PRACTICE PAPER

Time allowed: 45 minutes Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:

1.	The matrix $A = \begin{bmatrix} 0 & 0 & 5 \\ 0 & 5 & 0 \\ 5 & 0 & 0 \end{bmatrix}$	is a		
	(a) Scalar matrix	(b) Diagonal matrix	(c) Unit matrix	(d) Square matrix
2.	If $\begin{vmatrix} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} = 0$), then value of x is		
	(a) -12, 8	(b) -12, 0	(c) 12, -8	(d) None of these
3.	If $A = [a_{ij}]$ is a matrix of	order 2×2 , such that $ A $:	= -15 and C_{ij} represents the	cofactor of a_{ij} , then value of
	$a_{21} C_{21} + a_{22} C_{22} + a_{23} C_{23}$	is		
	(a) -15	(b) 15	(c) 31	(d) 0
4.	If $f(x) = e^{\alpha x}$ then $f'(0)$ is	equal to		
	(a) 0	(b) α	(c) α ²	(d) None of these
5.	If m be the slope of a tang	gent to the curve $e^y = 1 + x^2$	then	
	(a) m > 1	(b) m < 1	(c) m < 1	(d) m ≤1
6.	$\int \frac{dx}{(x^2 + a^2)(x^2 + b^2)}$ equals			
	(a) $\frac{1}{b^2 - a^2} \left[\frac{1}{b} \tan^{-1} \left(\frac{x}{a} \right) - \frac{1}{a^2} \right]$	$\left[\frac{1}{t}\tan^{-1}(x)\right] + C$	(b) $\frac{1}{b^2 - a^2} \left[\frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) - \frac{1}{b} \right]$	$\tan^{-1}\left(\frac{x}{b}\right)$ + C
	(c) $\frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + \frac{1}{b} \tan^{-1} \left(\frac{x}{b} \right)$	$\left(\frac{x}{b}\right) + C$	$(d) \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) - \frac{1}{b} \tan^{-1} \left(\frac{x}{b} \right)$	+C
7.	$\int xe^{2x}(1+x)dx$, equals			

(2)	xe^x		_
(a)	-2	т	L

(b)
$$\frac{(e^x)^2}{2} + C$$

(c)
$$\frac{(1+x)^2}{2} + C$$

(d)
$$\frac{(xe^x)^2}{2} + C$$

8. $\int (x^x)^2 (1 + \log x) dx$, equals

(a)
$$\frac{(x^x)^2}{2} + C$$

(b)
$$x^x + C$$

(c)
$$\frac{x^x}{2} + C$$

(d) none of these

Mathematics

- 9. The value of $\int_0^a \log(\cot a + \tan x) dx$, where $a \in (0, \pi/2)$ is
 - (a) a log (sin a)
- (b) a cos a
- (c) a log (sin a)
- (d) log (sin a)
- 10. The area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$ is
 - (a) 14 sq. units
- (b) 4 sq. units
- (c) 3 sq. units
- (d) 1 sq. unit
- 11. The degree of the differential equation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^3 + 6y^5 = 0$ is
 - (a) 1

(b) 2

(c) 3

- (d) 5
- 12. The solution of differential equation $\cos x \sin y \, dx + \sin x \cos y \, dy = 0$ is

(a)
$$\frac{\sin x}{\sin y} = C$$

(b)
$$\sin x + \sin y = C$$

(c) $\sin x \cdot \sin y = C$

- (d) $\cos x \cdot \cos y = C$
- 13. The point at which the maximum value of Z = x + y, subject to constraints $x + 2y \le 70$, $2x + y \le 95$, $x, y \ge 0$ is obtained, is
 - (a) (30, 25)
- (b) (20, 35)
- (c) (35, 20)
- (d) (40, 15)
- 14. The probability that in 10 throws of a fair die, a score which is a multiple of 3 will be obtained in at least 8 of the throws, is
 - (a) $\frac{7}{10^{10}}$
- (b) $\frac{201}{3^{10}}$
- (c) $\frac{1}{9}$

- (d) $\frac{201}{10}$
- 15. A discrete random variable X has the following probability distribution then the value of C is

Х		1	2	3	4	5	6	7
P(X)	С	2 <i>C</i>	2C	3 <i>C</i>	C^2	$2C^2$	$7C^2 + C$

(a) $\frac{1}{10}$

(b) $\frac{3}{10}$

(c) 1/5

(d) $\frac{2}{5}$

Section-B (B1)

- 16. Read the following statements.
 - Statement I : Let A and B are finite sets containing m and n respectively. Then the number of relation defined from A to B is 2^{mn}.

Statement II : Let $A = \{1, 2\}$ and a relation $R = \{(1, 1)\}$ defined on A is reflexive relation.

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these
- 17. For real numbers x and y, define xRy if and only if $x y + \sqrt{2}$ is an irrational number. Then the relation R is
 - (a) reflexive
- (b) symmetric
- (c) transitive
- (d) none of these
- 18. The value of 'a' for which $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = \frac{ax+7}{x^2+4}$ is invertible, is
 - (a)(0,2)
- (b) (1, ∞)
- (c) (0, ∞)
- (d) None of these

19.	Let * be a binary operation on \mathbb{R} as $a * b = b^a$ then 2 * 3 is equal to				
	(a) 9	(b) 8	(c) 27	(d) None of these	
20.	The domain of the function $f(x) = \log_{3+x}(x^2 - 1)$ is				
	(a) $(-3, -1) \cup (1, \infty)$		(b) $[-3, -1) \cup [1, \infty)$		
	(c) $(-3, -2) \cup (-2, -1) \cup ($	1,∞)	(d) $[-3,-2) \cup (-2,-1) \cup [1,-2]$,∞)	
21.	The domain of $\sin^{-1}[x]$ is	- ,			
	(a) [-1, 1]		(c) {-1, 0, 1}	(d) None of these	
22.	The value of $\sin^{-1}(x^2 - 6x^2)$	$(x + 11) + \cos^{-1}(x^2 - 6x + 11)$	for all $x \in R$ is		
	(a) 0	(b) 1	(c) $\frac{\pi}{2}$	(d) none of these	
23.	The domain of $y = \cos^{-1}$	$(x^2 - 4)$ is			
	(a) [-1, 1]	(b) $[-\sqrt{5}, -\sqrt{3}] \cap [\sqrt{3}, \sqrt{5}]$	(c) $[-\sqrt{5}, -\sqrt{3}] \cup [\sqrt{3}, \sqrt{5}]$	(d) $[0, \pi]$	
24.	The domain of the functi	on defined $f(x) = \sin^{-1} x + c$	os x is		
	(a) ¢	(b) $(-\infty, \infty)$	(c) [-1, 1]	(d) $[0, \pi]$	
25.	Read the following states	nents.			
			is a skew symmetric matrix.		
		quare matrix then $(A - A')$	is a symmetric matrix.		
	Choose the correct option				
		out statement II is not correc			
	(c) Both statements I and	but statement I is not correc II are correct	t.		
	(d) Both statements I and				
	If $A = [a \ b]$, $B = [-b \ -a]$ and $C = \begin{bmatrix} a \\ -a \end{bmatrix}$, then which is the correct statement?				
26.	If $A = [a \ b], B = [-b \ -a]$	and $C = \begin{bmatrix} -a \end{bmatrix}$ then which is	the correct statement?		
	(a) $A = -B$	$(b)\ A+B=B+A$	(c) $AC = BC$	$(d)\ CA=CB$	
		1 1 1			
27.	The maximum value of	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
		(b) -1/2	(2) 0	(4) 4	
		2	(c) 0	(d) 4	
28.	If $A = \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix}$ then value of	of A ⁻¹ is			
	(a) $\frac{1}{13}\begin{bmatrix} 5 & -1 \\ -2 & 3 \end{bmatrix}$	1	(c) $\frac{1}{2}\begin{bmatrix} 5 & -1 \\ -2 & 3 \end{bmatrix}$	$(d) \ \frac{1}{13} \begin{bmatrix} 5 & 2 \\ -1 & 3 \end{bmatrix}$	
29.	Differentiation of sin ⁻¹	$\frac{2x}{1+x^2}$) w.r.t. $tan^{-1}x$, $-1 < x < x$	< 1 is		
	(a) - 2	(b) 2	(c) 0	(d) 1	
30.	The derivatives of $\sin x$	v.r.t. cos x is			
	(a) cot x	(b) - cot x	(c) sin x	$(d) - \cos x$	

(d) none of these

31.	The value of <i>c</i> in Mean Value Theorem for the function $f(x) = x^2 - 4x - 3$, $\forall x \in [1, 3]$ is				
	(a) 3	(b) 1	(c) 2	(d) none of these	
32.	If $f(x) = x - 3$ and $g(x) = \frac{1}{2}$	$\frac{x^2}{3}$ + 1, then which of the	following can be a discontin	uous function?	

(a)
$$f(x) + g(x)$$
 (b) $f(x) \cdot g(x)$ (c) $f(x) - g(x)$ (d) $\frac{g(x)}{f(x)}$

33. The number of values of x where the function
$$f(x) = \cos x + \cos(\sqrt{2}x)$$
 attains its maximum is

(a) 0 (b) 1 (c) 2 (d) infinite

34.
$$\int \frac{(x^2 - 1)}{(x^2 + 1)\sqrt{x^4 + 1}} dx, \text{ equals}$$
(a) $\sec^{-1}\left(\frac{x^2 + 1}{x\sqrt{2}}\right) + C$ (b) $\frac{1}{\sqrt{2}}\sec^{-1}\left(\frac{x^2 + 1}{\sqrt{2}}\right) + C$ (c) $\frac{1}{\sqrt{2}}\sec^{-1}\left(\frac{x^2 + 1}{x\sqrt{2}}\right) + C$ (d) none of these

35. If
$$\int_0^1 \frac{e^t dt}{1+t} = a$$
, then $\int_0^1 \frac{e^t dt}{(1+t)^2}$ is equal to

(a)
$$a-1+\frac{e}{2}$$
 (b) $a+1-\frac{e}{2}$ (c) $a-1-\frac{e}{2}$ (d) $a+1+\frac{e}{2}$

36. Let $p(x)$ be a function defined on R such that $p'(x)=p'(1-x)$, for all $x\in[0,1]$, $p(0)=1$ and $p(1)=41$. Then $\int_0^1 p(x) dx$ is equal to

(c) 6 sq. units

37. The area bounded by the lines
$$x + 2y = 2$$
, $y - x = 1$ and $2x + y = 7$ is

(b) 3 sq. units

38. The differential equation of family of curves
$$y^2 = 4a (x+a)$$
 is

(a)
$$y^2 = 4\frac{dy}{dx}\left(x + \frac{dy}{dx}\right)$$
 (b) $2y\frac{dy}{dx} = 4a$

(c)
$$y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$

 (d) $2x \frac{dy}{dx} + y\left(\frac{dy}{dx}\right)^2 - y = 0$

39. Read the following statements.

(a) 4 sq. units

Statement I : Integrating factor for the linear differential equation $\frac{dy}{dx} + y \tan x = \sec x$ is $\sec x$.

Statement II : The differential equation $\frac{dy}{dx} + x = 0$ is a differential equation of degree 1.

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these

40.	The value of k for which	the points $A \equiv (1, 0, 2)$, B	$\equiv (3, 1, 0), C \equiv (2, 0, 2), D$	$\equiv (k, 1, 0)$ are coplanar, is	
	(a) 0	(b) 1	(c) 2	(d) For all values of k	
41.	If \vec{A} , \vec{B} , \vec{C} are three non-	coplanar vectors then $\frac{\vec{A} \cdot (\vec{C} \times \vec{C})}{(\vec{C} \times \vec{C})}$	$\frac{\vec{B} \times \vec{C}}{(\vec{A}) \cdot \vec{B}} + \frac{\vec{B} \cdot (\vec{A} \times \vec{C})}{\vec{C} \cdot (\vec{A} \times \vec{B})}$ is equal	to	
	(a) 2	(b) 3	(c) 0	(d) None of these	
42.	The value of $3[\vec{a} \times \hat{i} ^2 + \vec{a} \times \hat{i} ^2]$	$ \vec{a} \times \hat{j} ^2 + \vec{a} \times \hat{k} ^2$ is			
	(a) $4\overrightarrow{a}^2$	(b) \overrightarrow{a}^2	(c) 3a ²	(d) $\overrightarrow{6a}^2$	
43.	\hat{a} and \hat{b} are two unit vectors	tors and α is an angle betw	veen them, then		
	$(a) \ \frac{1}{2} \hat{a} - \hat{b} = \sin \frac{\alpha}{2}$	(b) $\frac{1}{2}(\hat{a} - \hat{b})^2 = 1 - \sin \alpha$	(c) $\hat{a} \times \hat{b} = \sin \alpha$	(d) $\frac{1}{2}(\hat{a} - \hat{b})^2 = 1 + \cos \alpha$	
44.	A line makes equal angle	e with co-ordinate axes. Di	rection cosines of this line a	re	
	(a) $\pm (1, 1, 1)$	(b) $\pm \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$	(c) $\pm \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$(d) \ \pm \left(\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$	
45.	The image of the point h	having position vector $\hat{i} + 3$	$\hat{j} + 4\hat{k}$ in the plane \vec{r} . $(2\hat{i} - \hat{j})$	$+\hat{k}) + 3 = 0$ is	
	(a) $-3\hat{i} + 5\hat{j} + 2\hat{k}$	(b) $5\hat{i} - 3\hat{j} - 7\hat{k}$	(c) $-3\hat{i} + 5\hat{j} - 2\hat{k}$	(d) None of these	
46.	The co-ordinates of the $B(0, -1, 3)$ and $C(2, -3, -1)$		wn from point A(1, 8, 4) to	the line joining the points	
	(a) $\left(\frac{-7}{3}, \frac{2}{3}, \frac{11}{3}\right)$	(b) $\left(\frac{-5}{3}, \frac{2}{3}, \frac{19}{3}\right)$	(c) $\left(\frac{4}{3}, \frac{2}{3}, \frac{11}{3}\right)$	(d) None of these	
47.	P is the point on the line y co-ordinate is	e segment joining the point	s (3, 2, –1) and (6, 2, –2). If x	co-ordinate of <i>P</i> is 5, then its	
	(a) 2	(b) 1	(c) - 1	(d) -2	
48.	The probability of obtain	ning an even prime numbe	r on each die, when a pair o	f die is rolled is	
	(a) 0	(b) 1/3	(c) 1/12	(d) 1/36	
49.	. Two events A and B will be independent, if				
	(a) A and B are mutually	exclusive.	(b) $P(A' \cap B') = [1 - P(A)]$	[1 - P(B)]	
	(c) P(A) = P(B)	1 (1 (P(4) - P(P)	(d) $P(A) + P(B) = 1$		
50.	If A and B are any two events such that $P(A) + P(B) - P(A \text{ and } B) = P(A)$, then				
	(a) P(B/A) = 1	(b) $P(A/B) = 1$	(c) P(B/A) = 0	(d) P(A/B) = 0	