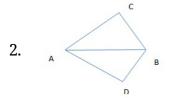
CBSE Test Paper 01 CH-7 Triangles

- 1. If all the altitudes from the vertices to the opposite sides of a triangle are equal, then the triangle is
 - a. Equilateral
 - b. Isosceles
 - c. Scalene
 - d. Right-angled



In the above quadrilateral ACBD, we have AC = AD and AB bisect the $\angle A$. Which of the following is true?

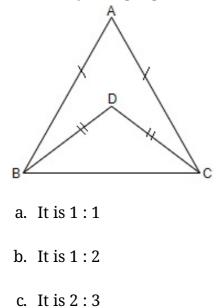
- a. $\triangle ABC \cong \triangle ABD$
- b. $\angle C = \angle D$
- c. All are true
- d. BC = BD
- 3. AD is the median of the triangle. Which of the following is true?



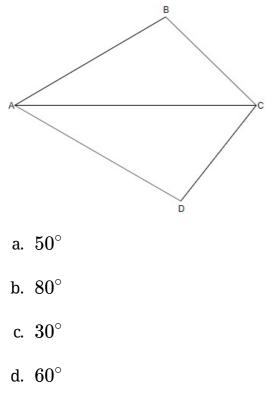
- a. AC + CD < AB
- b. AB + BD < AC

- c. AB + BC + AC > AD
- d. AB + BC + AC > 2AD

4. In the adjoining Figure, AB = AC and BD = CD. The ratio \angle ABD : \angle ACD is



- d. It is 2 : 1
- 5. In the adjoining figure, $riangle ABC \cong riangle ADC$. If \angle BAC = 30° and \angle ABC = 100° then \angle ACD is equal to



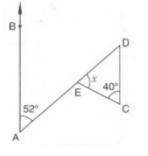
6. Fill in the blanks:

In a $\triangle ABC$, AB = 5 cm, AC = 5 cm and $\angle B$ equals to _____.

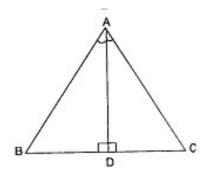
7. Fill in the blanks:

An angle is 4 time its complement, then the measure of the angle is _____.

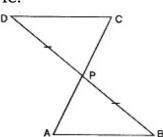
- 8. Find the measure of each exterior angle of an equilateral triangle.
- 9. Compute the value of x of the following given figure:



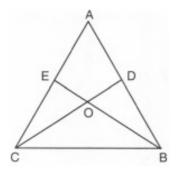
10. Prove that \triangle ABC is an isosceles, if Altitude AD bisects \angle BAC.



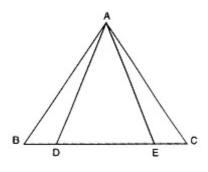
11. In figure, if AB || DC and P is the mid-point of BD, prove that P is also the mid-point of AC.



12. In Fig, it is given that AE = AD and BD = CE. Prove that $\triangle AEB \cong \triangle ADC$.



13. In figure, AD = AE and D and E are points on BC such that BD = EC. Prove that AB = AC.



- 14. Show that the difference of any two sides of a triangle is less than the third side.
- 15. ABCD is quadrilateral such that AB = AD and CB = CD. Prove that AC is the perpendicular bisector of BD.

CBSE Test Paper 01 CH-7 Triangles

Solution

1. (a) Equilateral

Explanation: In an equilateral triangle all the altitudes,sides, angles, perpendicular bisectors, medians and angular bisectors are equal.

2. (c) All are true

Explanation: In triangle ABC and ABD ,we have

AC = AD $\angle AB = \angle BAD$ AB = ABBy SAS ,we have $\angle ABC \cong \angle ABD$ Hence, we have BC = BD and $\angle C = \angle D$. So,all the given options are true. 3. (d) AB + BC + AC > 2AD**Explanation**: In triangle ADB AB + BD > ADIn triangle ADC AC+DC > ADAdding both AB + AC + BD + DC > 2ADNow BD + DC = BCSo, AB + AC + BC > 2AD4. (a) It is 1 : 1 **Explanation**: In \triangle ABC AB = AC

∴ ∠ABC = ∠ACB(angles opposite to equal sides of a triangle are equal).....1 in ΔDBC ,

DB = DC,

 $\therefore \angle DBC = \angle DCB$ (angles opposite to equal sides of a triangle are equal).....2 subtract 2 from 1

∠ABC - ∠DBC = ∠ACB - ∠DCB(equals subtracted from equals gives equal) = ∠ABD = ∠ACD

divide both the sides by $\angle ACD$

$$\Rightarrow \frac{\angle ABD}{\angle ACD} = 1$$

$$\therefore \angle ABD : \angle ACD = 1 : 1$$

5. (a) 50°

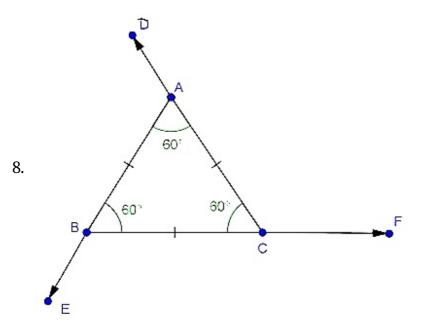
Explanation: In triangle ABC, BAC = 30° and ABC = 100° (Given)

 $\angle BAC + \angle ABC + \angle BCA = 180^{\circ}$

 \angle BCA = 50^o

Also $\angle ACD = 50^{\circ}$ (Since, $\triangle ABC \cong \triangle ADC$)

```
6. 65<sup>0</sup>
```

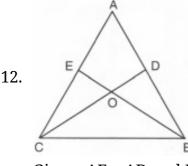
 $\angle ACF = \angle ABC + \angle BAC$ [:: Exterior angle = sum of opposite interior angles] $\Rightarrow \angle ACF = 60^{\circ} + 60^{\circ} = 120^{\circ}$ Similarly, $\angle BAD = 120^{\circ}$ and $\angle CBE = 120^{\circ}$ 9. $\angle BAE = \angle EDC = 52^{\circ}$ (alternate angles)

```
\therefore \angle DEC = x = 180^{\circ} - 40^{\circ} - \angle EDC (because sum of all angles of a triangle is 180^{\circ})
= 180^{\circ} - 40^{\circ} - 52^{\circ}
= 180^{\circ} - 92^{\circ}
= 88^{\circ}
```

10. In \triangle ABD and \triangle ACD,

 $\angle BAD = \angle CAD \dots [Given]$ $AD = AD \dots [Common]$ $\angle ADB = \angle ADC \dots [Each 90^{0}]$ $\triangle ABD \cong \triangle ACD = \dots [ASA axiom]$ $\therefore AB = AC \dots [c.p.c.t.]$ $\therefore \triangle ABC$ is an isosceles triangle.

- 11. AB || DC and DB intersect them $\angle BDC = \angle DBA$...[Alternate angles] In DPDC and D PBA PD = PB ...[As P is the mid-point of BD] $\angle PDC = \angle PBA$...[As proved above] $\angle DPC = \angle BPA$...[Vertically opposite angles] DPDC \cong DPBA ...[By ASA property] PC = PA ...[c.p.c.t.]
 - \Rightarrow P is the mid-point of AC.



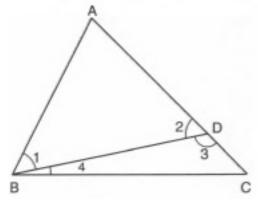
Given: AE = AD and BD = CE. To Prove : $\triangle AEB \cong \triangle ADC$ Proof: We have AE = AD and CE = BD $\Rightarrow AE + CE = AD + BD \dots (i)$ $\Rightarrow AC = AB \dots (ii)$ Thus, Consider $\triangle AEB$ and $\triangle ADC$, we have AE = AD [Given] $\angle EAB = \angle DAC [Common]$ and, AC = AB [From (ii)] $\triangle AEB \cong \triangle ADC [by SAS criterion]$ Hence proved

13. In \triangle ADE,

AD = AE . . . [Given] $\angle AED = \angle ADE \dots [\angle s \text{ opposite to equal side of a } \triangle ADE]$ $180^{\circ} - \angle AED = 180^{\circ} - \angle ADE$ $\angle AEC = \angle ADB$ In $\triangle ADB$ and $\triangle AEC$, AD = AE . . . [Given] BD = EC . . . [Given] $\angle ADB = \angle AEC \dots [From (1)]$ $\therefore \triangle ADB \cong \triangle AEC \dots [By SAS property]$ $\therefore AB = AC \dots [c.p.c.t]$

14. To Prove:

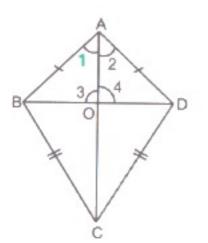
Construction: Take a point D on AC such that AD = AB. Join BD.



Proof: In \triangle ABD, side AD has been produced to C.

 $\therefore \angle 3 > \angle 1$ [\therefore Exterior angle of a \triangle is greater than each of interior opp. angle] ...(i) In \triangle BCD, side CD has been produced to A. $\therefore \angle 2 > \angle 4 \ [\cdot, \cdot \text{ Exterior angle of a } \triangle \text{ is greater than each of interior opp. angle] ...(ii)}$ In $\triangle ABD, we have$ AB = AD $<math>\Rightarrow \angle 2 = \angle 1 \ [\text{Angles opp. to equal sides are equal] ...(iii)}$ From (i) and (iii), we get $\angle 3 > \angle 2 \ ...(iv)$ From (ii) and (iv), we get $\angle 3 > \angle 2 \ \text{and } \angle 2 > \angle 4$ $\Rightarrow \angle 3 > \angle 4$ $\Rightarrow BC > CD \ [\text{Side opp to greater angle is larger]}$ $\Rightarrow CD < BC$ $\Rightarrow AC - AD < BC$ $\Rightarrow AC - AB < BC \ [\cdot, \cdot AD = AB]$ Similarly, BC - AC < AB and BC - AB < AC i. AC - AB < BC

- ii. BC AC < AB
- iii. BC AB < AC
- 15. Given: ABCD is a quadrilateral . AB = AD & CB = CD To prove: AC is the perpendicular bisector of BD.Proof:



Let diagonals AC & BD intersect at O. Let, $\angle BAC = \angle 1$, $\angle DAC = \angle 2$, $\angle AOB = \angle 3$ and $\angle AOD = \angle 4$

In \triangle ABC & \triangle ADC, we have :-

AB = AD [Given] BC = CD [Given] AC = AC [Common side] So, By SSS criterion of congruency of triangles , we have $\Delta ABC \cong \Delta ADC$

$$\therefore \angle 1 = \angle 2$$
 [CPCT]

Now, in ΔAOB and ΔAOD , we have :-

AB = AD [Given]

 $\angle 1 = \angle 2$ [Proved above]

AO = AO [Common side]

So, By SAS criterion of congruency of triangles , we have :-

 $\Delta AOB \cong \Delta AOD$

- \therefore BO = DO [CPCT]
- And $\angle 3 = \angle 4$ [CPCT]

But, $\angle 3 + \angle 4 = 180^o$ [Linear pair axiom]

$$\Rightarrow \angle 3 + \angle 3 = 180^{\circ}$$
 [$\therefore \angle 3 = \angle 4$]

$$\Rightarrow 2 \angle 3 = 180^{\circ}$$

 $\Rightarrow igstarrow 3 = rac{180^\circ}{2} = 90^\circ$

 \therefore AC is perpendicular bisector of BD. [\therefore $\angle 3=90^\circ$ and BO = DO] Hence, proved.