CHAPTER 4

MIXTURES

§4.01 Introduction

In this chapter we shall discuss homogeneous mixtures of two or more
substances which do not react chemically. Consideration of chemica!
reactions is postponed to chapter 6. The mixtures may be gaseous, liquid,
or solid. So far as possible each of the several component substances of a
mixture will be treated on the same basis. The opposite point of view is
taken in chapter 5 where one substance is regarded as the solvent and the
remaining substances as solutes.

As soon as we turn from single substances to mixtures we introduce the
possibility of new degrees of freedom associated with differences of composi-
tion. For example we can have two or more liquid phases of different com-
position in mutual equilibrium.

There are no differences of principle between the treatments of systems
of two components on the one hand and of systems of more than two com-
ponents on the other. Many of the formulae for the former are however
more compact than the corresponding formulae for the latter. For this
reason we shall in some sections confine ourselves mainly if not entirely,
to systems of two substances, i.e. binary systems.

§4.02 Composition of mixture

The most convenient quantities specifying the relative composition of a
mixture are the mole fractions of the several components. These were
defined in §1.29. We recall that in a mixture of ¢ components only c—1
of the mole fractions are independent owing to the identity

X +x,4. .. 4x.=1. 4.02.1

When we require independent variables it is convenient to use x,, X3, ... X¢
and regard x, as a dependent variable defined by

Xy=1l=X3—=X3—...—X. 4.02.2
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In the simple case of a binary mixture the subscripts may be dropped so
that we write x instead of x, and 1—x instead of x,.

§4.03 Partial and proper quantities

We recall the definitions in §1.26 of partial quantities X; and proper quanti-
ties X, in terms of an extensive property X, namely

‘X'l' =(6X/an3)-,~’ P, ny (j # i) 4.03. 1
Xp=X/Y n;. 4.03.2
i

We also recall formula (1.26.3)
X=Zn,‘X,'. 4.03.3
i

If we differentiate this we obtain

dX=z deni+z n,-dX,- 4.03.4
i i

while (1) may be rewritten as

dX=) X,dn, (const. T, P). 4.03.5

Subtracting (5) from (4) we obtain
Y n;dX;=0 (const. T, P) 4.03.6

or dividing by X; n;
Y x,dX;=0  (const. T, P). 4.03.7

In particular for a binary mixture
(1-x)(©X,/0x)+x(8X,/0x)=0  (const. T, P). 4.03.8
In the case of a binary mixture we can express X, and X, in terms of X, and
x. Formula (5) reduces to
dX=X,dn,+ X,dn,. 4.03.9
If we apply (9) to unit amount of varying composition, it becomes
dXp=(X,—X,)dx 4.03.10

or
(aXm/ax)T’p-:Xz—‘X]. 4.03.11
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If we apply (3) to unit arount it becomes

Xo=(1-%)X{+xX,. 4.03.12

Solving (11) and (12) for X, and X, we obtain
X=X pn—x(0X,/0X)r, p 4.03.13
Xo=Xn+(1—=x)(0Xn/0x)r,p. 4.03.14

Formulae (13) and (14) have a simple geometrical interpretation shown in
figure 4.1. The abscissa is x, increasing from zero at O representing the
pure component 1 to unity at O’ representing the pure component 2. Suppose
the curve APB to be a plot of the proper quantity X,, as ordinate and P
to be any point on it. Let the tangent QPR to this curve at P cut the O and O’
ordinates at Q and R respectively. Then from (13) and (14) we see that the
partial quantities X, and X, for the composition at P are represented by OQ
and O'R respectively. It is clear from this construction or otherwise that
for either pure component the partial quantity is equal to the proper quantity.

N
© X =X o

’

Fig. 4.1. Relation between partial quantities and proper quantity

An especially important example of the pair of formulae (13) and (14)
is obtained by setting X'=G. Taking account of (1.28.11) we obtain
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ﬂ1=G1=Gm—‘x(aGm/ax)T,P 4.03- 15
p3= Gy =Gy +(1 = x)(0G/0X)7. p. 4.03.16

§4.04 Relations between partial quantities

As already mentioned in §1.26 from every homogeneous relation between
extensive properties we obtain by differentiation with respect to n; a corre-
sponding relation between the partial quantities at a given composition.
We now give important examples of such relations taking into account
(1.28.11) that

w=G;. 4.04.1
We have with T, P as independent variables

H=U;+PV 4.04.2
=G =U,—TS;+ PV, 4.04.3
S;=—0G,/0T = —ou,/oT 4.04.4
H,=G,—TdG,/0T =p,— Tou,/oT 4.04.5
V,=0G,;/0P =0u,/0P 4.04.6
C;=T0S,/0T=0H,/oT. 4.04.7

Relations of precisely the same form hold between proper quantities.
From (5) and (3.15.2) we deduce

0ln A,/0T=—H,/RT? 4.04.8

§4.05 Partial quantities at high dilution
By rewriting (4.03.8) in the form
(0X,/0x)/(0X ;/0x)= —x/(1 —x) 4.05.1

we make the interesting observation that as x—0 either (0X,/0x)—0 or
(8X,/0x)—00. Both alternatives occur. We shall find that as x—0, the
quantities (0U,/0x), (0H,/0x), (0V,/0x), (0C,/0x) all tend towards zero,
while (8S,/0x) and (8G,/0x)=(0u,/0x) tend to infinity.

In the limit x—1 we of course meet the converse behaviour.

§4.06 Perfect gaseous mixture

In discussing gaseous mixtures, or in discussing single gases, it is expedient
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to begin by taking 7, V as independent variables and later to transform to

T, P as independent variables.
We begin by rewriting some of the most important formulae for an amount

n of a single perfect gas occupying a volume V at a temperature T. The
Helmbholtz function is
F=n{u®—~RT+RT In(nRT/P°V)} 4.06.1

where u® depends on T and on the standard pressure P° but not on 7 or V.
From (1) we derive by differentiation

= —n{du®/dT +R In(nRT/P°V)} 4.06.2
U=n{u®—-Tdu®/dT—RT} 4.06.3
P=nRT|V 4.06.4
H=n{u® —~Tdu®/dT} 4.06.5

G =n{u®+RT In(nRT/P°V)}=n{u® +RT n(P/P®)}.  4.06.6

Formula (6) may be regarded as defining u°.

We now define a perfect gaseous mixture by the property that at given
T, V the Helmholtz function & of the mixture is equal to the sum of the
Helmholtz functions of the unmixed gases each at the given T, V. We
accordingly have for a perfect gaseous mixture

&=Y n{u’—RT+RT In(n; RT/P°V)}. 4.06.7

The molecular interpretation of formula (7) is that for a mixture of perfect
gases in a container at given temperature and volume the molecules of
each gaseous species behave as if the other species were absent. From the
additivity of the Helmoltz function we deduce by differentiation the additivity
of other functions. In particular we have

S=-Y n{du’/dT +R In(n;RT/P°V)} 4.06.8
U= Y n{u’—Tdu’/dT~RT} 4.06.9
P= Y mRTjV 4.06.10
H= Y n{u’—Tdp’/dT} 4.06.11

G= Y n{u’+RT In(n;RT/P°V)}

i

= Y n{u’ +RT In(x,P|P®)}. 4.06.12
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We repeat that p is a function of T'and P® independent of ¥ and the n,’s.
Formula (10) is called Dalton’s law of partial pressures; a better name
would be the law of additivity of pressures.

§4.07 Slightly imperfect gaseous mixture

A single gas or a gaseous mixture may be regarded as perfect if the interac-
tions between molecules may be neglected. When these interactions between
molecules are not negligible we use a virial expansion in powers of n/V. We
recall the formulae for a single gas
A =n{u®—RT+RT In(nRT/P°V)}

+nRT{nB,|V +4n’B,y/V*+1inB,/V?} 4.07.1
where B,, B;, and B, are the second, third, and fourth virial coefficients
respectively. Higher terms may be added, but when three virial coefficients
are insufficient the virial expansion ceases to be useful.

From (1) we obtain by differentiation with respect to V

P=(nRT|V){1+nB,/V +n*B,/V*+n®B,/V?}. 4.07.2

Either formula (1) or formula (2) defines the virial coefficients B,, B;, B,.
For the sake of brevity and simplicity we shall omit the terms in B;, B,.
There is in principle no difficulty in including them if required. We accord-
ingly abbreviate (1) to

F=n{u® —~RT+RT In(nRT/P°V)}+n’B|V 4.07.3

where we have dropped the subscript 2 from B,.

It is known from statistical mechanics that B, takes account of interactions
between pairs of molecules, B, between triplets, B, between quadruplets.
This tells us how to generalize formula (1) to mixtures. In particular for a
binary mixture

F=n{uf —RT+RT In(n, RT/P°V)}
+n,{u$ —RT+RT In(n, RT/P°V)}
+{niB(11)+2n,ny B(13,+n3B5}RT/V. 4.07.4

Differentiating (4) with respect to ¥ we obtain
PV=(nl +n2)RT+ {nfB(“)+2n1 nzB(12)+ n;'B(“)}RT/V. 4.07.5
From (4) and (5) we obtain by addition for the Gibbs function

G=n{uf +RT In(n, RT/P°V)}
+n,{us + RT In(n, RT/P°V)}
+2{nfB(11)+2n1nzB(12)+n§B(22)}RT/V 4.07.6
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If we may neglect terms in the squares of By, B(12), B(22) as well as terms
in the third and higher virial coefficients, we call the mixture slightly imper-
fect. From (5) we have to this approximation

1n(PV/RT)=ln(n,+n2)+{nfB(m+2n1nzB(12,+n§B(22)}/(nl+n2)V.
4.07.7
Substituting from (7) into (6) we obtain

G=n,{u{ +RT In(P/P®)+RT In[n,/(n, +n,)]}
+n,{u3 +RT In(P/P®)+RT In[n,/(n, +n,)]}
+{n}B(11)+2n, nyB(13)+ 13 B2} Pl(ny+ny) 4.07.8

and consequently for the proper Gibbs function

Gn=x{u? +RT in(P/P°)+RT In x,}
+x,{u$ +RT In(P/P®)+RT In x,}
+{xfB(“)+2x1x23(12)+x§B(22)}P. 4-07-9

It is convenient to define a quantity J.,, by
B12=%(B(11)+B(22))+5(12). 4-07.10
We can now rewrite (9) as

Gn=x{u{ +RT In(PjP°)+RT In x, + By, P}
+x,{ug +RT In(P/P®)+RT In x, + B35, P}
+2X, X, 812y P. 4.07.11

Experimental data on By, or d(,,, are much scantier than data on B,
and B(,,,. When the species 1 and 2 conform to the principle of correspon-
ding states it is possible to estimate B(,,, from B, ,, and B, with useful
accuracy*. When this is not the case it is usual to neglect §y,,. This proce-
dure is due to Lewis and Randall'.

From (11) by use of (4.03.13) and (4.03.14) we deduce

RT In 2y =p, =G, =p® +RT In(P/P®)+RT In x, +(B,, +2x38.1,))P
4.07.12

RT InJ,=p,=G,=p5 +RT In(P/P®)+ RT In x,+(B,, +2x3 ,,)P.
4.07.13

By further differentiations we obtain
—S;=duf/dT + R In(P/P®)+R In x, +(d/dT)(B,, +2x36(,,))P  4.07.14

* Guggenheim and McGlashan, Proc. Roy. Soc. A 1951 206 448.
t Lewis and Randall, Thermodynamics and the Free Energy of Chemical Substances,
McGraw-Hill 1923 p. 226.
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H =p~Tdy, [dT +(1-TA/dT)(B, +2x35,,)P 4.07.15
Vi=RT|P+By,+2x382)- 4.07.16

There are analogous formulae for S,, H,, and V,.

§4.08 Fugacities of gases

The fugacity p, of each species i in a gas is defined by
pi/A;=const. (T const.) 4.08.1
pi/x;P-»1 as P-0 (T const.). 4.08.2

Using these definitions we obtain for a binary mixture from (4.07.12) and

(4.07.13)
p1=x, P exp{(B, +2x}6,,))P/RT} 4.08.3

p2=X, P exp{(B,,+2x28(,,)P/RT}. 4.08.4

The quantity x, P is called the partial pressure of i.
In a perfect gas these simplify to

p1=x1P 4.08.5
p2=x2P 4.08.6

so that the fugacity of each species is equal to its partial pressure.

§4.09 Liquid mixtures

We now turn to liquid mixtures and the equilibrium between such phases
and other phases, especially a gas phase. We begin by certain general
considerations applying to all such liquid mixtures. We shall next consider
a special class of such mixtures, called ideal, which exhibit an especially
simple behaviour. We shall then show how the behaviour of non-ideal
mixtures can conveniently be compared and correlated with that of ideal
mixtures. The procedure will be illustrated in greater detail for a class of
mixtures called simple.

§4.10 Liquid-vapour equilibrium

Let us now consider from a general point of view the equilibrium conditions
between a liquid mixture of ¢ independent species or components and a
vapour phase. Each phase by itself has evidently c+1 degrees of freedom,
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which we can take as given by the ¢+ 1 independent variables T, P, x,, x,,
... X.. Alternatively if we use the c+2 variables T, P, uy, us, . . . 4. these are
not independent, being connected by the Gibbs-Duhem relation

SudT—VyudP+x,dpy +x,dp, +. . . +x.dp,=0. 4.10.1

We now consider two phases, one liquid and the other vapour, in mutual
equilibrium. We shall continue to use x; to denote a mole fraction in the
liquid phase but shall henceforth denote a mole fraction in the vapour
phase by y,. The variables T, P, u,, 4, . - . i, are connected by two Gibbs-
Duhem relations, one for each phase. Thus, using the superscripts “ to
denote liquid and © to denote gas, we have

SLdT—VidP+x,du, +x,du, +. . . +x.du.=0 4.10.2
SSAT -V, dP+y,dp, +y,dp, +. . .+ y.du =0. 4.10.3
1t is hardly necessary to point out that we need not attach superscripts to

the variables T, P, u,, U, ... U, since at equilibrium each of these has the
same value in both phases.

From (2) and (3) we could, if we wished, eliminate any one of the quanti-
ties d7, dP, du,, du,, . . . du. thus obtaining a single relation between the
remaining ¢ + 1 quantities. Whether we do this or not, it is clear that only ¢ of
these quantities are independent. We conclude that a system of two phases
and ¢ component species in equilibrium has ¢ degrees of freedom in agree-
ment with Gibbs’ phase rule.

§4.11 Azeotropy

For a binary liquid-vapour system the relations (4.10.2) and (4.10.3)
reduce to

SLdT —VEidP+(1—x)dpu, +xdp, =0 4.11.1
SSdT—VEdP+(1~y)du, +ydu,=0 4.11.2

where as usual x, y denote mole fractions of the second species. If we sub-
tract (1) from (2) we obtain

(SS—SEYAT — (V.S — Vi )dP +(x—y)(dpu; —dpu,)=0. 4.11.3

We shall show that this leads to particularly simple and interesting results
when the compositions of the two phases are the same, that is to say

when
x=y. 4.11.4
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Such mixtures are called azeotropic, which means that their composition is
not changed by boiling.

Let us first consider variations of pressure and composition at constant
temperature. Then (3) becomes

(Ve — VE)dPjdx=(x— y)(du,/dx—du,/dx)  (const. T). 4.11.5
Hence for an azeotropic mixture, according to (4)
(VS-VE)dP/dx=0  (const. T). 4.11.6
and since Vs VL it follows that
dP/dx=0  (const. T). 4.11.7

This tells us that at a given temperature the total vapour pressure of a
binary liquid mixture is a maximum or a minimum at the composition of the
azeotropic mixture.

Similarly if we consider variations of temperature and composition at
constant pressure, then (3) becomes

—(Se—SEL)T/dx=(x— y)(du,/dx~du,/dx)  (const. P).  4.11.8
and consequently for an azeotropic mixture
(Se~SL)dT/dx=0  (const. P). 4.11.9
Since SS#SL, it follows that
dT/dx=0  (const. P). 4.11.10

This tells us that at a given pressure the boiling temperature of a binary
liquid mixture is a maximum or a minimum at the composition of the
azeotropic mixture.

These conclusions are almost obvious when expressed by diagrams.
For example figure 4.2 shows the boiling point T plotted against composi-
tions of the two phases. For instance the points L and G represent the liquid
and gas phases in equilibrium at one temperature; L', G’ is another such
pair and L", G”” another. The point M represents liquid and gas of the same
composition and in this example the equilibrium temperature or boiling
point is a minimum.

Let us now consider simultaneous variation of temperature and pressure
such that the mixture remains azeotropic. Returning to formula (3) and
substituting the condition for azeotropy (4), we have

(SS~SEMT —(Ve-VE)dP=0 4.11.11
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which we can rewrite as
dP/dT =(SS—Sk)/(VS—-VE)=A.S/AV 4.11.12

of the same form as Clapeyron’s relation (3.37.3).
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Fig. 4.2. Boiling point of mixtures of benzene and ethanol at one atmosphere

§4.12 Relative activities and fugacities in liquids

All the equilibrium properties of each species i are determined by its chemical
potential u; or by its absolute activity A, related to u; by the definition

ll‘=RT ln A',". 4.12.1

Up to the present we have mentioned absolute activities from time to time
and have given formulae for them with the object of familiarizing the reader
with them. We have however hitherto made little use of absolute activities.
Henceforth we shall make considerably increasing use of them, for in the
treatment of mixtures they are often more convenient than chemical poten-
tials.

In our consideration of liquid mixtures we shall be concerned particularly
with a comparison of the equilibrium properties of the mixture with those
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of the pure components. Consequently we shall be concerned not so much
with g, itself as with the difference p,—u where the superscript © denotes
the value for the pure liquid at the same temperature and pressure. From
(1) we have

ti—us =RT In(2,/20) 4.12.2

where the superscript © is used again with the same meaning. We shall be
particularly concerned with the ratios 1,/A). These ratios are called relative
activities and will be denoted by a;. This name and this symbol are due to
G. N. Lewis*. We have then

a;=/‘ti//‘L?. 4-12.3

We must mention that quantities other than the relative activities defined
here have sometimes also been called activities and denoted by the same
symbol g,. In order to avoid confusion we shall make no use or further
mention of such other quantities.

For the equilibrium of the species i between any two phases o and B
we have according to (3.15.6) the simple condition

A=if 4.12.4

and in particular for the equilibrium between a liquid phase L and a gas
phase G
A=28, 4.12.5

From (5) and (4.08.1) it follows that the ratio of the absolute activities of the
species i in any two liquid phases a, B is equal to the ratio of the fugacities
of the species in the gas phases in equilibrium with o, B respectively.

We now define the fugacity p, of a species i in a liquid phase as follows.
We begin by defining the fugacity p? of the pure liquid i at a given tempera-
ture as equal to the fugacity of its saturated vapour. We then define the
fugacity of i in liquid mixtures at given temperatures but variable pressure
and variable composition by

D;/A;=const. (const. T). 4.12.6

An important application of (6) is to the comparison between the absolute
activity A; of i in a liquid mixture and its absolute activity A{ in the pure
liquid at the same temperature and pressure. We then have

a;=A/A =pi/p}. 4.12.7

* Lewis, J. Amer. Chem. Soc. 1913 35 17.
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§4.13 Pressure dependence

We must now describe how p; is determined in a liquid mixture of given
composition at a given temperature and at a given pressure. At the given
temperature and composition we have to determine the total saturation
vapour pressure P, and the composition of the vapour. If the vapour may
be regarded as a perfect gas then the fugacity p; is equal to the partial
vapour pressure y,P,,,. If the vapour is not a perfect gas we have to apply
a correction for non-ideality by use of a formula such as (4.08.3). We then
obtain the value of the fugacity at the given pressure P by means of

Oln p,/oP=01n A,/0P=V;/RT 4.13.1
or in the integrated form
In p(P)—In pi(Py)=(P— P, )Vi/RT 4.13.2

where we have neglected compressibility.

Although at ordinary pressures the quantity on either side of (2) may be
negligible, nevertheless formula (2) is in principle important as showing
that p,(P) is precisely defined and preciszly determinable for any chosen
value of P, not merely for P=P,,,.

Formula (2) is also important in the discussion of osmotic equilibrium in
the following section.

§4.14 Osmotic equilibrium

Suppose we have two liquid mixtures o and P separated by a membrane
permeable to the species 1 but impermeable to all other species present in
either mixture. In this connection we shall follow the customary practice
of calling the permeant species 1 the solvent and the nonpermeant species
solutes. We assume that the two phases are at the same temperature, but
not necessarily at the same pressure. The condition that the two phases
should be in equilibrium with respect to the solvent species 1 is

A=A 4.14.1
or if we use (4.12.6)

(2

p1=pf. 4.14-2

For the relations to be satisfied it will generally be necessary for the two
phases to be at different pressures. There is then equilibrium with respect
to the solvent species 1, but not with respect to the solute species; nor is
there hydrostatic equilibrium between the two phases, the difference of
pressure being balanced by a force exerted by the membrane. A partial
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equilibrium of this kind is called osmotic equilibrium of the solvent species 1.
By using the relation (4.13.1)

0ln p,/oP=01n A,/0P=V,/RT 4.14.3

we can determine the pressure P*—PP® required to preserve osmotic equili-
brium.

We shall use the notation p, (P, x) to denote the value of the fugacity of
the solvent in a liquid phase of composition x at a pressure P. We do not
refer to the temperature as this is assumed constant throughout. The
condition (2) for osmotic equilibrium becomes in this notation

pl(Pa, xa)=p1(PB, xﬁ). 4-14.4
Dividing both sides of (4) by p,(P®, x*) and taking logarithms, we obtain
In{p,(P*, x)/p,(P*, x*)} =In{p,(P’, x*)/p, (PP, x)}. 4.14.5

If we integrate (3) from PP to P* and substitute the result on the left side of
(5) we find

1 [
27 VidP=In{p,(P?, xP)/p,(PP, x*)}. 4.14.6

PP
In order to evaluate the integral in (6) it is for most purposes sufficient to
ignore compressibility and treat V, as independent of P. In case greater
refinement should be desired, we can obtain all the accuracy that can ever
be required by assuming that ¥/, varies linearly with P. We then obtain

KViy(P*—PP)/RT =In{p,(PP, x*)jp,(P®, x*)} 4.14.7

where the symbol (V) denotes the value of V'] at a pressure equal to the
mean of P* and P®.

Formula (7) is the general relation determining the pressure difference
across the membrane at osmotic equilibrium. The case of greatest interest is
when the phase B consists of the pure solvent. The pressure difference
P*— PP is then called the osmotic pressure and is denoted by I1. We can in
this case replace the superscript ? by ° and drop the superscript *. We thus
have

KV, >[RT =In{p{(P)/p,(P)} 4.14.8
or if, as is often the case, we may ignore compressibility
IV, /RT =In{p3(P)/p,(P)}. 4.14.9

If moreover the pressure P on the pure solvent is roughly atmospheric,
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then regardlesss of how great IT may be we may regard p?/p, as essentially
independent of P. Formula (9) can then be simplified to

1V, /RT =In(p}/p,) 4.14.10

from which we see that, provided the pressure P on the pure solvent is low,
the osmotic pressure II does not depend significantly on P.

If instead of dividing both sides of (4) by p,(P®, x*), we divide both sides
by p,(P*, x*) and otherwise proceed in the same way, we obtain instead of (7)

CVEY(P*~PP)RT =In{p,(P*, x)[p,(P*, x*)} 4.14.11
and instead of (8)
IIVYYRT =In{p(P+I)/p,(P+ 1)} 4.14.12

It can be shown that the alternative formulae (8) and (12) are equivalent.
On the whole formula (8) is the more useful.

§4.15 Pressure on semi-permeable membrane

The osmotic pressure is by definition a pressure that must be applied to the
solution to bring it into a certain equilibrium condition. It is not a pressure
exerted by the solution or part of the solution at its normal low pressure.
It is analogous to the freezing point of a solution, which has no relation to
the actual temperature of the solution, but is the temperature to which it
must be brought to reach a certain equilibrium state. The osmotic pressure
is nevertheless sometimes defined as the pressure exerted on a membrane,
permeable only to the solvent, separating the solution from pure solvent.
This definition, unless carefully qualified, is incorrect. Another definition
sometimes given is the pressure exerted by the solute molecules on a mem-
brane permeable only to the solvent. This definition is still more incorrect
than the last. The truth as regards the pressure on the membrane is as
follows. When the solution is at the same pressure e.g. atmospheric, as the
solvent, there will be a resultant flow of solvent through the membrane
from the solvent to the solution, but the resultant pressure on the membrane
itself is negligibly small, and may be in either direction. If, however, the
solution is subjected to a certain high external pressure, the flow of solvent
through the membrane is equal in either direction; there is then osmotic
equilibrium and the excess pressure on the solution over the pressure of the
solvent is by definition the osmotic pressure. Under conditions of osmotic
equilibrium, but only under these conditions, is the external pressure differ-
ence required to prevent the membrane from moving equal to the osmotic
pressure.
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§4.16 Duhem—Margules relation

We recall the Gibbs-Duhem relation

Z nidﬂi=0

or
Y ndlni=0
i

From (4.12.6) and (2) we deduce
Y ndln p,=0

or dividing by X;n;
Y x;dIn p,=0

(const. T, P)

(const. T, P).

(const. T, P)

(const. T, P).

185

4.16.1

4.16.2

4.16.3

4.16.4

This important relation is known as the Duhem-Margules relation*.

In the simple case of a binary mixture (4) reduces to

(1-x)0In p,/0x+x01n p,/ox=0

(const. T, P)

4.16.5
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Fig. 4.3. Tllustration of Duhem-Margules relation

* Margules, Sitz.ber. Akad. Wiss. Wien 1895 104 1258—1260.
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where as usual x denotes the mole fraction of species 2. It follows from this
relation that if p, and p, are plotted against x, the shape of either curve
completely determines the shape of the other. An example of this inter-
relation* between the pair of curves is shown in figure 4.3 and table 4.1,
where the subscript ; denotes water and , denotes ethanol. In this illustration
no correction has been applied for gas imperfection. In other words p, has
been taken as equal to (1 —y)P,,, and p, as equal to yP,,,.

TABLE 4.1
Verification of Duhem-Margules relation for mixtures of water and ethanol at 25 °C

i (1—y)Pg,, py~y P, —(1—x)0lnp,/Ox
mmHg mmHg =x 0 ln p,/Ox
0 23.75 0.0 1.00
0.1 21.7 17.8 0.76
0.2 20.4 26.8 0.41
0.3 19.4 31.2 0.37
0.4 18.35 34.2 0.355
0.5 17.3 36.9 0.41
0.6 15.8 40.1 0.53
0.7 13.3 43.9 0.655
0.8 10.0 48.3 0.77
0.9 5.5 53.3 0.915
1.0 0.0 59.0 1.00

§4.17 Temperature coefficients

Formula (4.04.5) is equivalent to

o(uw/T)/0T = —H,/T? 4.17.1
or
olnp,/oT=—H/RT? 4.17.2

Consequently from (4.12.7)
9In a;/0T =0 In(p,/pd)/0T = —(H,— H)/RT?. 4.17.3

§4.18 Ideal mixtures

In order to obtain more detailed information concerning the equilibrium
properties of liquid mixtures it is necessary to know or assume something

* Adam and Guggenheim, Proc. Roy. Soc. A 1933 139 231,
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about the dependence of the chemical potentials y, or the absolute activities
J; on the composition of the mixture. Thermodynamic considerations alone
cannot predict the form of this dependence, but only impose certain restric-
tions such as the Gibbs-Duhem relation.

We shall begin by considering liquid mixtures having the property that
at constant temperature and pressure the dependence of the Gibbs function
G, and consequently also of functions derived from G, on the composition is
of the same form as for a perfect gaseous mixture. This means that the value
of G in a mixture containing amount »; of the species i exceeds the value of G
for the unmixed species at the same temperature and pressure by the negative
amount

AG=RT Y n,In{n/Y n}. 4.18.1
i k

Such mixtures are called ideal mixtures. We shall devote considerable atten-
tion to such mixtures for several reasons.

In the first place the behaviour of ideal mixtures is the simplest conceivable
either from a mathematical or from a physical aspect.

In the second place statistical theory predicts that mixtures of very similar
species, in particular isotopes, will be ideal.

In the third place it is found experimentally that almost ideal mixtures
exist, for example benzene+ bromobenzene.

In the fourth place although real mixtures, other than isotopic mixtures,
are not ideal, in many cases the resemblances between a real mixture and an
ideal mixture are more striking than the differences.

§4.19 Thermodynamic functions of ideal mixtures

From formula (4.18.1) we can immediately derive formulae for all the
thermodynamic functions of an ideal mixture. In particular we have, using
the superscript © to refer to the pure liquids at the same pressure,

#;=RT in ,;=03G/dn,=pl +RT In{n,/y n}=p} +RT Inx;  4.19.1
k

a=Ali =x, 4.19.2
Gm =2 Xipi=2 X;pf +RT ¥ x; In x; 4.19.3
Sm=—. x,{0u/0T}—R Y x;In x; 4.19.4

Hn=Y x{u’—T(Ou0T)} = ¥, x,H} 4.19.5
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Va=2 x;{oup/oP} =Y % |2 4.19.6
S;=—0u’/dT—R In x, 4.19.7
Hiy=p? —T{ou)/oT} =H; 4.19.8
V,=0uljoP=Vv". 4.19.9

Furthermore if we use the symbol A,, to denote the increase in a function
when unit amount of mixture is formed from the pure components at
constant temperature and pressure we have

AnG=RT Y x;Inx; 4.19.10

AnS=-RY x;lnx; 4.19.11
i

A H=0 4.19.12

A,V=0. 4.19.13

The relations (10), (11), (12), (13) have precisely the same form as for the
formation of a perfect gaseous mixture from the pure component gases at
constant temperature and pressure.

It must be emphasized that this similarity between ideal liquid mixtures
and perfect gaseous mixtures as regards dependence of the thermodynamic
properties on the composition holds only when the other independent
variables are T and P. There are no correspondingly simple relations in terms
of the variables T and ¥V, which are moreover an inconvenient set of indepen-
dent variables for any phase other than a gas.

There is, of course, no similarity between liquid and gaseous mixtures as
regards dependence of properties on the pressure. For example, in a perfect
gaseous mixture

Ou,/oP=V,=RT/P 4.19.14
while in a liquid ideal mixture
Ow/0P=0ul[0P=V"=V°(1+KkP® —KP) 4.19.15

where 7> denotes the value of ¥/° when P=P® which varies only slightly
with P,

§4.20 Fugacities in ideal mixtures

From formulae (4.08.1) and (4.19.2) we deduce immediately for each species
in an ideal mixture
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pi=x;p;  (const. T, P). 4.20.1
Since at ordinary pressures the equilibrium properties of a liquid are in-
sensitive to the pressure, we may often with negligible error replace (1) by
pi=x;p;  (const. T, P=P,) 4.20.2

where P,,, denotes the total pressure of the saturated vapour.

If moreover we may neglect deviations of the gas from ideality, we may
replace each fugacity p; by the partial pressure y,P so that (2) becomes

YiPa=x,P% ; (const. T, P=P,,) 4.20.3
where PJ, ; denotes the saturated vapour pressure of the pure liquid i.

Formula (3) is called Raoult’s law.
For a binary mixture (1) becomes

pi=(1-x)p?  p,=xp3  (const. T, P) 4.20.4
and formula (3) becomes
(1=y)Pu=(1—x)P%, ,  yPu=xP3 , (const. T; P=P,). 4.20.5
Thus if the fugacities, or less exactly the partial vapour pressures, of the
two components of an ideal binary mixture are plotted against the mole
fraction of one of them two straight lines are obtained. The experimental

data* for the mixture ethylene bromide and propylene bromide at the
temperature 85 °C are shown in figure 4.4 and we see that this mixture is

ZOOJ%I]IIIIIiI
]

15O —

Ethylene bromide
100 —

p/mm Hg

o
O O1 02 03 04 O5 06 O7 08 09 IO
Mole fraction of propylene bromide
Fig. 4.4. Partial and total vapour pressures of mixtures of ethylene bromide and propylene
bromide at 85 °C

* Von Zawidzki, Z. Phys. Chem. 1900 35 129.
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nearly ideal. In figure 4.5 we see a similar plot* for the mixture benzene and
bromobenzene at 80 °C which is also nearly ideal in spite of the considerable
difference between the vapour pressures of the two pure components.

80O T T T T T T T 1
700 +— —
600 — —

SO0 — —
Jotal

Benzene
300 — —

p/mmHg
F-3
0o
0o
1
f

200 — —

100 —
Bromobenzene

0 e et 1 ||
O Ol 02 O3 04 05 06 O7 08 09 IO

mole fraction of bromobenzene

Fig. 4.5. Partial and total vapour pressures of mixtures of benzene and bromobenzene
at 80 °C

§4.21 Osmotic pressure of ideal solution

To obtain the osmotic pressure of an ideal mixture or ideal solution, regard-
ing the component 1 to which the membrane is permeable as solvent, we
have merely to substitute (4.20.4) into (4.14.8). We thus obtain

KV ))/|RT=~1n x, 421.1

wherein we recall that (¥, denotes the value of ¥, averaged between the
pressures of the two phases in osmotic equilibrium. When we neglect com-
pressibility (1) reduces to

V,/RT=—Inx,. 421.2

§4.22 Non-ideal mixtures

Few, if any, real mixtures are ideal, but it is convenient to correlate the
thermodynamic properties of each real mixture with those of an ideal

* McGlashan and Wingrove, Trans. Faraday Soc. 1956 52 470.



MIXTURES 191

mixture. This is achieved most conveniently by the use of excess functions.
For the sake of brevity we shall confine ourselves almost entirely to binary

mixtures.

$4.23  Functions of mixing and excess functions

Consider the process of mixing an amount 1 —x of the liquid species 1 with
an amount x of the liquid species 2, at constant temperature and pressure,
so as to form unit amount of a liquid mixture. The increase of G in this
process is called the proper Gibbs function of mixing and is denoted by A, G.
If the mixture were ideal we should have according to (4.19.3)

AnG'=RT{(1-x) In(1—x)+x In x} 4.23.1

where the superscript I denotes ideal. For a real mixture we denote the excess
A,,G over its ideal value A, G' by GE and call this the excess proper Gibbs
function. We have then

GEJRT=(A,G—A,G)RT
=(1—x) In{4,/A3(1 —x)} +x In{A,/AI x}
=(1-x)In{a,/(1 —x)} +x In{a,/x}
=(1—-x) In{p,/p3(1—x)} +x In{p,/p3 x}. 4.23.2

Since there has been confusion concerning the precise meaning of (4.23.2)
and related formulae, we emphasize that all the quantities 1, A,, A7, A3,
a,, a, p;, P2, PN, pJ relate to the same pressure P as well as the same
temperature. As explained in §4.13 we measure p,, p, at the total saturation
pressure P, of the mixture and then calculate the values of p,, p, at the
chosen pressure P by means of formula (4.13.2). The chosen pressure P
is usually, but not necessarily, equal to the standard pressure P° =1 atm.

Other excess functions are defined similarly. It is clear that the several
excess functions are interrelated in the same way as the extensive functions
from which they are derived. In particular we have

SE= —3GE/oT 4.23.3
HE =GE —-TOoGE/oT 4.23.4
VE=0GE/oP 4.23.5
UE =GE — TOGE /0T — POGE/OP 4.23.6

CE = —-Ta*GEjoT>. 4.23.7



192 MIXTURES

Using (4.03.15) and (4.03.16) we also have
RT In{a,/(1—x)} =pF=GE—x0GL/ox 4.23.8
RT In(a,/x)= u5=GE +(1—x)OGE/Ox. 4.23.9
Differentiating (2) with respect to x we obtain
(RT)™! 8GE[ox=(1—x)d In p,/dx+x3 In p,/dx +In{p{ p,(1—x)/p3 p, x}.

4.23.10
By the Duhem-Margules relation we have

(1-x)01n p,/0x+x01In p,/0x=0. 4.23.11
Subtracting (11) from (10) we obtain
(RT)™'0GE/0x =In(p?/p3) +In{(1 —x)p,/xp,}. 4.23.12

Integrating (12) from x=0 to x and observing that G%, vanishes when x =0,
we obtain

(RT)™'GE(x)=x In(p3/p3) + J In o’ dx 4.23.13
(1]
where o is defined by
o' =(1-x)p,/xp; . 4.23.14

Setting x=1in (13) and remembering that G, vanishes when x =1 we obtain
1

f In o’dx =In(p3/p?). 4.23.15
(1]

If then In o’ is plotted against x, the two domains separated by the straight
line parallel to the x-axis and distant In(p3/p?) from the x-axis have equal
areas.

§4.24 Volatility ratio

The ratio (1 - x)y/x(1 —y), where y denotes the mole fraction of component 2
in the saturated vapour, is called the volatility ratio or relative volatility
and is denoted by «. For the purpose of a rough check on the reliability of
dubious measurements it is often sufficient to use the approximation of a
perfect gas. To this approximation we have

p1/p2=(1-y)y 4.24.1
and (4.23.14) becomes

o' =(1-x)y/x(1-y)=a. 4.24.2



MIXTURES 193

Consequently (4.23.15) becomes
1
f In adx~In(P3 /P, ) 4.24.3
(1]

where P{ ., denotes the saturated vapour pressure of pure 1 and P,
denotes the saturated vapour pressure of pure 2. Formula (3) furnishes a
rough check on the consistency of measurements of a as a function of x.
We can illustrate this by using the experimental data on mixtures of water
and ethanol at 25 °C given in table 4.2.

TABLE 4.2
Volatility ratio of mixtures of water and ethanol at 25 °C

x y o Ina
0.0252 0.1790 8.421 2.131
0.0523 0.3163 8.387 2.127
0.0916 0.4334 7.582 2.026
0.1343 0.5127 6.782 1.914
0.1670 0.5448 5.969 1.787
0.2022 0.5684 5.197 1.648
0.2848 0.6104 3.935 1.370
0.3368 0.6287 3.334 1.204
0.4902 0.6791 2.201 0.789
0.5820 0.7096 1.755 0.562
0.7811 0.8161 1.244 0.218

In figure 4.6 In « is plotted against x and the straight line is at a distance
In(PF (o/P? o) from the x-axis. The two domains separated by this straight

b
20 — —
In e B ]
10 — —
ool L 117
o 02 04 06 08 L]

X
Fig. 4.6. Volatility ratio of mixtures of water and ethanol at 25 °C
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line have equal areas in accordance with formula (3). This procedure for
roughly checking experimental consistency was recommended independently
and almost simultaneously by Redlich and Kister* and by Herington®,
This kind of plot had previously been recommended by Scatchard and

Raymond’.

§4.25 Internal stability with respect to composition

We turn now to a discussion of internal stability with respect to composition.
We can conveniently study this problem for a binary system by reference to
a plot of the proper Gibbs function G,, against mole fraction x at given T, P.
Examples of such plots are shown in figure 4.7.

7, Pconstant along each curve

—_—X

Fig. 4.7. Stable and metastable isotherms

If we now imagine a phase of composition x to split into two, one of
slightly greater and the other of slightly smaller x, the new value of G,
is then given by a point on the straight line joining the two points represen-
ting the two new phases. If this point lies above the one representing the
* Redlich and Kister, Ind. Eng. Chem. 1948 40 345 (paper received 25 November 1946)

t MHerington, Nature 1947 160 610 (letter dated 11 July 1947).
1 Scatchard and Raymond, J. Amer. Chem. Soc. 1938 60 1281.
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original phase, the system will revert to its original state which is stable.

In the contrary case the original phase is unstable. It is then clear from the

diagram that while the upper curve represents phases all stable, the phases

represented by the dotted portion of the lower curve between A and B are

metastable with respect to a mixture of phases represented by A and B.
Since according to (4.03.11)

3G, [0x=G,— Gy =p,— i, 4.25.1

we see that the slope of the curve at any point is equal to u, —u, . Since the
two phases A and B are in mutual equilibrium they have equal values of
i1 B2 and consequently of u, —u, in agreement with the fact that the straight
line AB touches the curve at A and B.

§4.26 Critical mixing

It can happen that at some temperatures the behaviour corresponds to a
curve such as the upper one in figure 4.7 while at other temperatures,
lower o1 higher, the behaviour corresponds to a curve such as the lower
one. There will then be some temperature at which the change in type of
behaviour takes place. This state of affairs is called critical mixing. At temper-
atures on one side of the temperature of critical mixing the two liquids are
miscible in all proportions; at temperatures on the other side the miscibility
is limited, only phases to the left of A or to the right of B being stable.

We shall now determine the conditions of critical mixing. The lower curve
in figure 4.7 is concave upwards in the stable regions and in the dotted
metastable regions. In these parts of the curve

0%G,,/0x*>0. 4.26.1

If we imagine the two dotted curves joined into a single curve then in the
middle there must be a part of the curve convex upwards corresponding to
completely unstable phases. Hence between A and B there are two points of
inflexion where

0%G, jox*=0. 4.26.2

At the temperature of critical mixing these two points merge into a single
point at which as well as (2)
0°G,, jox*=0. 4.26.3

Formulae (2) and (3) together express the conditions of critical mixing.
It is convenient to express these conditions of critical mixing (2) and (3)
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in terms of the excess proper Gibbs function GE. According to the definition
of GE we have
Gn=GE+(1—x)ud+xu3+RT(1—x) In(1—x)+RTxInx. 4.26.4

By successive differentiation with respect to x we obtain

0G,,/0x =0GE/ox — pd + p3 + RT In{x/(1—x)} 4.26.5
0%G,,/0x* =0%GE[dx? + RT/x(1 —x) 4.26.6
03G,/0x> =0%GE[ox® + RT(2x — 1)/x*(1 —x)*. 4.26.7

Substituting (6) into (2) and (7) into (3) we obtain the conditions of critical
mixing in the form

92GEfox?= —RT/x(1—x) 4.26.8
9°GEjox® = —RT(2x—1)/x*(1—x)*. 4.26.9

The use of these formulae will be illustrated in §4.30.

§4.27 Excess functions expressed as polynomials

It is convenient to express the excess proper Gibbs function GE of a binary
mixture as a polynomial in x. We might write such a polynomial as a
succession of integral powers of x but such an expression would obscure
any symmetry between the two component species. Bearing in mind that
GL, must vanish identically both when x;=1-x=0 and when x,=x=0,
we find it most convenient to write the polynomial in the form*

GE=x,x,{Ao+A,(x, — x2) + A5(x, — x2)*}
=x(1—x){Ado+ A,(1—2x)+ A,(1—2x)}. 4.27.1
Higher powers of x; —x, can be included if required. The coefficients 4o,

Ay, A, are by definition independent of x but will usually depend on T
and on P.

§4.28 Symmetrical mixtures

We shall begin by considering those mixtures for which G%,, and consequent-
ly G, also, is symmetrical with respect to x, and x,. Such mixtures are of
interest because they correspond to the model of molecular species of the

* Guggenheim, Trans. Faraday Soc. 1937 33 151 (formula 4.1); Redlich and Kister,
Ind. Eng. Chem. 1948 40 345 (formula 8); Scatchard, Chem. Rev. 1949 44 9.
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same size and shape. Moreover mixtures are known which conform within
the experimental accuracy with formulae symmetrical in x; and x,. We call
such mixtures symmetrical mixtures.

For a symmetrical mixture 4,=0 and formula (4.27.1) reduces to

Gr=x(1—x){Ao+A5(1-2x)*}

=(Ao+ A)x(1 —x)—44, x*(1—x)%. 4.28.1

From (1) we derive for other excess functions
—SE = x(1—x)[04,/0T +(34,/3T)(1—2x)*] 4.28.2
HE=x(1—x)[Ao— T(0A4o/0T)+ {A,— T(34,/0T)}(1 —2x)*] 4.28.3
VE=x(1-x)[04,/0P +(34,/0P)(1—2x)*] 4.28.4
pE=RT In(a,/x,)=x3{Ao+ Az(x;—x,)(x5 — 5%,)} 4.28.5
pE=RT In(a,/x,)=x2{Ag+ A,(x, —x,)(x; — 5%,)}. 4.28.6

In (5) or (6) the term in A, vanishes when x=% or  as well as when x=4.
When the deviation of the vapour from a perfect gas is neglected, we obtain
for the volatility ratio o using (4.23.12) and (4.24.2)

RT (P}, 0/ PY o)+ RT In o= —(x; —x,){Ao+(1 8%, X;)4,}. 4.28.7

We observe that the term in A, vanishes when x, x,=} as well as when

x=1%

§4.29 Simple mixtures

We shall now consider those symmetrical mixtures for which the terms in
A, and higher terms are negligible. Writing w in place of 4, we have

Gi=x(1-x)w  w=w(T, P) 4.29.1

where w or A, is independent of x but will in general depend on T and P.
We call mixtures having properties defined by (1) simple mixtures. Such
mixtures are important for several reasons.

In the first place the behaviour of these mixtures is the simplest conceivable
after ideal mixtures either from a mathematical or from a physical aspect.

In the second place some binary mixtures show a behaviour which can be
represented either accurately or approximately by the formulae of simple
mixtures.

In the third place statistical theory predicts that a mixture of two kinds of
non-polar molecules of similar simple shape and similar size should obey
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certain laws to which the formulae of simple mixtures are a useful approxi-
mation.

The formulae of simple mixtures, as here defined, were used by Porter*
to express empirically partial vapour pressure measurements on mixtures
of ethyl ether and acetone at 30°C and a few measurements at 20 °C. The
best value of w at 20 °C was found to be slightly greater than that at 30°C,
Later on Heitler' related these formulae to the model of liquids now usually
called the ‘quasi-crystalline’ model and these formulae have been applied
to experimental measurements on various mixtures especially by Hildebrand®.
It was assumed by Heitler and subsequently generally accepted that the value
of w should be independent of temperature although this by no means follows
from the quasi-crystalline model used in the derivation of the formulae.

From (1) we derive

—SE=x(1—x)ow/oT 4.29.2
HE=x(1—x)(w—T0w/oT) 4.29.3
Ve =x(1—x)ow/oP 4.29.4
ui=RT In{a,/(1—x)} =wx? 4.29.5
p5=RT In{a,/x}=w(1—x)% 4.29.6

We shall now compare the formulae of simple mixtures with the experi-
mental data on mixtures of carbon tetrachloride and cyclohexane. For these
mixtures G= has been determined by vapour pressure measurements at 30, 40,
50, 60, and 70 °C. There are also measurements of the enthalpy of mixing
A H at 10, 25, 40, and 55 °C. The experimental values® of GE are shown
plotted against x(1 —x) in figure 4.8. According to formula (1) the slopes
of the straight lines are the values of w at each temperature. The experimental
values!! of HE=A_H are shown similarly plotted in figure 4.9. According to
formula (3) the slopes of the straight lines are the values of w— T(0w/0T)
at each temperature. The fact that the experimental points for x<4 shown
to the left and those for x>4 shown to the right lie on the pair of
straight lines confirms that the laws of simple mixtures are valid within
the experimental accuracy. The thermodynamic consistency of the two sets
of data requires that both should be fitted by the same values of w and

* Porter, Trans. Faraday Soc. 1920 16 336.

t Heitler, Ann. Phys., Lpz. 1926 80 629,

! Hildebrand and Scott, Solubility of Nonelectrolytes, Reinhold 1950,

§ Scatchard, Wood and Mochel, J. Amer. Chem. Soc. 1939 61 3206; Brown and Ewald,
Australian J. Sci. Res. A 1950 3 306.

I Adcock and McGlashan, Proc. Roy. Soc. A 1954 226 266.
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Fig. 4.8. Excess Gibbs function in mixtures of carbon tetrachloride and cyclohexane
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Fig. 4.9, Enthalpy of mixing in mixtures of carbon tetrachloride and cyclohexane
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Ow/OT. The straight lines in both figure 4.8 and figure 4.9 in fact correspond
to the single relation*

w/J mole™*=1176+1.96T In T —14.18T 4.29.7
so that
(w—Tow/T)/J mole ' =1176—1.96T. 4.29.8

§4.30 Critical mixing in simple mixtures

In figure 4.10 the quantities a, =p, [p? and a, =p,/pJ are plotted against x for
simple mixtures with w/ RT=1and w/RT= —2. When w is positive, the curves
lie above the straight lines representing the behaviour of an ideal mixture;
this situation is called a positive deviation from ideality. On the other hand
when w is negative, both curves lie below the straight line of the ideal mixture
and this situation is described as a negative deviation from ideality.
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w/RT=1  eeeeo w/ﬁT: -2 w/ﬁ7'=2

Fig. 4.10. Relative activities of simple Fig. 4.11. Relative activities of simple
mixtures: (complete mixing) mixture: (temperature of critical mixing)

Figure 4.11 gives similar plots for w/RT=2. We shall now show that this
determines the temperature of critical mixing. We begin by recalling the
general conditions for critical mixing (4.26.8) and (4.26.9)

02GEjax?* = —RT/x(1—x) 4.30.1
8°Go/ox®= —RT(2x —1)/x*(1—x)% 4.30.2

* Adcock and McGlashan, Proc. Roy. Soc. A 1954 226 266.
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We also recall formula (4.29.1) which defines simple mixtures

Gi=x(1-x)w  w=w(T, P). 4.30.3
By successive differentiation of (3) with respect to x we obtain
dGL/ox=(1—-2x)w 4.30.4
9%GEjox?= —2w 4.30.5
9°GEjox® =0. 4.30.6

By substituting (5) into (1) and (6) into (2) we obtain as the conditions for
critical mixing in a simple mixture

—2w=—RT/x(1—x) 4.30.7
0=RT(2x—1)jx*(1—x)%. 4.30.8
From (8) we deduce x =14, which is incidentally obvious from considerations

of symmetry, and substituting this value of x into (7) we obtain for the
temperature 7, of critical mixing

2RT,=w 4.30.9

in agreement with figure 4.11.

When w/RT>2 there is incomplete mixing. A typical example, namely
w/RT=3, is shown in figure 4.12. If x’, x” denote the compositions of the
two phases in mutual equilibrium at a given temperature below that of
critical mixing, then x’, x” are determined by the pair of simultaneous
equations

pi(x")=pi(x") 4.30.10
pa(x")=pa(x"). 4.30.11

Dividing (10) by p? and dividing (11) by p? we obtain the equivalent pair of
simultaneous equations
a,(x)=a,(x") 4.30.12
az(xl)=a2(x”). 4.30. 13
The conditions (12) and (13) hold for the two-phase equilibrium of any
binary mixture. In the particular case of simple mixtures there is complete

symmetry between a, as a function of x and a, as a function of 1—x. It
follows from this symmetry that

x' +x"'=1 4.30.14
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and consequently (12) and (13) lead to
a,(x)=a,(x")=a,(1—x"")=a,(x"). 4.30.15

Hence x’, x'’ are determined by the intersections of the two curves. These
are the points L, M in figure 4.12. The curves between L and M represent
solutions either metastable near L, M or completely unstable towards the
middle of the diagram.

————

o2

ol Lt

o . 02 04 O6 08 -0

w/RT=3 stable  ---- unstable

Fig. 4.12. Relative activities of simple mixture: (incomplete mixing)

When we substitute from (4.29.5) and (4.29.6) into (15) we obtain as the
equation for either x’ or x”
(1—x)/x=exp{(1—2x)w/RT}. 4.30.16

If we use the abbreviation s=1—2x we can rewrite (16) as an equation for s
in the form
s=tanh(sw/2RT) 4.30.17
which can be solved numerically by inspection of tables of the tanh function.
Incidentally we notice from (17) that s—0 as w/2RT—1, that is to say at
critical mixing.
Pairs of liquids are known, for example water and nicotine, which are
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completely miscible above a certain critical temperature and below another
critical temperature, but are incompletely miscible in the intermediate
temperature range. It is interesting to note that even simple mixtures can
behave in this way when w is a quadratic function of the temperature provi-
ded the three coefficients in the quadratic expression have suitable signs and
magnitudes. To be precise if w has the quadratic form*

w/R=2T +{t* —(T - Tp)*}/© 4,30.18

where @, T,, and ¢ are positive constants and t<Tj, then it is clear that
w/R=2T when T=T,—t or T=T,+1¢. It can also be verified that w/R>2T
when To—t<T<Ty+t and that w/R<2T when T>To+t or T<T,—t.
Consequently the temperature range of incomplete miscibility extends from
To—t to To+t.

Incidentally the converse behaviour occurs, that is complete miscibility
only between the two critical temperatures, if © is negative.

§4.31 Critical mixing in symmetrical mixtures

We shall now consider briefly the condition for critical mixing in a symmetri-
cal mixture which is not a simple mixture. If we assume

GE=x(1—x){Ag+A,(1—-2x)* + A,(1—2x)*} 4.31.1

then it is obvious from symmetry that at the critical point x=4%. For this
value of x

azGE‘/ax2= _Z(AO—AZ)' 4.31.2
Consequently by (4.26.8)
—2(Ay—A,)= —4RT 431.3
or
(Ao—A,)/RT=2. 4.31.4

It is interesting to note that this condition is independent of 4,, and in-
cidentally also of coefficients of higher powers of (1—2x)2.

Y4.32  Example of unsymmetrical mixture

By way of contrast with symmetrical mixtures we shall now briefly illustrate
the opposite type of behaviour by a particular hypothetical example.
We return to formula (4.27.1). Instead of setting 4; =0 and so obtaining

* Guggenheim, Faraday Soc. Discussion No. 15 1953 271.
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the formulae of symmetrical mixtures, we now set 4o+ A4;=0 and 4,=0.
We then obtain

GE=Ax*(1—x) 4.32.1
where we have written A instead of 24,.
ro I N
0-8 — |
04 — —
2
2 ]
02 3
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-02 l | [ |
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Fig. 4.13. Example of unsymmetrical excess functions
Curve 1 (RT/A)n{a,/(1—x)}
Curve 2 (RT/[A)In{a,/x}
Curve 3 GE/4
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Fig. 4.14. Example of relative activities in a mixture having unsymmetrical excess
functions
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From (1) we obtain, using (4.23.8) and (4.23.9)

RT In{a,/(1—x)}=Ax*(2x—1) 4.32.2
RT In{a,/x}  =24x(1—x)% 4.32.3

A remarkable feature* of this pair of formulae is that, whereas In{a,/x}
has for all values of x the same sign as A, the sign of In{a;/(1—x)} changes
at x=%. This behaviour with A=4RT is illustrated in figure 4.14.

§4.33 Athermal mixtures of small and large molecules

According to (4.19.12) when two or more species form an ideal mixture,
then they mix isothermally without increase or decrease of the enthalpy.
Zero enthalpy of mixing is thus a necessary condition for two or more species
to form an ideal mixture, but it is not a sufficient condition. Mixtures,
not necessarily ideal, having zero enthalpy of mixing at all compositions are
called athermal mixtures. Statistical mechanics indicates as a further necessary
condition for a mixture to be ideal that the several kinds of molecules should
not differ greatly in size. It is accordingly of interest to consider the properties
of mixtures of two kinds of molecules sufficiently similar to mix in all
proportions without any enthalpy of mixing, but differing widely in size.
This is a complicated problem in statistical mechanics which has not been
solved completely. It is probable that the shapes of the molecules matter
as well as their sizes. However, when we ignore such complications, there are
reasons for believing that the behaviour due to wide differences in size be-
tween the two species of molecule can be at least semi-quantitatively describ-
ed by means of relatively simple formulae in which the only new parameter
is the ratio of the molecular volumes.

If ¢ denotes the ratio of the volume of a molecule of type 2 to that of a
molecule of type 1, then subject to various restrictions and approximations
which we shall not here go into, we may write for the proper Gibbs function
of mixing'

An G=RT(1—x)In{(1-x)/(1 —x+0x)} +RTx In{gx/(1 —x+0x)}. 4.33.1

Formula (1) is more easily memorized if written in a slightly different form
involving the volume fraction ¢ of the second species defined by

¢ = ox/(1—x+0x). 4.33.2

* McGlashan, J. Chem. Ed. 1963 40 516.
t Guggenheim, Mixtures, Clarendon Press 1952.
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Using (2) we can rewrite (1) in the shorter form
A,G=RT(1—x)In(1—¢)+RTx In ¢. 4.33.3

This simple formula is due to Flory.*
From (3) we deduce using (4.03.15) and (4.03.16)

In a, =In(py/py)=In(A;/47) =In{(1~x)/(1—x+ ex)} + (o= 1)x/(1 — x + )

=In(1-¢)+(1—0"")¢ 4.33.4
ln @, =In(p,/p3)=1n(A,/43)=In{ox/(1—x + gx)} — (e — 1)(1 — x)/(1 - x +gx)
=In ¢—(o—1)(1—¢). 433.5

We notice that when ¢=1 we recover the formulae of ideal mixtures. Of
especial interest is the opposite extreme when ¢ is so great that 1/o may be
neglected compared with unity. Formula (4) then reduces to

Ina,=In(p,/p})=In(1,/A)=In(1-p)+¢  (0— ). 4.33.6

We then have the remarkable situation that the lowering of the vapour
pressure of the ‘solvent’ species 1 is completely determined by the volume
fraction of the ‘solute’ species 2. Under these conditions determinations of
the vapour pressure of the solvent give no information concerning the size
of the solute molecules, except that they are much larger than the solvent
molecules. These formulae are relevant to solutions of rubber or polystyrene
in certain non-polar solvents such as benzene and toluene.

§4.34 Osmotic pressure in athermal mixtures

By substituting (4.33.4) into (4.14.10) we obtain for the osmotic pressure
with respect to a membrane permeable only to the species 1 with small
molecules

IV, )/RT= —In(1—¢)—(1—0 " V). 4.34.1
If we expand In(1—¢) in powers of ¢ we obtain
IViYRT=¢lo+36* +4¢° +. . .. 4.34.2

From (2) and (4.33.2) we see that in the limit of infinite dilution ITocx
as usual, but for this state of affairs it is not sufficient that ¢<1, the much
more stringent condition gp<1 being required. If we merely assume that
¢« formula (2) reduces to

OV )[RT=¢lo+3p*>  (¢<k1) 4.34.3

* Flory, J. Chem. Phys. 1941 9 660; 1942 10 51.
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and the term 4¢? will swamp the term @/o unless ¢p<<o~ . It follows from
this that in a solution of macromolecules measurements of osmotic pressure
cannot yield simple or reliable information concerning the size of the solute
macromolecules unless the solutions are so dilute that ¢<<o ™" which implies
that x<o~ 2.

§4.35 Interfacial layers

We shall now consider the thermodynamics of interfacial layers between
two bulk phases each containing the same two components. There are two
cases to distinguish: first an interface between a liquid mixture and its
vapour, when the interfacial tension is called the surface tension; second an
interface between two liquid layers containing in different proportions two
incompletely miscible components.

We shall first discuss the liquid—-vapour interface using an approximation
sufficient for most if not all practical applications. We shall next give a similar
approximate treatment of a liquid-liquid interface. Finally we shall give an
accurate treatment applicable in principle to either type of interface, but of
small practical use.

§4.36 Liquid-vapour interface

We begin with formula (1.57.3) applied to a system of two components
I and 2. Thus

—dy=S83dT—tdP+TI,du, +I,dy,. 4.36.1

In the liquid phase we have according to (4.04.4) and (4.04.6)
dyu,=—S,dT+V,dP+(du,/0x)dx 4.36.2
du,=—S,dT+ V,dP+(0u,/dx)dx 4.36.3

where we have omitted superscripts from quantities relating to the liquid
phase.

In our initial treatment of aliquid-vapour interface we shall make approx-
imations similar to those used in §3.63 for a single-component interface.

In the first place we assume that in the liquid phase PV, and PV, are so
small compared with R7T that they may be neglected.

In the second place we assume that the two geometrical surfaces separating
the interfacial phase from the two bulk phases are placed so near to each
other that terms in Pt may also be neglected. We accordingly replace (1),
(2), 3) by
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_d'y=S;dT+rldﬂ1 +F2dl,l2 4.36-4
dy,=-S,dT+(du,/0x)dx 4.36.5
dy,=—S,dT +(0u,/0x)dx. 4.36.6

Substituting (5) and (6) into (4) we obtain
—dy=(S3—T,8;—T,8,;)dT+{I'(u,/0x)+I',(du,/dx)}dx.  4.36.7

The system of two components in liquid and vapour has two degrees of
freedom. There are consequently two independent variables, for which we
choose T and x. Formula (7) thus expresses variations of the surface tension
y in terms of variations dT" and dx of the two independent variables.

Since the quantities Oy, /0x and Ou,/0x on the right of (7) are related by
the Gibbs-Duhem relation

(1—x)0u, /0x +x(0u,/0x)=0 (T, P const.) 4.36.8

we can use this relation to eliminate either of them. If for example we elimi-
nate Ou,/0x we obtain

—dy=(S3—TI;S,—TI3S,)dT +{I,—xI'{/(1—x)}(0u,/0x)dx. 4.36.9

By this elimination we have unavoidably destroyed the symmetry between
the components | and 2.

§4.37 Invariance of relations

We recall that according to the definition in §1.53 of a surface phase the
properties associated with it depend on the positions of the boundaries
AA’ and BB’ in figure 1.2. As in §3.62 we shall henceforth refer to the boun-
dary between surface layer and liquid as Lo and that between surface layer
and gas as Go. Since the precise positions assigned to these geometrical
boundaries are partly arbitrary, the values assigned to such quantities as
r,, r,,S°are also arbitrary. We can nevertheless verify that our formulae
are invariant with respect to shifts of either or both of these boundaries. It is
hardly necessary to mention that the intensive variables T, u,, u, are un-
affected by shifts of either boundary. It is also clear from the definition of y
in §1.54 that its value is invariant.

Let us now consider a shift of the plane boundary Lo a distance 8t
away from the gas phase. Then I', becomes increased by the amount of the
species 1 in a cylinder of liquid of height &7, of cross-section unity and so of
volume 37. But the total amount of substance in the volume 87 is 81/Vp
of which the amount of species 1 is (1—x)8t/V,,. Similarly I', becomes
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increased by x8t/V,,. Consequently although shifting the boundary Lo
alters the values of I'y and I',, the quantity

r,—xI[(1-x) 4.37.1

remains unchanged. The invariant quantity (1) is essentially the same as a
quantity defined by Gibbs in a more abstract manner which he denoted
by the symbol I'yy,.

Similarly when the boundary Lo is shifted a distance 87 away from the
gas phase, S° becomes increased by the entropy contained in a cylinder of
liquid of volume &7, that is to say by an amount

887/ Vi={(1—x)S; +x8,}5t/ V. 4.37.2

At the same time I'; S, is increased by S;(1—x)3t/V, and I',S, by
S,x8t/V,,. Consequently the quantity

SS~I,S,-T,S, 4373

occurring in (4.36.9) remains invariant.

With regard to a shift of the geometrical surface Go, little need be said
in the present connection. For our approximation of neglecting terms in
Pz, as we are doing, is equivalent to assuming that the amount of substance
per unit volume in the gas phase is negligible compared with that in unit
volume of the surface layer. Consequently if we shifted the geometrical
surface Go away from the liquid even to the extent of doubling the value
of 7, the change in the amount of substance contained in the surface layer
would be negligible and consequently the values of I';, I',, S§ would not be
appreciably affected.

§4.38 Temperature coefficient of surface tension

If we apply formula (4.36.9) to variations of temperature at constant com-
position x of the liquid we obtain

—dy/dT=S85-I,S,—-I,S, (const. x). 4.38.1

This relation involving entropies can be transformed to one involving ener-
gies as follows. Since we are neglecting terms in PV, and PV, we may
replace (4.04.3) by the approximation

p=F=U,—TS, 438.2
#2=12=U2_’I‘SZ' 4.38.3

Applying formula (1.56.1) to unit area and neglecting the term containing
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V°=1A4, we have

[ypy+Typy=US—TS%—y. 4.38.4
We now use (2), (3), (4) to eliminate ST, S,, S, from (1). We thus obtain
y=Tdy/dT=US-I,U,~T,U,. 4.38.5

It is worth noticing that the right side of (1) is the entropy of unit area of
interface less the entropy of the same material content in the liquid phase.
Likewise the right side of (5) is the energy of unit area of interface less the
energy of the same material content in the liquid phase. More pictorially
we may say that it is the energy which must be supplied to prevent any
change of temperature when unit area of surface is formed from the liquid.
It may appropriately be called the surface energy of formation of unit area.

§4.39 Variations of composition

If we apply (4.36.7) to a variation of composition at constant temperature
we obtain, using (4.12.7),

—0p[0x =T du,/0x+ I';0p,/0x
=RT(I'y01n 4,/0x+TI,0 In 1,/0x)
=RT(I'y01lna,/0x+1I',0 In a,/0x)
=RT(I',0In p,/ox+I,01n p,/0x) (T const.). 4.39.1

When we combine (1) with the Gibbs-Duhem relation (4.16.1) or with the
Duhem-Margules relation (4.16.4) we obtain

—0yfox=—RT{(1—x)[,—xI'}x"'d1n 1,/0x
=RT{(1-x)[,—xI' }(1—x)"'81n A,/0x 4.39.2
or alternatively
—0yfox=—RT{(1—x)',—xI';}x~'0In p,/ox
=RT{(1—x)I',—xI'}(1—x)" ' In p,/0x. 4.39.3
From (3) we see that from measurements of y and p, or p, over a range of

compositions we can for each composition compute the value of the quantity

I defined by
I=(1-x)l,—xT,. 4.39.4

We have already verified in §4.37 that I/(1 — x) is invariant with respect to
shift in position of the boundary Lo between the liquid and the interface.
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Obviously the same holds for 7 itself. Values can be assigned to I'y and I',
individually only by adopting some more or less arbitrary convention.*
We shall illustrate this by a numerical example in the next section. Since
Iy, I', must be finite, it follows from (4) that

r/I-1 as x-0 4.39.5
—I,/I-»1 as x—1. 4.39.6

This implies that for small values of x the value of I'; is unaffected by the
position assigned to the boundary Lo and that for small values of 1 —x the
value of I'; is unaffected. Consequently when x<1 we may regard [ as a
measure of the positive adsorption I', of species 2 at the surface and when
1 —x<«1 we may regard —I as a measure of the adsorption I'; of the
species 1. At intermediate values of x no such simple physical meaning
can be attached to /. We may however regard / as a measure of relative
adsorption of the two species.
In the special case of an ideal mixture formula (3) becomes

—(RT) ™ '0y/dx=T,/x—T/(1—x)=I/x(1—x). 4.39.7

§4.40 Example of water+ethanol

We shall now consider the experimental data for mixtures of water and
ethanol in order to illustrate the use of the formulae of the preceding section.
We neglect the difference between fugacity and partial pressure. The experi-
mental data for the partial vapour pressures have already been given in
figure 4.3 and table 4.1 where we verified that they are consistent with the
Duhem-Margules relation. In table 4.3 the first three columns repeat those
of table 4.1, the subscripts ; denoting water and , ethanol. The fourth
column gives experimental values of the surface tension y. The fifth column
gives values of —07/01n p, obtained by plotting y against In p, and measuring
slopes. The sixth column gives values of

I=(1—x),—xI", 4.40.1

calculated from (4.39.3) which can be rewritten in the form
—0y/0In p,=RTI|(1-x). 4.40.2
The values of 7 are given in the sixth column. In the seventh column the

corresponding molecular quantity I/L is given.

* Guggenheim and Adam, Proc. Roy. Soc. A 1933 139 231.
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TABLE 4.3

Mixtures of water and ethanol at 25 °C
Determination of I=(1 —x)I"y,—xI",

P Ds y —0y/01np, 10101 1027/L

o mmHg mmHg erg cm~2 erg cm—2 mole cm™2 A-2
0.0 23.75 0.0 72.2 0.0 0.0 0.0
0.1 21.7 17.8 36.4 15.6 5.6 9.3
0.2 20.4 26.8 29.7 16.0 5.1 8.5
0.3 19.4 31.2 27.6 14.6 4.1 6.8
0.4 18.35 34.2 26.35 12.6 3.0 5.0
0.5 17.3 36.9 25.4 10.5 2.1 3.5
0.6 15.8 40.1 24.6 8.45 1.4 2.3
0.7 13.3 43.9 23.85 7.15 0.8 1.3
0.8 10.0 48.3 23.2 6.2 0.5 0.8
0.9 5.5 53.3 22.6 5.45 0.2 0.3
1.0 0.0 59.0 22.0 5.2 0.0 0.0

As we have repeatedly emphasized, this is as far as one can go without
using some non-thermodynamic convention. We shall now give an example
of such a convention*. Let us assume that the interfacial layer is unimolecular
and that each molecule of water occupies a constant area of interface and
likewise each molecule of ethanol. This assumption may be expressed by

A1F1+A2r2=1 (AI’AZ COHSt.). 4.40-3

We may call 4,, A, the partial areas of the two species in the interface.
The essence of our assumption is not the definition of these quantities, but
the assignment to them of definite constant values which can neither be
determined nor be verified by thermodynamic means.

As an example we might assume

A,;=0.04x10'° cm?® mole™!

40.4
A,=0.12x10'° cm? mole ~* 44
corresponding to molecular cross-sections
A /L= TA?
4.40.5
A,/L=20A%

The relation (3) with the values of 4,, 4, given by (4) is sufficient to deter-
mine values of I',, I', from the values of the expression (1) already given
in table 4.3. The results of the calculation are given in table 4.4.

* Guggenheim and Adam, Proc. Roy. Soc. A 1933 139 231.
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TABLE 4.4
Mixtures of water and ethanol at 25 °C
Values of I'y and I'; calculated from A, +A,=1

with A,=0.04 X 101 cm? mole™ of water
Ay=0.12 X 10** cm? mole~* of ethanol

1017 101r, 101, T,
* mole cm—2 mole cm— mole cm—2 IN+r,
0.0 0.0 0.0 25.0 0.00
0.1 5.6 6.8 4.6 0.60
0.2 5.1 7.25 3.25 0.69
0.3 4.1 7.25 3.28 0.69
0.4 3.0 7.25 3.25 0.69
0.5 2.1 7.3 3.1 0.70
0.6 1.4 7.45 2.65 0.74
0.7 0.8 7.65 2.0 0.79
0.8 0.5 7.9 1.3 0.86
0.9 0.2 8.1 0.7 0.94
1.0 0.0 8.35 0.0 1.00

The first column gives the mole fraction x of ethanol, the second the values
of I taken from the previous table, the third and fourth columns the values
of I'y, I', calculated by means of (3). The fifth column gives the values of
I',/(I'y+T',) which we may call the mole fraction of ethanol in the surface
layer. As the mole fraction, thus calculated, in the surface layer increases
steadily with the mole fraction in the liquid, we may conclude that although
the model on which the assumptions (3), (4), (5) were based is admittedly
arbitrary, at least it does not lead to unreasonable or surprising results.

§4.41 Interface between two binary liquids

We turn now to consider the interface between two liquid phases of two
components 1 and 2. Two such phases may or may not be simple, but they
obviously cannot be ideal. In our initial treatment we shall make approx-
Imations similar to those in §4.36.

We assume that in a liquid phase PV, and PV, are so small compared
with RT that they may be neglected. This assumption now applies to both
liquid phases. Just as in §4.36 we also neglect terms in Pr.

There is an important physical difference between the significance of our
approximate treatment of a liquid-vapour interface in the previous sections
and the approximate treatment we are now about to give of a liquid-liquid
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interface. In the case of the liquid-vapour system we took as independent
variables the temperature and composition of the liquid phase. Since the
system has two degrees of freedom, these determine the composition and
pressure of the vapour phase. Moreover the consequent variations of pressure
are significant in determining the thermodynamic properties of the vapour
phase. In our present discussion of a liquid-liquid system we are assuming
that the thermodynamic properties of all phases, that is both liquids and
interface, are independent of the pressure. We are thus effectively suppressing
variability of pressure as a possible degree of freedom. But when we do this,
a single binary liquid phase has only two remaining degrees of freedom, so
that we might take as variables either 7, x which are independent or T,
Uy, U4y subject to the Gibbs~Duhem relation. Correspondingly in a system of
two binary liquid phases the variables T, u,, u, are subject to two Gibbs—
Duhem relations, one in each phase. Thus the system has effectively only
one degree of freedom instead of two. Hence the temperature completely
determines the composition of both liquid phases and so also the properties
of the interface.

We may alternatively describe the situation as follows. A binary liquid-
liquid system, like a binary liquid-vapour system has two degrees of freedom.
We may therefore take as independent variables 7, P and these will then
determine the composition of both phases and so also the properties of the
interface. When however we use the approximation of treating the properties
of every phase as effectively independent of P, then clearly all the equilibrium
properties are completely determined by 7.

We accordingly proceed to determine how the interfacial tension depends
on the temperature.

§4.42 Temperature dependence of interfacial tension
We begin with formula (4.36.4)
~dy=S3dT+TI du,+T,dpy, 4.42.1

which applies as well to a liquid-liquid as to a liquid-vapour interface.
We also have a Gibbs-Duhem relation in each of the liquid phases. With
the term V,,dP neglected, we have, denoting the two liquid phases by the
superscripts * and P,

SedT +(1—x*)dy, +x*dp, =0 4.42.2
SEAT +(1—xP)dp, +xPdu,=0 4.42.3

wherein we have omitted the superscripts on T, u,, u, since these have the
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same values throughout the system. We recall that S, S% denote the proper
entropies in the two phases.

To obtain the dependence of y on the temperature, we have merely to
eliminate du,, du, from (1), (2), (3). We thus obtain

Si Sm Sh| % Sm Sh
dy |, 1-x* 1-x*| _|r,+r, 1 1
el P ) !_ r, s X 4.42.4
xP—x* xP—x

There seems to be no alternative simpler formula having as high an
accuracy.

§4.43  Accurate formulae

For the sake of completeness we shall now derive formulae, in principle
applicable to any interface in a system of two components, in which we
do not neglect the terms in ¥'dP or tdP. We however warn the reader that
these formulae are too complicated to be of any practical use.

We accordingly revert to formula (4.36.1), namely

—dy=S5dT—tdP+ T du, +I,du, 4.43.1
and formulae (4.36.2) and (4.36.3) applied to each of the two phases a, B
du}=—S7dT+ V;dP+(0u}/0x")dx" 4.43.2
duy= —S3dT + V3dP+(0u5/0x")dx" 4.43.3
dyb = —S8dT + VEdP +(0ps /0xP)dxP 4.43.4
dub = —S8dT + VAdP + (0ub/0xP)dxP. 4.43.5

We shall also use the Gibbs-Duhem relations for both the phases a, B

(1—x*)0p7/0x" +x"0u3/0x* =0 4.43.6
(1—x®)ou’ 0xP + xPoub/oxP=0. 4.43.7

For any variations maintaining equilibrium, we have as usual
dy =dpb=dy, 4.43.8
dpt=dub=dpy,. 4.43.9

If we multiply (8) by 1—x
and add, we obtain using (7)

#_(9) by xP, substitute from (2), (3), (4), (5),
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0=—{(1—x°)(S1—SD)+x°(S3 - S)}dT

+H{A=2P)V = VD) +x(V; - V])}dP

+{(1—xP)ou, /0x* + xPOu,/0x"}dx". 4.43.10
If further we substitute (2), (3) into (1) we obtain
—dy=(S4—T, 8% —I,S3)dT—(t— I, Vi —T,V$)dP

+(I0u,/0x™ + T, 0u,/0x")dx". 4.43.11
If we now eliminate dP between (10) and (11) we obtain
—dy=(seS— AoV Ay S/Ay V)AT
+ {4+ A V(1 —xP)|Ayg V}(0p, /0x*)dx"

+ {34 Ay VXP[Ayy V}(0p1,/0x")dx* 4.43.12

where we have used the following abbreviations
A S=(1—xP)(S} - S7)+x*(S5 - 53) 4.43.13
A V=(1-x®)(VP-V])+x*(VE-V3) 4.43.14
AS=S%—T,8—-T,S 4.43.15
AGV=1-T Vi-T,V3. 4.43.16

From these definitions we observe that A, S is the entropy increase and A gV
the volume increase when unit quantity of the phase B is formed at constant
temperature and constant pressure by taking the required amounts of the
two components from the phase a. Likewise A,,S is the entropy increase
and A,, V the volume increase when unit area of the surface layer o is formed
at constant temperature and constant pressure by taking the required
amounts of the two components from the phase «.

Finally we can eliminate Oy, /0x* (or Ou,/0x") between (6) and (12). Thus

—dy=(AyS— Ay VA S/AG V)T
F {3 = x"T /(1 = %)+ Ay V(%P — x*)/Ayg V(1 — x*)}(Op,/0x")dx".  4.43.17

If we vary the temperature and the pressure so as to maintain x* constant,
(17) becomes

—dy/[dT=4,,S—D, s VAS/AgV  (x const.). 4.43.18

This formula applies in principle to any interface. For a liquid—vapour
interface we may assume that A,, V/A,, V is negligibly small and then (18)
reduces to
‘ —dy/dT=A,S  (x"const.) 4.43.19
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which is the same as (4.38.1). For a liquid-liquid interface formula (18),
though strictly correct is of little use since the ratio A, V'/A,z V of two very
small quantities is difficult, if not impossible, to estimate or measure.

§4.44 Solid mixtures

We turn now to a brief consideration of solid mixtures, especially binary
solid mixtures. Much of the treatment of liquid mixtures is directly applicable
mutatis mutandis to solid mixtures. Other parts of the treatment are ob-
viously not applicable, in particular osmotic equilibrium and interfacial
tensions.

There is a further difference between the treatments of liquid and of
solid mixtures, a difference of degree or of emphasis rather than of kind.
Most liquids are sufficiently volatile to have conveniently measurable vapour
pressures and fugacities. Hence the partial vapour pressures and fugacities
of a liquid mixture are familiar experimental quantities. There is consequent-
ly a natural and reasonable tendency so far as possible to express most other
equilibrium properties in terms of the fugacities. Whereas a few solids also
have readily measurable vapour pressures, many are effectively involatile.
This being so, there is no particular merit in expressing other equilibrium
properties in terms of the fugacities rather than in terms of the absolute
activities. If then we compare, for example, the Gibbs—-Duhem formula for a
binary mixture

(1 —x)0p,/0x + x0u,/0x=0 4.44.1
or its corollary
(1-x)01In 4,/0x+x01n A,/0x=0 4.44.2
with the Duhem-Margules relation
(1—x)01n p,/0x+x0In p,/0x=0 4.44.3

whereas these three relations are all equivalent, it is natural to place the
empbhasis on (3) in the case of liquids, but on (1) or (2) in the case of solids.

One of the great similarities between solids and liquids, in contrast to
gases, is their insensitivity to pressure. For most purposes we may ignore
the pressure. When we do this, a single phase of two components has two
degrees of freedom, so that we may use as independent variables T, x.
A pair of such phases in equilibrium has then only one degree of freedom,
the composition of both phases being determined by the temperature.

We shall deal extremely briefly with the aspects of solid mixtures which
are parallel to those of liquid mixtures. We shall quote some formulae
without repeating derivations previously given for liquids.
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§4.45 Stationary melting points

In §4.11 we proved that whenever the relative compositions of a liquid
and vapour in mutual equilibrium at a given pressure are identical, the
equilibrium temperature is a minimum or maximum at the given pressure.
By precisely the same proof the same result can be derived for a solid and
vapour in equilibrium.

Of greater practical interest is the equilibrium between solid and liquid
phases. Using the superscripts® and " to refer to these two phases respectively,
we can derive a formula analogous to (4.11.8), namely

(SE —S3)dT/dx = (x* —x°)(dy,/dx — dy,/dx) 4.45.1

where x denotes the mole fraction of the component 2 in either phase.
Whereas formula (4.11.8) was deduced for constant pressure conditions, as
far as (1) is concerned the pressure is practically irrelevant. If the liquid and
solid phases have identical compositions then

xS=xt 4.45.2
and so (1) reduces to
(S5—S5)dTjdx=0. 4.45.3
Since SL#SS it follows that
dT/dx=0. 4.45.4

Thus when the compositions of the solid and liquid in mutual equilibrium
are identical, the equilibrium temperature is stationary.

§4.46 Solid ideal mixtures

A solid ideal mixture is defined in the same manner as in the case of liquids,
namely by
ALG=RT Y x;Inx; 4.46.1

and in particular for a binary ideal mixture

A,G/RT=(1-x)In(1-x)+x In x. 4.46.2

From this definition it follows immediately for a binary mixture that
=4(1-x) 4.46.3
Ay=23x 4.46.4

where the superscript ° denotes the pure solid phase. Actual examples of
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ideal mixtures are as few among solids as among liquids, but the ideal
mixture remains the convenient standard with which to compare a real

mixture.

The thermodynamic functions and properties of ideal mixtures follow
directly from (1) or (2) as in the case of liquids. In particular the enthalpies
are additive; that is to say the enthalpy of mixing is zero. On the other hand
the proper entropy of mixing is given by

ApS/R=—(1-x)In(l—x)—x1In x. 4.46.5

Probably the most important application of this and related formulae is to
isotopes, as in §3.55.

§4.47 Excess functions

Any real solid mixture, like any real liquid mixture, is conveniently described
by the use of excess functions. For a binary mixture these are defined by

GE=A,G—-A,G'=A,G~RT{(1-x)In(1—x)+x In x} 4.47.1
SE=A,S—A,S'=A,S+R{(1-x)In(1—x)+x In x} 4.47.2
HE=A_H-A,H'=A,H. 4.47.3

Solid mixtures may be classed, like liquid mixtures, into symmetrical
mixtures, including simple mixtures, and unsymmetrical mixtures.



