

DPP No. 79

Total Marks : 22

Max. Time : 23 min.

Topics : Center of Mass, Relative Motion, Wave on a String, Friction

Type of Questions					
Single choice Objective ('–1' negative marking) Q.1 to Q.3	(3 marks, 3 min.)	[9, 9]			
Subjective Questions ('–1' negative marking) Q.4	(4 marks, 5 min.)	[4, 5]			
Comprehension ('-1' negative marking) Q.5 to Q.7	(3 marks, 3 min.)	[9, 9]			

1. A carpenter has constructed a toy as shown in figure. If the density of the material of the sphere is 12 tirnes that of cone, the y-coordinate of COM of toy from point O

(A) 3R	(B) <u>9R</u>
(C) $\frac{7R}{2}$	(D) 4R

2. An airplane flies between two cities separated by a distance D. Assume the wind blows directly from one city to the other at a speed V_A (as shown) and the speed of the airplane is V_o relative to the air. Find the time taken by the airplane to make a round trip between the two cities (that is, to fly from city A to city B and then back to City A) ?

3. A travelling wave $y = A \sin (kx - \omega t + \theta)$ passes from a heavier string to a lighter string. The reflected wave has amplitude 0.5 A. The junction of the strings is at x = 0. The equation of the reflected wave is: (A) $y' = 0.5 A \sin (kx + \omega t + \theta)$ (B) $y' = -0.5 A \sin (kx + \omega t + \theta)$ (C) $y' = -0.5 A \sin (\omega t - kx - \theta)$ (D) $y' = 0.5 A \sin (kx + \omega t - \theta)$ 4. 2 kg block is kept on 1 kg block as shown. The friction between 1 kg block and fixed surface is absent and the coefficient of friction between 2 kg block and 1 kg block is $\mu = 0.1$. A constant horizontal force F = 4 N is applied on 1 kg block. If the work done by the friction on 1 kg block in 2 s is -X J, then find X. Take g = 10 m/s².

COMPREHENSION

A sinusoidal wave travels along a taut string of linear mass density 0.1 g/cm. The particles oscillate along y-direction and wave moves in the positive x-direction. The amplitude and frequency of oscillation are 2mm and 50 Hz respectively. The minimum distance between two particles oscillating in the same phase is 4m.

- 5.
 The tension in the string is (in newton) (A) 4000
 (B) 400
 (C) 25
 (D) 250
- 6. The amount of energy transferred (in Joules) through any point of the string in 5 seconds is

(A)
$$\frac{\pi^2}{10}$$

(B) $\frac{\pi^2}{50}$
(C) $\frac{\pi^2}{5}$

(D) Cannot be calculated because area of cross-section of string is not given.

7. If at x = 2m and t = 2s, the particle is at y = 1mm and its velocity is in positive y-direction, then the equation of this travelling wave is : (y is in mm, t is in seconds and x is in metres)

(A)
$$y = 2 \sin \left(\frac{\pi x}{2} - 100 \pi t + 30^\circ\right)$$
 (B) $y = 2 \sin \left(\frac{\pi x}{2} - 100 \pi t + 120^\circ\right)$
(C) $y = 2 \sin \left(\frac{\pi x}{2} - 100 \pi t + 150^\circ\right)$ (D) None of these

Answers Key										
DPP NO. - 79										
1. 6.	(D) (C)	2. 7.	(A) (D)	3.	(D)	4.	8	5.	(B)	

Hint & Solutions

DPP NO. - 79

1.

Mass of cone
$$M_1 = \rho \left(\frac{1}{3}\pi (2R^2)4R\right)$$

$$c = \frac{\rho}{3}\pi(16R^3)$$

mass of sphere M₂

$$= 12\rho \left(\frac{4}{3}\pi R^{3}\right) = \rho 16\pi (R^{3})$$

$$y_{1} = y_{com}(Cone) = \frac{H}{4} = \frac{4R}{4} = R$$

$$y_{2} = y_{com}(sphere) = 4R + R = 5R$$

$$y_{com}(toy) = \frac{M_{1}y_{1} + M_{2}y_{2}}{M_{1} + M_{2}}$$

$$= \frac{16\rho\pi R^{3}}{3} (R) + 16\rho\pi (R^{3}) 5R$$

$$16 \pi\rho R^{3} \left[\frac{1}{3} + 1\right]$$

$$\Rightarrow \frac{16\rho\pi R^3 \left\lfloor \frac{R}{3} + 5R \right\rfloor}{16\rho\pi R^3 \left[\frac{1}{3} + 1 \right]} = 4R$$

2. The speed of the plane as it goes from city A to city B is $V_o + V_A$ and the speed of the plane as it goes from city B to city A is $V_o - V_A$. Therefore the time taken by the plane to go once round the trip is

$$t = \frac{D}{V_{o} - V_{A}} + \frac{D}{V_{o} + V_{A}} = \frac{2DV_{o}}{V_{0}^{2} - V_{A}^{2}}$$

As wave has been reflected from a rarer medium, therefore there is no change in phase. Hence equation for the opposite direction can be written as y = 0.5A sin (-kx - ωt + θ)
 = 0.5A sin (-kx + ωt + θ)

$$= -0.5A \sin(KX + \omega t - \theta)$$

$$a_{_{2kg}} = \frac{f}{m} = \frac{2N}{2kg} = 1 \text{ m/s}^2$$

F-f = ma ⇒ 4 - 2 = 1 × a_{1kg} ⇒ a_{1kg} = 2 m/s² Distance travelled by 1 kg in t = 2 s, S = $\frac{1}{2}$ × at² = $\frac{1}{2}$ × 2 × 2² = 4 m Velocity of the 1 kg block after t = 2 s, v = a = 2 × 2 m/s = 4 m/s ∴ work done by F = F.S. = 4 × 4J = 16 J KE of 1 kg block = $\frac{1}{2}$ × m × v² = $\frac{1}{2}$ × 1 × 4² = 8 J

Using work energy theorem $W_{net} = \Delta KE$ $W_F + W_{friction} = \Delta KE$ $16 + W_{friction} = 8$ $\Rightarrow W_{friction} = -8J$ Ans. 8

5. to 7 λ = 4m and f = 500 Hz.
∴ V = fλ = 200 m/s
∴ V =
$$\sqrt{\frac{T}{\mu}}$$
 ∴ T = μ v² = (0.1) × (200)²
= 400 N

6. Since integral number of waves shall cross a point is 5 seconds, therefore power transmitted in 5 seconds is

 $= \langle P \rangle \times 5 = 2\pi^{2} f^{2} A^{2} \mu v \times 5$ = 2 × \pi^{2} \times (50)^{2} \times (2 \times 10^{-3})^{2} \times (0.01) \times 200 \times 5 = \frac{\pi^{2}}{5}

7. The equation of waves is

y = A sin(kx - ω t + ϕ_0) ∴ where K = $\frac{2\pi}{\lambda} = \frac{\pi}{2}$, $\omega = 2\pi$ f = 100 π and A = 2 at x = 2 and t = 2 y = 1 mm ∴ 1 = 2 sin(π - 200 π + ϕ_0) solving ϕ_0 = -30° ∴ y = 2 sin $\left(\frac{\pi x}{2} - 100 \pi t - 30^\circ\right)$