0 sin
2 �

� 2

0 1 I0

3�

2

4

9�2

I0

22:2

5�

2

4

25� 2

I0

61:7

7�

2

4

49� 2

I0

121
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To obtain the expression for the intensity at a point P of diffracted light from a single

slit we considered the contributions from the multiple equal sources across the plane of the

slit.

We obtained the result

I ¼ I0
sin2 �

�2

by contracting the original linear array of N sources of spacing f on p. 364. If we expand the

system again to recover the linear array, where each source is now a slit giving us the

diffraction contribution

I s ¼ I0
sin2 �

�2

we need only insert this value at I s in the original expression for the interference intensity,

I ¼ I s
sin2 N	

sin2	
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P
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lens
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Figure 12.26 Intensity distribution for diffraction by N equal slits is

I ¼ I0
sin2 �

� 2

sin2 N	

sin2 	

the product of the diffraction intensity for one slit, I 0sin
2 �=�2 and the interference intensity

between N sources sin2 N	=sin2 	, where � ¼ ð�=�Þd sin � and 	 ¼ ð�=�Þ f sin �
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on p. 364 where

	 ¼ �

�
f sin �

to obtain, for the intensity at P in Figure 12.26, the value

I ¼ I0
sin2 �

�2

sin2 N	

sin2	
;

where

� ¼ �

�
d sin �

Note that this expression combines the diffraction term sin2 �=�2 for each slit (source) and

the interference term sin2 N	=sin2 	 from N sources (which confirms what we expected

from the opening paragraphs on interference). The diffraction pattern for any number of

slits will always have an envelope

sin2 �

�2
ðsingle slit diffractionÞ

modifying the intensity of the multiple slit (source) interference pattern

sin2 N	

sin2 	

Fraunhofer Diffraction for Two Equal Slits ðN ¼ 2Þ
When N ¼ 2 the factor

sin2 N	

sin2 	
¼ 4 cos2 	

so that the intensity

I ¼ 4I0
sin2 �

�2
cos2 	

the factor 4 arising from N 2 whilst the cos2 	 term is familiar from the double source

interference discussion. The intensity distribution forN ¼ 2, f ¼ 2d, is shown in Figure 12.27.

The intensity is zero at the diffraction minima when d sin � ¼ n�. It is also zero at the

interference minima when f sin � ¼ ðnþ 1
2
Þ�.

At some value of � an interference maximum occurs for f sin � ¼ n� at the same position

as a diffraction minimum occurs for d sin � ¼ m�.
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In this case the diffraction minimum suppresses the interference maximum and the order

n of interference is called a missing order.

The value of n depends upon the ratio of the slit spacing to the slit width for

n�

m�
¼ f sin �

d sin �

i.e.

n

m
¼ f

d
¼ 	

�

Thus, if

f

d
¼ 2

the missing orders will be n ¼ 2; 4; 6; 8, etc. for m ¼ 1; 2; 3; 4, etc.
The ratio

f

d
¼ 	

�

governs the scale of the diffraction pattern since this determines the number of interference

fringes between diffraction minima and the scale of the diffraction envelope is governed by�.

(Problem 12.10)

Transmission Diffraction Grating (N Large)

A large number N of equivalent slits forms a transmission diffraction grating where the

common separation f between successive slits is called the grating space.

missing order

f = 2d

0 1 2 3 4 n

2λλ d sinθ

Figure 12.27 Diffraction pattern for two equal slits, showing interference fringes modified by the
envelope of a single slit diffraction pattern. Whenever diffraction minima coincide with interference
maxima a fringe is suppressed to give a ‘missing order’ of interference

Transmission Diffraction Grating (N Large) 373



Again, in the expression for the intensity

I ¼ I0
sin2 �

�2

sin2 N	

sin2	

the pattern lies under the single slit diffraction term (Figure 12.28).

sin2 �

�2

The principal interference maxima occur at

f sin � ¼ n�

having the factor N 2 in their intensity and these are observed as spectral lines of order n.

We see, however, that the intensities of the spectral lines of a given wavelength decrease

with increasing spectral order because of the modifying sin2 �=�2 envelope.

Resolving Power of Diffraction Grating

The importance of the diffraction grating as an optical instrument lies in its ability to

resolve the spectral lines of two wavelengths which are too close to be separated by the

naked eye. If these two wavelengths are � and �þ d� where d�=� is very small the

Resolving Power for any optical instrument is given by the ratio �=d�.

single slit
diffraction envelope

n = spectral order

The intensity of each
spectral line contains
the factor N 

2

n = 0 n = 1 n = 2 n = 3

N - 2 subsidiary maxima

Figure 12.28 Spectral line of a given wavelength produced by a diffraction grating loses
intensity with increasing order n as it is modified by the single slit diffraction envelope. At
the principal maxima each spectral line has an intensity factor N 2 where N is the number of lines in
the grating

374 Interference and Diffraction



Two such lines are just resolved, according to Rayleigh’s Criterion, when the maximum

of one falls upon the first minimum of the other. If the lines are closer than this their

separate intensities cannot be distinguished.

If we recall that the spectral lines are the principal maxima of the interference pattern

from many slits we may display Rayleigh’s Criterion in Figure 12.29 where the nth order

spectral lines of the two wavelengths are plotted on an axis measured in units of sin �. We

have already seen in Figure 12.21 that the half width of the spectral lines (principal

maxima) measured in such units is given by �=Nf where N is now the number of

grating lines (slits) and f is the grating space. In Figure 12.29 the nth order of wavelength �
occurs when

f sin � ¼ n�

n th order spectral
line for λ + dλ

n th order spectral
line for λ

f (sin   + ∆sin   ) = n (λ + dλ)θ θ

∆(sin  ) = λ /Nfθ

f sin   = n λ θ

 sin   θ

Figure 12.29 Rayleigh’s criterion states that the two wavelengths � and �þ d� are just resolved
in the nth spectral order when the maximum of one line falls upon the first minimum of the other as
shown. This separation, in units of sin �, is given by �=Nf where N is the number of diffraction lines
in the grating and f is the grating space. This leads to the result that the resolving power of the
grating �=d� ¼ nN
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whilst the nth order for �þ d� satisfies the condition

f ½sin �þ�ðsin �Þ� ¼ nð�þ d�Þ
so that

f�ðsin �Þ ¼ n d�

Rayleigh’s Criterion requires that the fractional change

�ðsin �Þ ¼ �

Nf

so that

f�ðsin �Þ ¼ n d� ¼ �

N

Hence the Resolving Power of the diffraction grating in the nth order is given by

�

d�
¼ Nn

Note that the Resolving Power increases with the number of grating lines N and the

spectral order n. A limitation is placed on the useful range of n by the decrease of intensity

with increasing n due to the modifying diffraction envelope

sin2 �

�2
ðFig: 12:28Þ

Resolving Power in Terms of the Bandwidth Theorem

A spectral line in the nth order is formed when f sin � ¼ n� where f sin � is the path

difference between light coming from two successive slits in the grating. The extreme path

difference between light coming from opposite ends of the grating of N lines is therefore

given by

Nf sin � ¼ Nn�

and the time difference between signals travelling these extreme paths is

�t ¼ Nn�

c

where c is the velocity of light.

The light frequency � ¼ c=� has a resolvable differential change

j��j ¼ c
j��j
�2

¼ c

Nn�

because ��=� ¼ 1=Nn (from the inverse of the Resolving Power).
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Hence

�� ¼ c

Nn�
¼ 1

�t

or ���t ¼ 1 (the Bandwidth Theorem).

Thus, the frequency difference which can be resolved is the inverse of the time difference

between signals following the extreme paths

ð���t ¼ 1 is equivalent of course to �!�t ¼ 2�Þ

If we now write the extreme path difference as

Nn� ¼ �x

we have, from the inverse of the Resolving Power, that

��

�
¼ 1

Nn

so

j��j
�2

¼ �
1

�

� �
¼ �k

2�
¼ 1

Nn�
¼ 1

�x

where the wave number k ¼ 2�=�.
Hence we also have

�x�k ¼ 2�

where �k is a measure of the resolvable wavelength difference expressed in terms of the

difference �x between the extreme paths.

On pp. 70 and 71 we discussed the quality factor Q of an oscillatory system. Note that

the resolving power may be considered as the Q of an instrument such as the diffraction

grating or a Fabry–Perot cavity for

�

��
¼ �

��

��� ��� ¼ !

�!
¼ Q

(Problems 12.11, 12.12, 12.13, 12.14)

Fraunhofer Diffraction from a Rectangular Aperture

The value of the Fourier transform method of Chapter 10 becomes apparent when we

consider plane wave diffraction from an aperture which is finite in two dimensions.

Although Chapter 10 carried through the transform analysis for the case of only one

variable it is equally applicable to functions of more than one variable.

In two dimensions, the function f ðxÞ becomes the function f ðx; yÞ, giving a transform

Fðkx; kyÞ where the subscripts give the directions with which the wave numbers are

associated.
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In Figure 12.30 a plane wavefront is diffracted as it passes through the rectangular

aperture of dimensions d in the x-direction and b in the y-direction. The vector k, which is

normal to the diffracted wavefront, has direction cosines l and m with respect to the x- and

y-axes respectively. This wavefront is brought to a focus at point P, and the amplitude at P

is the superposition of the contributions from all points ðx; yÞ in the aperture with their

appropriate phases.

A typical point ðx; yÞ in the aperture may be denoted by the vector r; the difference in

phase between the contribution from this point and the central point O of the aperture is, of

course, ð2�=�Þ (path difference). But the path difference is merely the projection of the

vector r upon the vector k, and the phase difference is k � r ¼ ð2�=�Þðlxþ myÞ, where
lxþ my is the projection of r on k.
If we write

2�l

�
¼ kx and

2�m

�
¼ ky

we have the Fourier transform in two dimensions

Fðkx; kyÞ ¼ 1

ð2�Þ2
ð1

�1

ð1

�1
f ðx; yÞ e�iðk xxþk yyÞ dx dy

where f ðx; yÞ is the amplitude of the small contributions from the points in the aperture.

Taking f ðx; yÞ equal to a constant a, we have Fðkx; kyÞ the amplitude in k-space at P

¼ a

ð2�Þ2
ðþd=2

�d=2

ðþb=2

�b=2

e�ik xx e�ik yy dx dy

¼ a

4�2
bd

sin�

�

sin	

	

y

b

d

r

xy

lx +my

x
k

P

0

Plane wavefront
normally incident
on rectangular
aperture

Plane of
focusing
lens

Plane of
diffraction
image

Light diffracted
in direction k
focuses at P

Figure 12.30 Plane waves of monochromatic light incident normally on a rectangular aperture are
diffracted in a direction k. All light in this direction is brought to focus at P in the image plane. The
amplitude at P is the superposition of contributions from all the typical points, x, y in the aperture
plane with their appropriate phase relationships
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where

� ¼ �ld

�
¼ kxd

2

and

	 ¼ �mb

�
¼ kyb

2

Physically the integration with respect to y evaluates the contribution of a strip of the

aperture along the y direction, and integrating with respect to x then adds the contributions

of all these strips with their appropriate phase relationships.

The intensity distribution of the rectangular aperture is given by

I ¼ I0
sin2 �

�2

sin2 	

	 2

and relative intensities of the subsidiary maxima depend upon the product of the two

diffraction terms sin2 �=�2 and sin2 	=	 2.

These relative values will therefore be numerically equal to the product of any two terms

of the series

4

9�2
;

4

25�2
;

4

49�2
; etc:

The diffraction pattern from such an aperture together with a plan showing the relative

intensities is given in Figure 12.31.

Fraunhofer Diffraction from a Circular Aperture

Diffraction through a circular aperture presents another two-dimensional problem to which

the Fourier transform technique may be applied.

As in the case of the rectangular aperture, the diffracted plane wave propagates in a

direction k with direction cosines l and m with respect to the x- and y-axes (Figure 12.32a).

The circular aperture has a radius r0 and any point in it is specified by polar coordinates

ðr; �Þ where x ¼ r cos � and y ¼ r sin �. This plane wavefront in direction k is focused at a

point P in the plane of the diffraction pattern and the amplitude at P is the superposition of

the contributions from all points ðr; �Þ in the aperture with their appropriate phase

relationships. The phase difference between the contribution from a point defined ðx; yÞ and
that from the central point of the aperture is

2�

�
(path difference) ¼ 2�

�
ðlxþ myÞ ¼ kxxþ kyy ð12:6Þ

as with the rectangular aperture, so that the Fourier transform becomes

FðkxkyÞ ¼ 1

ð2�Þ2
ð1

�1

ð1

�1
f ðx; yÞ e�iðk yxþk yyÞ dx dy ð12:7Þ
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If we use polar coordinates, f ðx; yÞ becomes f ðr; �Þ and dx dy becomes r dr d�, where the

limits of � are from 0 to 2�. Moreover, because of the circular symmetry we may simplify

the problem. The amplitude or intensity distribution along any radius of the diffraction

pattern is sufficient to define the whole of the pattern, and we may choose this single radial

direction conveniently by restricting k to lie wholly in the xz plane (Figure 12.32b) so that

m ¼ ky ¼ 0 and the phase difference is simply

2�

�
lx ¼ kxx ¼ kxr cos �

Assuming that f ðr; �Þ is a constant amplitude a at all points in the circular aperture, the

transform becomes

FðkxÞ ¼ a

2�

ð 2�

0

d�

ð r0

0

e�ik xr cos �r dr ð12:8Þ

This can be integrated by parts with respect to r and then term by term in a power series

for cos �, but the result is well known and conveniently expressed in terms of a Bessel

function as

FðkxÞ ¼ ar0

kx
J1ðkxr0Þ

where J1ðkxr0Þ is called a Bessel function of the first order.
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Figure 12.31 The distribution of intensity in the diffraction pattern from a rectangular aperture is
seen as the product of two single-slit diffraction patterns, a wide diffraction pattern from the narrow
dimension of the slit and a narrow diffraction pattern from the wide dimension of the slit. This
‘rotates’ the diffraction pattern through 90� with respect to the aperture
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Bessel functions are series expansions which are analogous to sine and cosine functions.

Where sines and cosines are those functions which satisfy rectangular boundary conditions

defined in Cartesian coordinates, Bessel functions satisfy circular or cylindrical boundary

conditions requiring polar coordinates.

Standing waves on a circular membrane, e.g. a drum, would require definition in terms of

Bessel functions.

The Bessel function of order n is written

JnðxÞ ¼ xn

2nn!
1� x2

2 � 2nþ 2
þ x4

2 � 4 � 2nþ 2 � 2nþ 4
. . .

� �

so that

J1ðxÞ ¼ x

2
� x3

224
þ x5

22426
� x7

2242628

The expression a2r 20 ½J1ðkxr0Þ=kxr0�2, which measures the intensity along any radius of the

diffraction pattern due to a circular aperture is normalized and plotted in Figure 12.33.

Plane of
diffraction
image

Plane of
diffraction image

Light diffracted
in direction k
focusing at P

Light diffracted
in direction k
focusing at P

P
k

k
P

r

r

r0 lx +my

x
x

yy
y

x

x

y

y

y

z z

x

z

Plane of
focusing
lens

(a)

(b)

θ
x = r cosθ
y = r sinθ

x = r cosθ
y = r sinθ

θ

lx

Plane of 
focusing lens

k in
xz - plane

r0

Figure 12.32 (a) A plane monochromatic wave diffracted in a direction k from a circular aperture is
focused at a point P in the image plane. Contributions from all points x, y in the aperture superpose
at P with appropriate phase relationships. (b) The direction k of (a) is chosen to lie wholly in the xz-
plane to simplify the analysis. No generality is lost because of circular symmetry. The variation of the
amplitude of diffracted light along any one radius determines the complete pattern
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J1ðkxr0Þ has an infinite number of zeros, and the diffraction pattern is formed by an

infinite number of light and dark concentric rings. The first dark band will occur at the first

zero of J1ðkxr0Þ which is given by kxr0 ¼ 1:219�.
However,

kxr0 ¼ 2�

�
lr0 ¼ 2�

�
r0 sin �

0
z

where � 0
z is the angle between the vector k and the z-axis and defines the angle of

diffraction. The first minimum therefore occurs at r0 sin �
0
z ¼ 0:61� and the next minimum

at r0 sin �
0
z ¼ 1:16�.

If the aperture were square with a side length 2r0 (the diameter of the circle) the first dark

fringe would be at r0 sin �
0
z ¼ 0:5� and the second at r0 sin �

0
z ¼ �.

As the radius of the circular aperture is reduced the value of � 0
z for the first minimum

is increased and the whole pattern expands. This reminds us that a reduction of the pulse in

x-space requires an increase in wave number or k-space to represent it.

We may write equation (12.8) as

FðkxÞ ¼ a

2�

ð ro

0

ð 2�

0

e�ik x�r cos �r drd�

where
Ð 2�

0
e�ik x�r cos �d� ¼ 2�J0ðkxrÞ and J0 is the Bessel function of order zero.

Then

FðkxÞ ¼ a

ðr0
0

J0ðkxrÞrdr

Relative intensity of diffraction pattern
from circular aperture

r = 0

r0 sin qz 1.22π

.61λ 1.16λ

2.32π 2π
λ

2π
λ

r ′

kx = (direction cosine)x

I ∝
J1(kx r0 )

kx r0

2

′

r0 sin qz ′

Figure 12.33 Intensity of the diffraction pattern from a circular aperture of radius r0 versus r
0, the

radius of the pattern. The intensity is proportional to ½J1ðkxr0Þ=kxr0�2, where J 1 is Bessel’s function
of order 1. The pattern consists of a central circular principal maximum surrounded by a series of
concentric rings of minima and subsidiary maxima of rapidly diminishing intensity
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Now J1ðkxrÞ and J0ðkxrÞrdr are related by

ðkxr0
0

J0ðkxrÞkxrdðkxrÞ ¼ kxr0J1ðkxr0Þ

giving

FðkxÞ ¼ a�r20
2J1ðkxr0Þ

kxr0

� �

where r0 is the radius of the aperture.

The Intensity

I ¼ I0
J1ðkxr0Þ
kxr0

� �2

with the curve shown in Figure 12.33.

Fraunhofer Far Field Diffraction

If we remove the focusing lens in Figure 12.32 and leave the aperture open or place the

lens within it we have the conditions for far field diffraction, Figure 12.34, where R0
0 the

distance from ~OO to P0 is  distances in the aperture and image planes from the optic axis.

The aperture is uniformly illuminated by a distant monochromatic source and a small area

d~ss ¼ d~xxd~yy in the aperture is � �2, where � is the wavelength.

θz′
R0

r0

R′

~ ~ ~

~

~

~
P (x, y)

ds

o

P′(x′,y′,z′)

′

Z

Figure 12.34 In Fraunhofer far field diffraction the distance from the aperture to the image point
P0 is  distances in the aperture and image planes from the optic axis. The electric field at P0 is the
integral of the spherical waves from small areas d~ss in the aperture plane and the resulting intensity
pattern is that of Figure 12.33. It is known as the Airy disc
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The electric field at P0 due to the spherical wave from d~ss is

dEP
0 ¼

~EE

R0 e
i!t�kR0

d~ss

Where ~EEei!t is the field at d~ss
Now

R02 ¼ z02 þ ðx0 � ~xxÞ2 þ ðy0 � ~yyÞ2

and

R02
0 ¼ z02 þ x02 þ y02

which combine to give

R0 ¼ R0
0½1þ ð~xx2 þ ~yy2Þ=R02

0 � 2ðx0~xxþ y0~yyÞ=R02
0 �1=2

and R02
0  ð~xx2 þ ~yy2Þ

so we write

R0 ¼ R0
0½1� 2ðx0~xxþ y0~yyÞ=R02

0 �1=2

and if we neglect higher terms

R0 ¼ R0
0½1� ðx0~xxþ y0~yyÞ=R02

0 �

¼ R0
0 �

x0~xx
R0
0

� y0~yy
R0
0

We use this value for R0 in the expression for dEp0 to give the total field at P0 as

EP0 ¼
~EEei!t�kR0

0

R0
0

ð ð
aperture

e
ik

ðx0~xxþy0~yyÞ
R0
0 d~ss

Comparison with equation (12.6) shows that k~xx=R0
0 ¼ kl and k~yy=R0

0 ¼ km of that

equation and proceeding via polar co-ordinates we obtain the same value for the intensity

of the diffraction pattern,

i.e.

I ¼ I0
J1ðkr0sin �02Þ
kr0sin �

0
2

� �2

in Figure 12:33

This far field diffraction pattern is known as the Airy disc, Figure 12.35, and its size places

a limit on the resolving power of a telescope. When the two components of a double star

with an angular separation �� are viewed through a telescope with an objective lens of

focal length l and diameter d their images will appear as two Airy discs separated by the

angle ��. The two diffraction patterns will be resolved if �� is much wider than the
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angluar width of a disc but not if it is much less. Lord Rayleigh’s criterion (Figure 12.29)

gives the critical angle�� for resolution as that when the maximum of one disc falls on the

first minimum of the other �, Figure 12.36. Figure 12.33 then gives

�� ¼ 0:61�

r0
¼ 1:22�

d

ð�� ¼ �0
z in Figure 12:33Þ

where � is the rediated wavelength.

Figure 12.35 Photograph of an Airy disc showing the central bright disc, the first dark ring and the
first subsidiary maximum. Compare this with Figure 12.33

∆ φ

∆ φ

Figure 12.36 Two stars with angular separation �� form separate Airy disc images when viewed
through a telescope. Rayleigh’s criterion (Figure 12.29) states that the these images are resolved
when the central maximum of one falls upon the first minimum of the other

Fraunhofer Far Field Diffraction 385



This condition is known as diffraction-limited resolution. A poor quality lens will

introduce aberrations and will not meet this criterion.

The Michelson Stellar Interferometer

In the discussion on Spatial Coherence (p. 360) we saw that the relative displacement of the

interference fringes from separate sources 1 and 2 led to a partial loss of the visibility of the

fringes defined as

V ¼ Imax � Imin

Imax þ Imin

and eventually when the displacement was equal to half a fringe width V ¼ 0 and there was

a complete loss of contrast.

Michelson’s Stellar Interferomenter (1920) used this to measure the angular separation

between the two components of a double star or, alternatively, the angular width of a

single star.

Initially, we take the simplest case to illustrate the principle and then discuss the

practical problems which arise. We assume in the first instance that light from the stars is

monochromatic with a wavelenght �0. Michelson used four mirros M1 M2 M3 M4 mounted

on a girder with two slits S1 and S2 in front of the lens of an astronomical telescope, Fig-

ure 12.37. The slits were perpendicular to the line joining the two stars. The separation h of

the outer pair of mirrors (�meters) was increased until the fringes observed in the focal

plane of the objective just disappeared. Assuming zero path difference between M1M2 P0

and M4 M3 P0 the light from star A will form its zero order fringe maximum at P0 and its

first order fringe maximum at P1, due to a path difference S2N ¼ d sin � ¼ �0 so the fringe

spacing is determined by d, the separation between the inner mirrors M2 and M3.

The condition for fringe disappearance is that rays from star B will form a first order

maximum fringe midway between P0 and P1, that is, when

CM1M2S1P0 �M4M3S2P0 ¼ CM1 ¼ h sin� ¼ �0=2

The condition for fringe disappearnce is therefore determined by h while the angular size

of the fringes depends on d so there is an effective magnification of h=d over a fringe

system produced by the slits alone.

The angles � and � are small and the minimum value of h is found which produces

V ¼ 0 so that the fringes disappear at

h� ¼ �0=2 or h ¼ �

2�

Measurement of h thus determines the double-star angular separation.

Several assumptions have been made in this simple case presentation. First, that the

intensities of the light radiated by the stars are equal and that they are coherent soruces. In
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fact, even if the sources are incoherent their radiation is essentially coherent at the

interferometer. Second, the radiation is not monochromatic and only a few fringes around

the zero order were visible so �0 must be taken as a mean wavelength. Finally, the

introduction of a lens into the system inevitably creates Airy discs and the visibility must

be expressed in terms of the Airy disc intensity distribution. This results in

V ¼ 2
J1ðuÞ
u

� �

where

u ¼ �h�=�0

B

B
C

A

A

h
P1

M2 S1

S2M3

M4

M1

P0

h sin f

d

N

d sin

θ

θ

f

f

Figure 12.37 In the Michelson stellar interferometer light from stars A and B strike the movable
outer mirrors M1 and M4 to be reflected via fixed mirrors M2 and M3 through two slits S1 and S2 and a
lens to form interference fringes. Light from Star A forms its zero order fringe at P0 and its first order
fringe at P1 when S2N ¼ d sin � ¼ �0. The minimum separation h of M1M4 is found for light from B to
reduce the fringe visibility to zero, that is, when the path difference h ¼ sin� ¼ �0=2. The angles
are so small that � and � replace their sines. Note that the fringe separation depends on d, but the
fringe visibility is governed by h
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If this visibility is plotted against h�=�0 its first zero occurs at 1.22 so the fringes disappear

when h ¼ 1:22�0=�.
In fact, Michelson first used his interferometer in 1920 to measure the angular diameter

of the star Betelgeuse the colour of which is orange. His astronomical telescope was the

2.54 m (100 in.) telescope of the Mt. Wilson Observatory. A mean wavelength

�0 ¼ 570� 10�9m was used and the fringes vanished when h ¼ 3:07m to give an angular

diameter � ¼ 22:6� 10�8 radians or 0.047 arc seconds. The distance of Betelgeuse from

the Earth was known and its diameter was calculated to be about 384� 106km, roughly

280 times that of the Sun. This magnitude is greater than that of the orbital diameter of

Mars around the Sun.

The Convolution Array Theorem

This is a very useful application of the Convolution Theorem p. 297 5th edn, when one of

the members is the sum of a series of d functions.

e.g.

gðxÞ ¼ f1ðxÞ �
X
m

�ðx� xmÞ

¼
ð1
�1

f1ðx0Þ
X
m

�ðx� x0 � xmÞdx0

¼
X
m

f1ðx� xmÞ

This is a linear addition of functions each of the form f1ðxÞ but shifted to new origins at

xmðm ¼ 1; 2; 3 . . .Þ, Figure 12.38.

The convolution theorem gives the Fourier Transform of gðxÞ as

F½ gðxÞ� ¼ F½ f1ðxÞ�F
X
m

�ðx� xmÞ
" #

i.e.

FðkxÞ ¼ F1½ f1ðxÞ�
X
m

e�ikxxm

so the transform of the spatially shifted local function is just the product of the transform of

the local function and a phase factor.

This is the Array Theorem which we now apply in a more rigorous approach to the effect

of diffraction on the interference fringes in Young’s slit experiment (p. 358) where the

illuminating source is equidistant from both slits.

The Array Theorem may be applied to any combination of identical apertures but

Young’s experiment involves only the two rectangular (slits) pulses in Figure 12.39a. Here,

f1ðxÞ is a rectangular pulse of width d and the xm values above are xm ¼ � a=2.
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Thus, we have the transform amplitude

FðkxÞ ¼ F1ðkxÞ
X
m

e�ikxxm

where kx ¼ k � x ¼ kx sin � and k in Figure 13.39b is the vector direction from x ¼ �a=2 to

a point P on the diffraction-interference pattern. p. 288 gives

F1ðkxÞ / sin�

�

where

� ¼ �

�
d sin �

The second term, a phase factor, is

X
m

e�ikxxm ¼ ½eikxa=2 þ e�ikxa=2� ¼ 2 cos kxa=2

x

x

x

f1

f1 f2

∞ ∞ ∞

x1

x1 x2 x3

x2 x3

f2

×

Figure 12.38 In the convolution array theorem a function f1ðxÞ is convolved with a series of Dirac
functions which shift it to new origins
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We may equate kxa=2 with �=2 on p. 358 where � ¼ 2�
� ðx2 � x1Þ is the phase difference at

point P due to the path difference from the two sources. Here, kxa=2 ¼ ka sin �=2 ¼
�a sin �=� (Figure 13.39b). When coskxa=2 ¼ 1 for maximum constructive interference

ka sin �=2 ¼ �

�
a sin � ¼ n�

i.e.

a sin � ¼ n�

The amplitude squared or intensity is, therefore

I / sin2�

�2
4 cos2ð�=2Þ

a cos2 interference system modulated by a diffraction envelope as shown in Figure 12.27

–a/2 +a/20
x

>d< >d<

(a)

–a/2 +a/20

x

k

P

P

k

a 
si

nθ

θ

(b)

Figure 12.39 Young’s double slit experiment represented in convolution array theorem (a) by two
reactangular pulses and (b) with a path difference in the direction k of d sin� where a is the
separation between the pulse centres
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This method can be extended to produce the pattern for a diffraction grating of N

identical slits.

The Optical Transfer Function

The modern method of testing an optical system, e.g. a lens, is to consider the object

as a series of Fourier frequency components and to find the response of the system to

these frequencies. A test chart with a sinusoidal distribution of intensity would make a

suitable object for this purpose. The function of the lens or optical system is considered to

be that of a linear operator which transforms a sinusoidal input into an undistorted

sinusoidal output.

The linear operator is defined in terms of the Optical Transfer Function (OTF)

which may be real or complex. The real part, the Modulation Transfer Function (MTF),

measures the effect of the lens on the amplitude of the sinusoidal input; the complex

element is the Phase Transfer Function (PTF), a shift in phase when aberrations are present.

If there are no aberrations and the effect on the image is limited to diffraction the PTF is

zero.

Changing the amplitude of the object frequency components affects the contrast between

different parts of the image compared with the corresponding parts of the object. We shall

evaluate this effect at the end of the analysis.

We shall assume that the object is space invariant and incoherent. Space invariance

means that the only effect of moving a point source over the object is to change the location

of the image. When an object is incoherent its intensity or irradiance varies from point to

point and all contributions to the final image are added under the integral sign.

Over a small area dx dy of the object the radiated flux will be I0ðx; yÞdx dy and this makes

its contribution to the image intensity. In addition, every point source on the object creates

a circular diffraction pattern (Airy disc) around the corresponding image point so the

resulting intensity of the image at ðx0; y0Þ will be

d I0ðx0; y0Þ ¼ I0ðx; yÞOðx; y; x0y0Þdx dy

where Oðx; y; x0y0Þ is the radially symmetric intensity distribution of the diffraction pattern

(Airy disc). In this context it is called the Point Spread Function (PSF).

Adding all contributions gives the image intensity

I0ðx0; y0Þ ¼
ð1
�1

ð1
�1

Ioðx; yÞOðx; y; x0y0Þdx dy

If, as we shall assume for simplicity, the magnification is unity, there is a one-to-one

correspondence between the point ðx; yÞ on the object and the centre of its diffraction

pattern in the image plane. Using ðx; yÞ as the coordinate of this centre the value of

Oðx; y; x0; y0Þ at any other point ðx0; y0Þ in the diffraction pattern is given by

Oðx0 � x; y0 � yÞ
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Thus, the intensity or irradiance at any image point may be written

I0ðx0; y0Þ ¼
ð1
�1

ð1
�1

I0ðx; yÞOðx0 � x; y0 � yÞdx dy

This is merely the two-dimensional form of the convolution we met on p. 293 and we

reduce it to one dimension by writing

I0ðx0Þ ¼
ð1
�1

I0ðxÞOðx0 � xÞdx ¼
ð1
�1

I0ðx0 � xÞOðxÞdx

because the convolution theorem of p. 297 allows us to exchange the variables of the

functions under the convolution integral.

This is evidently of the form

I0 ¼ I0 � O

with Fourier Transforms

FðI0Þ ¼ FðI0Þ � FðOÞ

The choice of one dimension which adds clarity to the following analysis tranforms the

PSF to a Line Spread Function (LSF) by cutting a narrow slice from the three-dimensional

PSF. This is achieved by using a line source represented by a Dirac � function, the sifting

property of which isolates an infinitesimally narrow section of the PSF.

The shape of the three-dimensional PSF may be imagined by rotating Figure 12.33 about

its vertical axis for a complete revolution. The profile of a slice along the diameter through

the centre of the PSF is then the intensity of Figure 12.33 together with its reflection about

the vertical axis. Any other slice, not through the centre, will have a similar profile but will

differ in some details, e.g. its minimum values will not be zero, Figure 12.40.

Thus, in one dimension, replacing OðxÞ by LðxÞ the LSF, we have

I0ðx0Þ ¼
ð1
�1

I0ðx0 � xÞ LðxÞdx

or

I0 ¼ I0 � L ¼ L� I0

with

FðI0Þ ¼ FðI0Þ � FðLÞ ¼ FðLÞ � FðI0Þ

Let us write the intensity distribution of an object frequency component in one dimension

as aþ bcoskxx, where b modulates the cosine and a is a positive d.c. bias greater than b so
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that the intensity is always positive. Then, in the convolution above

I0 ¼ aþ bcoskxðx0 � xÞ
and the image intensity at x0 is

I0ðx0Þ ¼
ð1
�1

½aþ bcoskxðx0 � xÞ�LðxÞ dx

¼
ð1
�1

LðxÞ½aþ bcoskxðx0 � xÞ dx

We remove the x0 terms from the integral by expanding the cosine term to give

I0ðx0Þ ¼ a

ð1
�1

LðxÞdxþ b cos kxx
0
ð1
�1

LðxÞ cos kxxdxþ b sin kxx
0
ð1
�1

LðxÞ sin kxx dx
ð12:9Þ

The integrals in the second and third terms on right-hand side of this equation are,

repectively, the cosine and sine Fourier transforms from pp. 285, 286.

If we write

CðkxÞ ¼
ð1
�1

LðxÞcoskxxdx

and

SðkxÞ ¼
ð1
�1

LðxÞsinkxxdx

I

Figure 12.40 The profile of the Line Spread Function LðxÞ is formed by cutting an off-centre slice
from the three-dimensional Point Spread Function: LðxÞ is the area under the curve. Note that the
minimum values of LðxÞ are non-zero, unlike the curve of Figure 12.33
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we have

CðkxÞ � i SðkxÞ ¼
ð1
�1

LðxÞe�ikxxdx ¼ FðLxÞ ¼ MðkxÞe�i�ðkxÞ

where

MðkxÞ ¼ ½CðkxÞ2 þ SðkxÞ2�1=2

is the MTF and e�i�ðkxÞ is the PTF with

tan� ¼ SðkxÞ=CðkxÞ

The OTF is, therefore, the Fourier transform of the LSF.

If the LSF is symmetrical, as in the case of the diffraction pattern, the odd terms in SðkxÞ
are zero, so the phase change � ¼ 0 and the OTF is real.

For a given frequency component n we can normalize LðxÞ to give

LnðxÞ ¼ LðxÞÐ1
�1 LnðxÞdx

¼ 1

so that equation (12.9) becomes

I0ðx0Þ ¼ aþMðkxÞbðcoskxx0cos�� sinkxx
0sin�Þ

¼ aþMðkxÞbðcos kxx0 þ �Þ

In the absence of aberrations, that is, in the symmetric diffraction limited case, � ¼ 0: I0 is
shown in Figure 12.41(a) and I0ðx0Þ in Figure 12.41(b) where � 6¼ 0 due to aberrations.

a

b

I0(x)

(a)

Figure 12.41 (a) The object frequency component aþ b cos kxx is modified by the Optical Transfer
Function

394 Interference and Diffraction



The effect of the MTF on the amplitude of the frequency components is to reduce the

contrast between parts of the image compared with corresponding parts of the object.

We have already met an expression for the contrast which we called Visibility on p. 360.

Thus, we can write

Contrast ¼ Imax � Imin

Imix þ Imin

¼ ðaþ bÞ � ða� bÞ
ðaþ bÞ þ ða� bÞ ¼

b

a
for the object

The image contrast MðkxÞb=a < b=a so the image contrast is less than that of the object.

Fresnel Diffraction

The Straight Edge and Slit

Our discussion of Fraunhofer diffraction considered a plane wave normally incident upon a

slit in a plane screen so that waves at each point in the plane of the slit were in phase. Each

point in the plane became the source of a new wavefront and the superposition of these

wavefronts generated a diffraction pattern. At a sufficient distance from the slit the

superposed wavefronts were plane and this defined the condition for Fraunhofer diffraction.

Its pattern followed from summing the contributions from these waves together with their

relative phases and on p. 21 we saw that these formed an arc of constant length. When the

a

M(kx)b

φ

I′(x′)

(b)

Figure 12.41 (b) In the image component aþ MðkÞbcos ðkxx0 þ �Þ, MðkÞ is the Modulation
Transfer Function, which is < 1 and the phase change � results from aberrations. The contrast in the
image is less than that in the object. Note that in (b) � is negative in the expression cosðkxx0 þ �Þ
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contributions were all in phase the arc was a straight line but as the relative phases

increased the arc curved to form closed circles of decreasing radii. The length of the chord

joining the ends of the arc measured the resulting amplitude of the superposition and the

square of that length measured the light intensity within the pattern.

Nearer the slit where the superposed wavefronts are not yet plane but retain their curved

character the diffraction pattern is that of Fresnel. There is no sharp division between

Fresnel and Fraunhofer diffraction, the pattern changes continuously from Fresnel to

Fraunhofer as the distance from the slit increases.

The Fresnel pattern is determined by a procedure exactly similar to that in Fraunhofer

diffraction, an arc of constant length is obtained but now it convolutes around the arms of a

pair of joined spirals, Figure 12.42, and not around closed circles.

An understanding of Fresnel diffraction is most easily gained by first considering, not the

slit, but a straight edge formed by covering the lower half of the incident plane wavefront

with an infinite plane screen. The undisturbed upper half of the wavefront will contribute

one half of the total spiral pattern, that part in the first quadrant.

0.5

0.5

u

–0.5

–0.5 0

y = Ú sin p u 2du1
2

Ú cos p u 2du = x1
2

Z2

Z3

Z1

Z1′

Figure 12.42 Cornu spiral associated with Fresnel diffraction. The spiral in the first quadrant
represents the contribution from the upper half of an infinite plane wavefront above an infinite
straight edge. The third quadrant spiral results from the downward withdrawal of the straight edge.
The width of the wavefront contributing to the diffraction pattern is correlated with the length u
along the spiral. The upper half of the wavefront above the straight edge contributes an intensity
(OZ1Þ2 which is the square of the length of the chord from the origin to the spiral eye. This intensity
is 0.25 of the intensity (Z1Z

0
1)

2 due to the whole wavefront
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The Fresnel diffraction pattern from a straight edge, Figure 12.43, has several significant

features. In the first place light is found beyond the geometric shadow; this confirms its

wave nature and requires a Huygens wavelet to contribute to points not directly ahead of it

(see the discussion on p. 305). Also, near the edge there are fringes of intensity greater and

less than that of the normal undisturbed intensity (taken here as unity). On this scale the

intensity at the geometric shadow is exactly 0.25.

To explain the origin of this pattern we consider the point O at the straight edge of Fig-

ure 12.44 and the point P directly ahead of O. The line OP defines the geometric shadow.

Below O the screen cuts off the wavefront. The phase difference between the contributions

to the disturbance at P from O and from a point H, height h above O is given by

�ðhÞ ¼ 2�

�
ðHP� OPÞ ’ 2�

�

1

2

h2

l

where OP ¼ l and higher powers of h2=l2 are neglected.

We now divide the wavefront above O into strips which are parallel to the infinite

straight edge and we call these strips ‘half period zones’. This name derives from the fact

that the width of each strip is chosen so that the contributions to the disturbance at P from

the lower and upper edges of a given strip differ in phase by � radians.

Since the phase �ðhÞ / h2 we shall not expect these strips or half period zones to be of

equal width and Figure 12.45 shows how the width of each strip decreases as h increases.

The total contribution from a strip will depend upon its area; that is, upon its width. The

amplitude and phase of the contribution at P from a narrow strip of width dh at a height h

above O may be written as ðdhÞ ei� where � ¼ �h2=�l.
This contribution may be resolved into two perpendicular components

dx ¼ dh cos�

Undisturbed
intensity

Geometric
shadow

1.0

0.25

Figure 12.43 Fresnel diffraction pattern from a straight edge. Light is found within the geometric
shadow and fringes of varying intensity form the observed pattern. The intensity at the geometric
shadow is 0.25 of that due to the undisturbed wavefront
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0

H

h

l

Semi-infinite
screen

P

HP - OP ≈ h 2/l1
2

Figure 12.44 Line OP normal to the straight edge defines the geometric shadow. The wavefront at
height h above O makes a contribution to the disturbance at P which has a phase lag of �h2=�l with
respect to that from O. The total disturbance at P is the vector sum (amplitude and phase) of all
contributions from the wavefront section above O
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Figure 12.45 Variation of the width of each half period zone with height h above the straight edge
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and

dy ¼ dh sin�

If we now plot the vector sum of these contributions the total disturbance at P from that

section of the wavefront measured from O to a height h will have the component values

x ¼ Ð
dx and y ¼ Ð

dy. These integrals are usually expressed in terms of the dimensionless

variable u ¼ hð2=�lÞ1=2, the physical significance of which we shall see shortly.

We then have � ¼ �u2=2 and dh ¼ ð�l=2Þ1=2 du and the integrals become

x ¼
ð
dx ¼

ð u

0

cos ð�u2=2Þ du

and

y ¼
ð
dy ¼

ð u

0

sin ð�u2=2Þ du

These integrals are called Fresnel’s Integrals and the locus of the coordinates x and y

with variation of u (that is, of h) is the spiral in the first quadrant of Figure 12.42. The

complete figure is known as Cornu’s spiral.

As h, the width of the contributing wavefront above the straight edge, increases, we

measure the increasing length u from 0 along the curve of the spiral in the first quadrant

unit, as h and u ! 1 we reach Z1 the centre of the spiral eye with coordinate x ¼ 1
2
; y ¼ 1

2
.

The tangent to the spiral curve is

dy

dx
¼ tan

�u2

2

and this is zero when the phase

�ðhÞ ¼ �h2=�l ¼ �u2=2 ¼ m�

where m is an integer so that u ¼ pð2mÞ relates u, the distance measured along the spiral to

m the number of half period zones contributing to the disturbance at P. The total intensity at

P due to all the half period zones above the straight edge is given by the square of the

length of the ‘chord’ OZ1. This is the intensity at the geometric shadow.

Suppose now that we keep P fixed as we slowly withdraw the screen vertically

downwards from O. This begins to reveal contributions to P from the lower part of the

wavefront; that is, the part which contributes to the Cornu spiral in the third quadrant. The

length u now includes not only the whole of the upper spiral arm but an increasing part of

the lower spiral until, when u has extended to Z2 the ‘chord’ Z1Z2 has its maximum value

and this corresponds to the fringe of maximum intensity nearest the straight edge. Further

withdrawal of the screen lengthens u to the position Z3 which corresponds to the first

minimum of the fringe pattern and the convolutions of an increasing length u around the
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spiral eye will produce further intensity oscillations of decreasing magnitude until, with the

final removal of the screen, u is now the total length of the spiral and the square of the

‘chord’ length Z1Z
0
1 gives the undisturbed intensity of unit value. But Z1Z

0
1 ¼ 2Z1O so

that the undisturbed intensity (Z1Z
0
1)

2 is a factor of four greater than (Z1O)
2 the intensity

at the geometric shadow.

The Fresnel diffraction pattern from a slit may now be seen as that due to a fixed height h

of the wavefront equal to that of the slit width. This defines a fixed length u of the spiral

between the end points of which the ‘chord’ is drawn and its length measured and squared

to give the intensity. At a given distance from the slit the intensity at a point P in the

diffraction pattern will correlate with the precise location of the fixed length u along the

spiral. At the centre of the pattern P is symmetric with respect to the upper and lower edges

of the slit and the fixed length u is centred about O (Figure 12.46). As P moves across the

pattern towards the geometric shadow the length u moves around the convolutions of the

spiral. In the geometric shadow this length is located entirely within the first or third

quadrant of the spiral and the magnitude of the ‘chord’ between its ends is less than

OZ1. When the slit is wide enough to produce the central minimum of the diffraction

pattern in Figure 12.47 the length u is centred at O with its ends at Z3 and Z4 in

Figure 12.46.

0.5

0.5u

–0.5

–0.5 0

Z2

Z3

Z4

Z1

Z1′

Figure 12.46 The slit width h defines a fixed length u of the spiral. The intensity at a point P in the
diffraction pattern is correlated with the precise location of u on the spiral. When P is at the centre
of the pattern u is centred on O and moves along the spiral as P moves towards the geometric
shadow. Within the geometric shadow the chord joining the ends of u is less than OZ1
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Circular Aperture (Fresnel Diffraction)

In this case the half period zones become annuli of decreasing width. If rn is the mean

radius of the half period zone whose phase lag is n� with respect to the contribution from

the central ring the path difference in Figure 12.48 is given by

NP� OP ¼ � ¼ n�=2 ¼ 1
2
r 2n=l

Unlike the rectangular example of the straight edge where the area of the half period

zone was proportional to its width dh each zone here has the same area equal to ��l.
Each zone thus contributes equally to the disturbance at P except for a factor arising

from the rigorous Kirchhoff theory which, until now, we have been able to ignore. This

is the so-called obliquity factor cos 
 where 
 is shown in the figure. This factor is

negligible for small values of n but its effect is to reduce a zone contribution as n

increases. A large circular aperture with many zones produces, in the limit, an undisturbed

normal intensity on the axis and from Figure 12.49 where we show the magnitude

and phase from successive half zones we see that the sum of these vectors which represents

the amplitude produced by an undisturbed wave is only half of that from the innermost

zone.

It is evident that if alternate zones transmit no light then the contributions from the

remaining zones would all be in phase and combine to produce a high intensity at P similar

Slit width

Intensity

Figure 12.47 Fresnel diffraction pattern from a slit which is wide enough for the spiral length u to
be centred at O and to end on points Z3 and Z4 of Figure 12.46. This produces the intensity minimum
at the centre of the pattern
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to the focusing effect of a lens. Such circular ‘zone plates’ are made by blacking out the

appropriate areas of a glass slide, Figure 12.50. A further refinement increases the intensity

still more. If the alternate zone areas are not blacked out but become areas where the

optical thickness of the glass is reduced, via etching, by �=2 the light transmitted through

these zones is advanced in phase by � rad so that the contributions from all the zones are

now in phase.

l0 P

rn

N
χ

Figure 12.48 Fresnel diffraction from a circular aperture. The mean radius r n defines the half period
zone with a phase lag of n� at P with respect to the contribution from the central zone. The obliquity
angle 
 which reduces the zone contribution at P increases with n

Figure 12.49 The vector contributions from successive zones in the circular aperture. The
amplitude produced by an undisturbed wave is seen to be only half of that from the central zone.
Removing the contributions from alternate zones leaves the remainder in phase and produces a very
high intensity. This is the principle of the zone plate of Figure 12.50

402 Interference and Diffraction



Holography

Why is it that when we observe an object we see it in three dimensions but when we

photograph it we obtain only a flat two dimensional distribution of light intensity? The

answer is that the photograph has lost the information contained in the phase of the

incident light. Holographic processes retain this information and a hologram reconstructs a

three-dimensional image.

The principle of holography was proposed by Gabor in 1948 but its full development

needed the intense beams of laser light. A hologram requires two coherent beams and the

holographic plate records their interference pattern. In practice both beams derive from the

same source, one serves as a direct reference beam the other is the wavefront scattered from

the object.

Figure 12.51 shows one possible arrangement where a partly silvered beam splitter

passes the direct reference beam and reflects light on to the object which scatters it on to

the photographic plate. Mirrors or deviating prisms are also used to split the incident beam.

In Figure 12.51 let the reference beam amplitude be A0 e
i!t. If the holographic plate lies

in the yz plane both the amplitude and phase of scattered light which strikes a given point

ðy; zÞ on the plate will depend on these co-ordinates. We simplify the analysis by

considering only the y co-ordinate shown in the plane of the paper and we represent the

scattered light in amplitude and phase as a function of y, namely

AðyÞ eið!tþ�ðyÞÞ

It is this information we shall wish to recover.

Figure 12.50 Zone plate produced by removing alternate half zones from a circular aperture to
leave the remaining contributions in phase
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We may now write the resulting amplitude at y (after removing the common ei!t

factor) as

A ¼ A0 þ AðyÞ ei�ðyÞ

The intensity is therefore

I ¼ AA� ¼ ½A0 þ AðyÞ ei�ðyÞ�½A0 þ AðyÞ e�i�ðyÞ�
¼ A2

0 þ AðyÞ2 þ A0AðyÞ½ei�ðyÞ þ e�i�ðyÞ�

The holographic plate records this intensity as shown in Figure 12.52 where the

reference intensity A2
0 is modulated by the terms which contain AðyÞ and �ðyÞ, the original

scattered amplitude and phase information. This modulation shows of course as contrasting

interference fringes whose local intensity is governed by the amplitude AðyÞ and whose

distribution along the y axis is determined by the phase �ðyÞ. The wavefront scattered by

the object is now reconstructed to form the holographic image. This is done by shining the

reference beam through the processed hologram which acts as a diffraction grating. The

greater the recorded intensity the lower the transmitted amplitude. If the developed

photographic emulsion possessed idealized characteristics the relation between

the transmitted amplitude of the reference beam and the exposure would be linear.

Beam
splitter

Reference
beam

Laser
beam

Hologram

Scattered
wavefront

Object

y

Figure 12.51 The hologram records the interference between two parts of the same laser beam. The
original beam is divided by the partially silvered beam splitter to form a direct reference beam and a
wavefront scattered from the object. The amplitude and phase information contained in the
scattered wavefront must be preserved and recovered
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Exposure defines the product of incident intensity and exposure time. The curve relating

the characteristics for a real holographic emulsion is shown in Figure 12.53 and this is

linear only over a limited range near the centre indicated by the dotted lines. This imposes

several conditions on practical holography.

In the first place the exposure must be correctly chosen at the value EC. Secondly, the

value of the reference beam intensity A2
0 must be chosen to produce the correct transmitted

amplitude T0 on the vertical axis of Figure 12.53. This value of T0 is at the centre of the

linear range. Finally, the modulation of A2
0 by the scattered intensity AðyÞ2 in Figure 12.53

must be small enough for the transmission of the modulated signal to remain within the

linear range of the characteristic curve. Excursions outside this range introduce non-linear

distortions by generating extra Fourier frequency components (the situation is similar to

that for characteristic curves in electronic amplifiers).

Experimentally this final restriction requires AðyÞ � A0.

Shining the reference beam through the processed hologram produces a transmitted

amplitude

A0T ¼ A3
0 þ A2

0AðyÞ ei�ðyÞ þ A2
0AðyÞ e�i�ðyÞ

¼ A2
0½A0 þ AðyÞ ei�ðyÞ þ AðyÞ e�i�ðyÞ�

where we have neglected the AðyÞ2 term as � A2
0 and have written the negative and

positive exponential terms separately. This has a profound physical significance for we see

that apart from the common constant factor A2
0, the observed transmitted beam has three

components A0;AðyÞ ei�ðyÞ and AðyÞ e�i�ðyÞ.

Distance along hologram

Intensity
recorded
by hologram

A0
2

y

Figure 12.52 Total intensity recorded as a function of y by the holographic plate. The direct
reference beam intensity A 2

0 is modulated by information from the scattered wavefront. This shows as
variations in the intensity of an interference fringe pattern
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A0
2

T0

T

Linear response
region of curve

Exposure = intensity × time

Amplitude transmittance

E C

Figure 12.53 Characteristic curve of a real holographic emulsion (transmittance versus exposure).
Only the central linear section of the curve is used. The transmittance T 0 (governed by the reference
beam intensity A 2

0) is chosen with the critical exposure E C to produce the central point on the linear
part of the curve. Information from the scattered wavefront must keep the modulations within the
linear range for faithful reproduction free from distortion

(a) (b)

0

Plane of
hologram

Plane of
hologramVirtual image

Wavefronts
from object

Real image

Eye X

Eye Y

0′

A 0

y

A(y )e–if (y )

A (y )e–if (y )

A (y )eif (y )

A (y )eif (y )

y

I

Figure 12.54 (a) Shining the reference beam through the processed hologram produces three
components A 0; AðyÞ e i�ðyÞ and AðyÞ e�i�ðyÞ in the directions shown. Movement of the eye from X to Y
about the component AðyÞ e i�ðyÞ resolves the separate points O and O 0 on the image of the object to
reveal its three dimensional nature. (b) This image at O is seen to be virtual while the image
associated with the component AðyÞ e�i�ðyÞ is real. This real image is ‘phase reversed’ and the object
appears ‘inside out’

406 Interference and Diffraction



The first term, A0, shows that the incident reference beam has continued beyond the

hologram to form the central beam of Figure 12.54a. The second component AðyÞ ei�ðyÞ has
the same form in amplitude and phase as the original wavefront scattered from the object.

As shown in Figure 12.54b it is seen to be a wavefront diverging from a virtual image of

the object having the same size and three dimensional distribution as the object itself.

Moving the eye across this beam in 12.54a exposes a different section OO 0 of the virtual

image to produce a three dimensional effect.

The third component of the transmitted beam is identical with the second except for the

phase reversal; it has a negative exponential index. It forms another image, in this case a

real image often referred to as ‘pseudoscopic’. It is an image of the original object turned

inside out. All contours are reversed, bumps become dents and the closest point on the

original object when viewed directly by the observer now becomes the most distant.

Problem 12.1
Suppose that Newton’s Rings are formed by the system of Figure 12.4 except that the plano convex

lens now rests centrally in a concave surface of radius of curvature R1 and not on an optical flat.

Show that the radius rn of the nth dark ring is given by

r 2n ¼ R1R2n�=ðR1 � R2Þ
where R2 is the radius of curvature of the lens and R1 > R2 (note that R1 and R2 have the

same sign).

Problem 12.2
Light of wavelength � in a medium of refractive index n1 is normally incident on a thin film of

refractive index n2 and optical thickness �=4 which coats a plane substrate of refractive index n 3.

Show that the film is a perfect anti-reflector ðr ¼ 0Þ if n 2
2 ¼ n 1n3.

Problem 12.3
Two identical radio masts transmit at a frequency of 1500 kc s�1 and are 400 m apart. Show that the

intensity of the interference pattern between these radiators is given by I ¼ 2I0½1þ cos ð4� sin �Þ�,
where I0 is the radiated intensity of each. Plot this intensity distribution on a polar diagram in which

the masts lie on the 90�–270� axis to show that there are two major cones of radiation in opposite

directions along this axis and 6 minor cones at 0�, 30�, 150�, 180�, 210� and 330�.

Problem 12.4
(a) Two equal sources radiate a wavelength � and are separated a distance �=2. There is a phase

difference �0 ¼ � between the signals at source. If the intensity of each source is I s, show that the

intensity of the radiation pattern is given by

I ¼ 4I s sin
2 �

2
sin �

� �
where the sources lie on the axis ��=2.
Plot I versus �.

(b) If the sources in (a) are now �=4 apart and � 0 ¼ �=2 show that

I ¼ 4I s cos2
�

4
ð1þ sin �Þ

h i
Plot I versus �.
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Problem 12.5
(a) A large number of identical radiators is arranged in rows and columns to form a lattice of which

the unit cell is a square of side d. Show that all the radiation from the lattice in the direction � will be
in phase at a large distance if tan � ¼ m=n, where m and n are integers.

(b) If the lattice of section (a) consists of atoms in a crystal where the rows are parallel to the crystal

face, show that radiation of wavelength � incident on the crystal face at a grazing angle of � is

scattered to give interference maxima when 2d sin � ¼ n� (Bragg reflection).

Problem 12.6
Show that the separation of equal sources in a linear array producing a principal maximum along the

line of the sources ð� ¼ ��=2Þ is equal to the wavelength being radiated. Such a pattern is called

‘end fire’. Determine the positions (values of �) of the secondary maxima for N ¼ 4 and plot the

angular distribution of the intensity.

Problem 12.7
The first multiple radio astronomical interferometer was equivalent to a linear array of N ¼ 32

sources (receivers) with a separation f ¼ 7m working at a wavelength � ¼ 0:21m. Show that the

angular width of the central maximum is 6 min of arc and that the angular separation between

successive principal maxima is 1�42 0.

Problem 12.8
Monochromatic light is normally incident on a single slit, and the intensity of the diffracted light at

an angle � is represented in magnitude and direction by a vector I, the tip of which traces a polar

diagram. Sketch several polar diagrams to show that as the ratio of slit width to the wavelength

gradually increases the polar diagram becomes concentrated along the direction � ¼ 0.

Problem 12.9
The condition for the maxima of the intensity of light of wavelength � diffracted by a single slit of

width d is given by � ¼ tan�, where � ¼ �d sin �=�. The approximate values of � which satisfy this

equation are � ¼ 0;þ3�=2;þ5�=2, etc. Writing � ¼ 3�=2� �; 5�=2� �, etc. where � is small,

show that the real solutions for � are � ¼ 0, �1:43�;�2:459�;�3:471�, etc.

Problem 12.10
Prove that the intensity of the secondary maximum for a grating of three slits is 1

9
of that of the

principal maximum if only interference effects are considered.

Problem 12.11
A diffraction grating has N slits and a grating space f. If 	 ¼ �f sin �=�, where � is the angle of

diffraction, calculate the phase change d	 required to move the diffracted light from the principal

maximum to the first minimum to show that the half width of the spectral line produced by the

grating is given by d � ¼ ðnN cot �Þ�1
, where n is the spectral order. (For N ¼ 14; 000; n ¼ 1 and

� ¼ 19�, d� � 5 s of arc.)

Problem 12.12
(a) Dispersion is the separation of spectral lines of different wavelengths by a diffraction grating and

increases with the spectral order n. Show that the dispersion of the lines when projected by a lens of

focal length F on a screen is given by

dl

d�
¼ F

d�

d�
¼ nF

f
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for a diffraction angle � and the nth order, where l is the linear spacing on the screen and f is the

grating space.

(b) Show that the change in linear separation per unit increase in spectral order for two wavelengths

� ¼ 5� 10�7 m and �2 ¼ 5:2� 10�7 m in a system where F ¼ 2m and f ¼ 2� 10�6 m is

2� 10�2 m.

Problem 12.13
(a) A sodium doublet consists of two wavelength �1 ¼ 5:890� 10�7 m and �2 ¼ 5:896� 10�7 m.

Show that the minimum number of lines a grating must have to resolve this doublet in the third

spectral order is � 328.

(b) A red spectral line of wavelength � ¼ 6:5� 10�7 m is observed to be a close doublet. If the two

lines are just resolved in the third spectral order by a grating of 9� 104 lines show that the doublet

separation is 2:4� 10�2 m.

Problem 12.14
Optical instruments have circular apertures, so that the Rayleigh criterion for resolution is given by

sin � ¼ 1:22�=a, where a is the diameter of the aperture.

s exaggerated. Consider OB II O′B
OA II O′A

A

B

i

0′

0

I′

I
S

Two points O and O 0 of a specimen in the object plane of a microscope are separated by a distance
s. The angle subtended by each at the objective aperture is 2i and their images I and I 0 are just
resolved. By considering the path difference between O 0A and O 0B show that the separation
s ¼ 1:22�=2 sin i.

Summary of Important Results

Interference: Division of Wavefront (Two Equal Sources)

Intensity

I ¼ 4I s cos
2 �=2

where

I s ¼ source intensity

and

� ¼ 2�

�
(path difference)

� �
is phase difference
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Interference (N Equal Sources -- Separation f )

I ¼ I s
sin2 N	

sin2 	
where 	 ¼ �

�
f sin �

Principal Maxima

I ¼ N 2I s at f sin � ¼ n�

Fraunhofer Diffraction (Single Slit -- Width d)

Intensity

I ¼ I0
sin2 �

�2
where � ¼ �

�
d sin �

Intensity Distribution from N Slits (Width d -- Separation f )

I ¼ I0
sin2 �

�2

sin2 N	

sin2 	

(interference pattern modified by single slit diffraction envelope).

Resolving Power of Transmission Grating

�

d�
¼ nN

where n is spectral order and N is number of grating lines:

Expressible in terms of Bandwidth Theorem as

���t ¼ 1

where�� is resolvable frequency difference and�t is the time difference between extreme

optical paths.

Resolving power

�

��
¼ �

��

��� ��� ¼ !

�!
¼ Q

where Q is the quality factor of the system.
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