

APPENDIX (Important clauses of IS 800: 2007)

SUMMARY OF CODE

Following are the clauses of IS 800 : 2007 that are associated with General Design Requirement.

Clauso	Codo Provision						
3.2.1	Load	is to be considered in design are:					
	1. [Dead load	2.	Impose	ed load		
		Wind load .			uake load		
1		rection load		Accide	ni load		
	7. \$	Secondary effect due to contraction or expa	nsion.	-	-		
3.7		ssifies any steel section into 4 classes.	t	•			
0.,		Class 1 (Plastic)			2 (Compa		
	(c)	Class 3 (Semi-compact)	(d)	Class	4 (Slende	it)	
4.3.6	horiz	nalyse a frame subjected to gravity loads, o contal forces equal to 0.5% of factored dea , These loads should not be combined with o	d load plu	s vortica	imposed	l load is appl	
5.3.2 Table 4 Table 5							
Table 4	exce Givo	racteristic Action (Loads) are the values of reded with more than 5% probability during the the Load Factor for various load combination is partial safety factor for materials, Ym	e life of th	e slructu	re.	ne not expe	cted to b
Table 4	exce Givo	eded with more than 5% probability during the Load Factor for various load combinate	e life of th	e slructu	re.	Partial Sof	
Table 4	exce Give	eded with more than 5% probability during the Load Factor for various load combinations partial safety factor for materials, $\gamma_{\rm m}$	e life of th	e slructu	re.		oly Facto
Table 4	exce Give Si.	reded with more than 5% probability during the Load Factor for various load combinates partial safety factor for materials. γ _m Definition Resistance, governed by yielding γ _m	e life of th	e slructu	re.	Partial Sof	oly Facto
Table 4	exce Give Si. (i)	reded with more than 5% probability during the Load Factor for various load combinates partial safety factor for materials. γ_m Definition Resistance, governed by yielding γ_m Resistance to buckling, γ_{m0}	e life of th on (study	e slructu	re.	Partial Suf 1.	oty Facto 1
Table 4	exce Givo Give SI. (i) (ii)	reded with more than 5% probability during the Load Factor for various load combinates partial safety factor for materials. γ_m Definition Resistance, governed by yielding γ_m Resistance to buckling, γ_{mo} Rosistance, governed by ultimate stress γ_m	e life of th on (study	e slructu	re.	Partial Suf 1. 1.	oly Facto 1 1 25
Table 4	exce Give Si. (i)	reded with more than 5% probability during the Load Factor for various load combinates partial safety factor for materials. γ_m Definition Resistance, governed by yielding γ_m Resistance to buckling, γ_{mo} Rosistance, governed by ultimate stress γ_m Resistance of connection	e life of th on (study	e slructu	re.	Partial Suff 1. 1. 1. Shop	oty Facto 1 1 25 Fiek
Table 4	exce Givo Give SI. (i) (ii)	reded with more than 5% probability during the Load Factor for various load combinates partial safety factor for materials. γ_m Definition Resistance, governed by yielding γ_m Resistance to buckling, γ_{mo} Rosistance, governed by ultimate stress γ_m Resistance of connection (a) Bolt Friction Type, γ_{mf}	e life of th on (study	e slructu	re.	Partial Suffine 1. 1. Shop 1.25	oly Facto 1 1 25 Fiek 1.25
Table 4	exce Givo Give SI. (i) (ii)	reded with more than 5% probability during the Load Factor for various load combinates partial safety factor for materials, γ_m Definition Resistance, governed by yielding γ_m Resistance to buckling, γ_{mo} Rosistance, governed by ultimate stress γ_m Resistance of connection (a) Bolt Friction Type, γ_{mo} (b) Bolt Bearing Typo, γ_{mo}	e life of th on (study	e slructu	re.	Partial Suff 1. 1. 1. Shop	oty Factor 1 1 25 Fiek 1.25
Table 4	exce Givo Give SI. (i) (ii)	reded with more than 5% probability during the Load Factor for various load combinates partial safety factor for materials. γ_m Definition Resistance, governed by yielding γ_m Resistance to buckling, γ_{mo} Rosistance, governed by ultimate stress γ_m Resistance of connection (a) Bolt Friction Type, γ_{mf}	e life of th on (study	e slructu	re.	Partial Suffine 1. 1. Shop 1.25	1 1 25 Fiek 1.25 1.25
Table 4	exce Givo Give SI. (i) (ii)	reded with more than 5% probability during the Load Factor for various load combinates partial safety factor for materials, γ_m Definition Resistance, governed by yielding γ_m Resistance to buckling, γ_{mo} Rosistance, governed by ultimate stress γ_m Resistance of connection (a) Bolt Friction Type, γ_{mo} (b) Bolt Bearing Typo, γ_{mo}	e life of th on (study	e slructu	re.	Partial Safe 1. 1. 1. Shop 1.25 1.25	oty Facto 1

Following are the clauses of IS 1800 : 2007 that associated with Design of Connection

Clause	Code Prevision
Table 19	Gives the clearances for fastener holes (Hence hole dismoter) (study this table).
10.2.2	Minimum spacing between centre of fasternes shall not be less than 2.5 times the nominal diamete of the fasternes.
10.2.3,1	c/c distance between any two adjacent fasteners shall not be more than 32t or 300 mm whichever leads, where t is thickness of the thinner plate.
102.3.2	c/c distance between any two adjacent fasteners in a line lying in the direction of stress shall no exceed 16t or 200 mm, whichever is less in tension member and 12t or 200 mm whichever is less in tension member and 12t or 200 mm whichever is less in tension members where it is the thickness of the thinner plate. In the case of compression members wherein forces are transferred through builting faces this distance shall not exceed 4.5 times the diameter of the fasteners for a distance equal to 1.5 times the width of the member from the builting face.
10.2.3.3	The distance between any two consecutive fasteners in a line adjacent and parallel to an edge of an outside plate shall not exceed 100 mmplus 41 or 200 mm; whichever is less; both in compression and tension members, where t is the thickness of the thinner outside plate.
102.3.4	When fasteners are staggered at equal intervals and gauge does not exceeds 75 mm, the spacing specified in 10.2.3.2 and 10.2.3.3 between c/c fasteners may be increased by 50% subjected to the maximum spacing in 10.2.3.1.
10.2.4.1	The edge distance is the distance at right angles to the direction at right angles to the direction of stress from the centre of the hole to the adjacent edge. The end distance is the distance in the direction of stress from the centre of a hole to the end of the element.
10.2,4.2	The minimum edge and end distance from the centre of any hole to the nearest edge of a plate shall not be loss than 1.7 times the hole diameter in case of sheared or hand flame cut edges; and 1.5 times the hole diameter in case of rolled, machine flame cut, sawn and planed edges.
10.2.4.3	The maximum edge distance to the nearest line of fasteners from and edge of any unstiffened par should not exceed 12tc., where $\frac{1}{\sqrt{180^{4}f_{s}}}$ and "I is the thickness of the thinner outer plate. This would not apply to fasteners interconnecting the components of back to back tension members. Where the maximum edge distance shall not exceed 40 mm plus 4t, where t is thickness of the thinner connected plate.
10.2.5.1	In case of members covered under 10.2.4.3 when the maximum distance between centres of two adjacent fasteners as specified in 10.2.4.3 is axceeded, tacking fasteners not subjected to calculated stress shall be used.
10.2.5.2	Tacking fasteners shall have spacing in a line not exceeding 32 times the thickness of the thinner outside plate or 300 mm whichever is less. Where the plate are exposed to the weather, the spacing in line shall not exceed 16 times the thickness of the thinner outside plate or 200 mm, whichever is less. In both cases, the distance between the lines of fasteners shall not be greater than the respective pitches.
10.3.1.1	Since throads can occur in the shear plane of a boll, the effective area for resisting shear shall be taken as the not tensile area, A, of the bolls, it should be taken at the root of the thread.
1	Approx. $A_s = 0.78 \times \frac{\pi}{4} \times d^2$; $d = Nominal diameter i.e., dia. of shank,$

Clause	Code Provision
10.3,3	Shear Capacity of a bolt is given by
	$V_{dab} = \frac{f_u}{\sqrt{3} \gamma_{mb}} (n_n A_{nb} + n_s A_{ab})$
	where f _u = ultimate tensile strength of Bolt
- / -	n_ = number of shear planes with thread intercopting the shear plane
	$n_{\rm s}$ = number of shear planes without threads intercepting the shear plane
	$A_{ab} = \frac{\pi}{4}d^2$, $A_{ab} = 0.78\frac{\pi}{4}d^2$, $d = \text{norminal Bolt diameter}$
10,3.1	When the length of the joint, I exceeds 15 d in the direction of the load, the Nominal shear capacity shall be reduced by the factor
	$\beta_{11} = 1.075 - 0.005 \frac{I_{11}}{d}$
	0.75 ≤ βÿ≤1.1
	Where d = Nominal bolt diameter.
10.3.3.2	When the grip length, I (equal to the total thickness of the connected plate) exceeds 5 times the
	diameter of the bolt, the design shear capacity shall be reduced by a fector $\rho_{Ig}\left(\frac{8}{3+lgl\ d}\right) \le \beta_{IJ}$ (given in 10.3.3.1). The grip length of shall in no case be greater than 8d.
10.3.3.3	The design shear capacity of botts carrying shear through a packing plate in excess of 6 mm shall be decreased by a factor, $\beta_{PK} = \{1 - 0.0125\ell_{PK}\}$. Where, $\ell_{PK} = \text{thickness}$ of thicker packing in mm.
10.3.4	Bearing capacity of a Bolt is
	$V_{dpb} = \frac{2.5 K_b dt_u}{7mb}$
	Where K_0 is smaller of $\left(\frac{\partial}{3d_0}, \frac{P}{3d_0} - 0.25, \frac{f_{cb}}{f_u}, 1.0\right)$
	o, p=end and pitch distance d _d =diameter of the hole
	$I_{LD}I_{LD}I_{LD}I_{LD}$ = ultimate tensile stress of the bolt and the ultimate tensile stress of the plate respectively.
	d = nominal diameter of Bolt.
·	t⇒summation of the thicknesses of the connected plates experiencing bearing stress in the same direction or if the bolts are countersunk, the thickness of the plate minus one
	half of the dopth of counter sunking.
10.3.5	Design Tensile Capacity of the Bolt Is
	$T_{oD} = \frac{0.9 I_{uD} \Lambda_{nD}}{\gamma_{m0}} < \frac{I_{VD} \Lambda_{ab}}{\gamma_{m0}}$
	where, $I_{\rm th}$ = ultimate tensilo stress of bolt
	$f_{io} = \text{yield stress of Bolt}$
	$A_{cb} = N_{ca}$ tensite area of the Bolt calculated at root of the thread = 0.78 × A_{cb}
	A _{sb} = Shank area of the Bolt

Cieuse	Code Provision
10.3.6	Bolt subjected to combined shear and Tension shall satisfy
	$\left(\frac{V_{ab}}{V_{cb}}\right)^2 + \left(\frac{T_b}{T_{cb}}\right) \le 1.0$
	$\left(\overline{V_{cb}}\right)^{-1}\left(\overline{T_{cb}}\right)^{>1.0}$
10,4,3	Design shear capacity of a bolt as governed by slip for friction type connection is
	$V_{dd} = \frac{\mu_1 n_0 K_{pl0}}{\gamma_{ml}}$
	The state of the s
	where μ_r = Coofficient of friction as specified in Table 20 (study lable 20 for detail)
	n_{\bullet} = Number of effective interfaces offering frictional resistance to slip,
	K _n = 1.0 for fastness in clearance hole, 085 for fastness in overslazed and short slotted holes
	and for fasteners in long stotled holes loaded perpendicular to the stots. 0.70 for fasteners in long stotled hotes loaded parallel to the stot.
	y _m = 1.1 (if stip resistance is designed at service load)
	$I_0 = Minimum bolt tension (prof load) stinstallation.$
10.4.7	If deads with the coloration of applications of some in some of Teasure in MSEC Bull. A
10.4.3	It deals with the calculation of prying force in case of Tension In HSFG Bolts. According to it, praying force (Q) is given by
	1. [B.//b./4]
	$Q = \frac{I_V}{2I_o} \left[T_O - \frac{\beta_N f_O b_O I^4}{27 I_O I_V^2} \right]$
	where /= Distance from the bolt centreline to the toe of the fillet wold or to half the root radius for
	a rolled section,
	I _o = Distance between prying force and bolt centreline and is the minimum of either the
	end distance or the value given by
	$I_o = 1.1 \sqrt{\frac{\beta f_0}{I_y}}$
	β = 2.0 for non pre-tensioned bolt and 100 for pre-tensioned bolt
	η = 1.5
	b _a = effective width of flange per pair of bolis
	f ₀ = proofstress is consistent unit
10.5.1.1	Fillet welds terminating at the ends or sides of parts should be returned continuously around the comers for a distance of not less than twice the size of the weld, unless it is impractical to do so.
10,5,1,3	A single fillet weld should not be subjected to moment about the longitudinal axis.
10.5.2.1	The size of normal fillets shall be taken as the minimum weld leg size. For deep penetration welds, where the dopth of penetration beyond the root run is a minimum of 2.4 mm the size of the fillet should be taken as the minimum leg size plus 2.4 mm.
10.5.2.2	For Fillet weld made by sami-automatic or automatic processes, where the depth of penetration is considerably in excess of 2.4 mm, the size shall be taken considering actual depth of penetration subject to the agreement between the purchaser and the contractor.
on one was a second and a second as	1

Clause		Godo P	rovision		The second		946 (196	
10.5-2-3	The size of fillot weld shall not be less than 3 mm. The minimum size of the first run or a single fillot weld shall be as is given below to avoid cracking in the absonce of preheating.						single run	
	S.No.	Thickness of Thicker	Part (mm)	Minimum size (mm)			
	(1)	upto 10				3		
	(11)	10 to 20		1		5		
	(88)	20 to 32				6		
	(iy)	32 to 50			8 for first run.	, 10 for min. siz	o of weld	
10,5,2,4	The	the butt weld shall be spe	cified by a	Medive throa	it thicknoss.			
10.5.3.1	The effect	ctive throat thickness of a 0,7t or 1,0t under special o	fillet weld arcumstar	shall not be loss, where	less than 3 m t is the thickno	m and shall ge ass of the thinn	nerally not er plate of	
, ·	elemonts	s being welded.						
10.5.3.2	For the p	ourpose of siress calculation doness shall be taken as K	n in fillet v times the f	velds joining illet weld size	faces inclined , where Kise o	lo each other th constant.	se effective	
	Angle	between Fusion Faces	60-90*	91-100*	101-106*	107-113*	114-120°	
[Constant	0.70	0.65	0.60	0,55	0.50	
10.5.3.3	the thion	ctive throat thickness of a c ler pertionned and that of an s of the weld metal common	nincomole	te penetratio	n bull weld sha	ill be takon as Ur	hickness of e minimum	
10.5.4.1	moulred	clive length of fillet weld sh throat thickness, in practic times the weld size, but not	e lhe actu	al length of w	rold is made of	is of the specific the effective lon	ed size and agth of weld	
10.5.4.2	Tho effe less than	ctive length of bult weld sh n four times the weld size.	all be t ake	n as the leng	ith of the contin	nucus full siza w	reid, but nol	
10,5.5.1	Unless otherwise specified, the intermittent filtet welding shall have an effective longth not loss than 4 times the weld size, with a minimum of 40 mm.							
10.5.5.2	The clear spacing between the effective length of informittent wold shall not exceeds 12 and 16 times the thickness of thinner plate joined, for compression and tension joints respectively, and in no case more than 200 mm.							
10.5.5.3	The intermillent wolds shall not be used in positions subjected to dynamic, repetitive and altomating stresses.							
10.5.7.1.1	Design	Design strength of a fillet weld, $f_{\rm ref}$ shall be based on its threat area. $f_{\rm ref} = \frac{f_{\rm u}}{\sqrt{3} \gamma_{\rm max}}$						
	f _o = sma	aller of the ultimate stress		4 10110	ıl.			

Clause	Coda Provision
10.5,7,3	When the length of welded joint, I_j of a splice or end connection in a compression or tension element is greater than 150 I_v the design capacity of the weld I_{nd} shall be reduced by a factor of
3	$\beta_{hr} = 1.2 - \frac{0.2I_f}{150I_c} \le 10.$
	where. I = length of the joint in the direction of the force transfer I = throat size of the weld.
10.5.8.1	Where a fillet weld is applied to the square edge of a part, the specified size of the weld should generally be at least 1,5 mm less than the edge thickness in order to avoid washing down of the arris.
10.5.9.2	Whore the fillet weld is applied to the rounded toe of a reliad section, the specified size of the weld should generally not exceed 3/4 of the thickness of the section of the toe.
10.5.8.5	End fillet weld, normal to the direction of force shall be unequal size with the throat thickness not loss than 0.5 t, where t is the thickness of the part. The difference in thickness of the welds shall be negotiated at a uniform slope.
10.5.9	Stress on weld due to individual forces (Axial/Shear) Is given by
	f_a or $q = \frac{P}{t_1 t_w}$
	t, = effective throat thickness P = force (Axtel/shear) L_ = effective length of weld
10.5.10.1.1	Fillet weld when subjected to combination of normal and shear stress, the equivalent stress /, shall satisfy
	$I_{\rm e} = \sqrt{I_a^2 + 3q^2} \le \frac{I_a}{\sqrt{3} \gamma_{\rm may}}$
:	f _s = axialstross q = shear stress
10.5.10.1.2	Check for the combination of stresses need not be done for (a) side fillet welds joining cover plate and flange plates (b) fillet welds where sum of normal and shear stress does not exceed find.
10.5.10,2.1	Check for combination of stresses in but weld need not be carried out provided that: (a) bull weld are axially loaded (b) in single and double bovol welds, the sum of the normal and shear stresses does not exceeds the design normal stress and the shear stress does not exceeds 50% of the dosign shear stress.
10,5.2.2	Where bearing stress f_{φ} is combined with bending stress (tensite or compression) f_{φ} and shear stress, q under the most unfavourable conditions of loading in bull welds, the equivalent stress f_{φ} as obtained from the following formula, shall not exceed the value allowed to parent metal
	$I_0 = \sqrt{I_b^2 + I_{cr}^2 + I_b I_{br}} + 3q^2$

.

Clause	Code Provision				
10.7	Minimum forces for which the following connection shall be designed.				
4	Connection type	Dosign Forco			
	Connection in Right construction	0.5 times the member design moment capacity			
	Connection to beam in simple construction Minimum of shear capacity 0, 15 × member 40 kN				
	Connection at the ends of tensile or compression members	0.3 times the member design capacity			
,	Spilloes in momber subjected to tension	0.3 times the members design capacity intension			
	Splices in member subjected to Axial Compression	For ends propared for full contact. The fasteners shall be sufficient to carry 0.15 times the member design capacity in axial compression otherwise designed for 0.3 times the design capacity.			
	Splicse in Flexural Member	A bending moment of 0.3 times the member design capacity in bending.			
10.12.1	Lug angles connecting outstanding leg of a disposed symmetrically with respect to the sec	channol shaped member, shall as far as possible be ation of the member.			
10.12.2	member shall be capable of devoloping a str outstanding leg of the member and the etta	and their connections to the gusset or other supporting length not less than 20% in excess of the force in the schment of the lug angle to the main angle shall be lan 40% in excess of the force in the outstanding leg of			
10.12.3	supporting member shall be capable of deve	ne lug anglo and their connection to the gussol or other eloping a strength not less than 10% in excess of the on of the member and the attachment of the lug angles 20% in excess of that force.			
10.12.5	The effective connection of the lug angle shall connected and the fastening of the fug angle to the direct connection of the member to the gus	las far as possiblo torminate at the end of the member o the main member shall preferably start in advance of sset or other supporting membor.			

Following are the clauses of IS 800: 2007 that are associated with Design of Tension Member.

Clauso	Code Provision
6.2	It gives the design strength due to yielding of gross section $T_{dg} = \frac{A_g I_Y}{\gamma_{m0}}$
	A _p = gross are of cross-section
	f_y = yield stress of material.
	7 ₀₀ =1,1
6.3	f _y =yiold stress of material
	V _{no} =1,1
6.31	1/ Company of the com
	It gives the design strength due to rupture of critical section $T_{on} = \frac{0.9 A_n f_o}{\Upsilon_{ont}}$
	$\gamma_{\rm int} = 1.25$, $f_{\rm u} = $ ultimate stress of material
	A_n = Net effective area of the member = $\left[b - n d_0 + \sum_i \frac{\rho_S^2}{4g_i}\right]t$
6.32	Design strength of threaded rod in tension is given by
	$T_{do} = \frac{0.9 A_0 f_V}{Y_{-1}}$
	A _n =net root grea at the threaded section Ymt
6.33	it gives the design rupture strength of single angles connected through one leg.
	$T_{dn} = \frac{0.9 A_{nc} I_{o}}{\gamma_{m1}} + \frac{\beta A_{g0} f_{y}}{\gamma_{m0}} $
	where, $\beta = 1.4 - 0.076 \left(\frac{W}{l}\right) \left(\frac{f_y}{l_y}\right) \left(\frac{b_z}{l_z}\right)$
	$\leq \frac{0.9 f_0 \gamma_{m0}}{f_\gamma \gamma_{m1}} \geq 0.7$ $b_z = W + W_1 - l$
	where $w = \text{outstand} \log \text{width}$ $b_s = \text{shear leg width}$
	L _c = Length of the end connection, that is distance W
	between the outermost bolls in the and joint
	measured along the load direction or length of weld along the load direction
	$b_3 = W$
6.4	Give the block shear strength
	(a) For Bolted Connection $T_{ab} = \left[\frac{A_{cp} I_{\gamma}}{\sqrt{3} \gamma_{m0}} + \frac{0.9 A_{m} I_{u}}{\gamma_{m1}} \right]$ smaller of the two
	smaller of the two
	$T_{ub} = \left[\frac{0.9 A_{vx} I_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} I_y}{\gamma_{n0}} \right]$

Following are the clauses of IS 800 : 2007 that are associated with Design of Compression Member.

Followin		O-ila Brand	sion		2 te	٠,
Clause	<u> </u>	Code Provi	Sion .			
7,1.2.1	Gives the design comp	rossivo stress f	$_{cd} = \frac{\chi f_{\gamma}}{\gamma_{m0}} \le \frac{f_{\gamma}}{\gamma_{m0}}$	· ·		
	χ = stress reduction fac	tor, for different b	uckling dass, slende	mess ratio and yield	d stress.	
			$= \frac{1}{\left(\phi + \left(\phi^2 - \lambda^2\right)^{1/2}\right)}$			
	10 To 1/2		$= \sqrt{\frac{f_y}{f_{-x}}} = \sqrt{\frac{f_y \left(\frac{KL}{f}\right)^2}{\pi^2 E}}$			
	6= 015/1+c(1-0.2)+1	λ: (²]	$= \sqrt{f_{cc}} = \sqrt{\frac{\tau}{\pi^2 E}}$			
	α=Imperfection factor		ng class.			
	Buckling Class	а	b of	<u>, </u>	d	
	α	0.21	0.34	0,49	0.76	ł.
Table 11	Gives the affective len	ngth of prismatic o	columns.			
Table 10	Gives the dissification of section under different Buckling class (a, b, c, d)					
	Gives the dessification of section under other endeducing subsequency. According to it the gross sectional area shall be taken as the effective cross-sectional area for all According to it the gross sectional area for all according to it the gross section.					
			chall he taken as	ine effective cross	-socional area	for all
7,3.2	According to it the gr compression member	oss sectional are	ea shall be taken as hich are classified as	the effective cross class 4(stender) se	rovisions of IS	801 to
	According to it the gr compression member For such section effe	oss sectional are r except those which we section are local buckling sto	ea shall be taken as nich are dasslfied as ea in calculated eithe ength or by deducting	the effective cross class 4(stender) se	rovisions of IS	801 to
	According to it the gr compression member For such section effer account for the post- in excess of the semi-	oss soctional en rexcept those wi dive section ere local buckling str -compact (class-	ea shall be taken as hich are classified as a in calculated eithe ength or by deducting 3} limit.	the effective cross class 4(stender) se r by following the p gwidth of the comp	rovisions of IS ression plate o	801 to emant
	According to it the gr compression member For such section effer account for the post- in excess of the semi-	oss sectional are r except those which os section are local buckling structured compact (class-	ea shall be taken as nich are dassified as a in calculated eithe ength or by deducting 3) limit. o the point of inflection	the effective cross class 4(stender) se r by following the p gwidth of the comp	rovisions of IS ression plate o	801 to emant
7.3.2	According to it the gr compression member For such section effer account for the post- in excess of the semi- Splices should be to should be adequate to	oss soctional are rexcept those who idivo section ore local buckling stri- compact (class- called as close to carry the magni	ea shall be taken as nich are classified as ea in calculated eithe ength or by deducting 3) limit. o the point of inflection ified moments.	the effective cross class 4(stender) ser by following the p width of the comp on as possible. Oil	ression plate of herwise their co	801 to emont apacity h oqual
7.3.2	According to it the gromprossion member For such section effer account for the post-in excess of the semi-spilices should be to should be adequated. The maximum beanition 0.6 (2), where (4)	oss soctional arm r except those which we section are local buckling sin- compact (class- called as close to to carry the magn and pressure unde the smaller of chi-	ea shall be taken as nich are classified as as in calculated eithe ength or by deducting 3} limit. o the point of inflection ified moments. er a column base shou aractoristics cube stronaractoristics cube stronarac	the effective cross class d(stander) se by following the p g width of the comp on as possible. Oil uid not axceed the langth of concrete o	revisions of IS ression plate of herwise their co bearing strengt redding mater	801 to emont apacity h oqual
7,3.2	According to it the gromprossion member For such section effer account for the post-in excess of the semi-spilices should be to should be adequated. The maximum beanition 0.6 (2), where (4)	oss soctional arm r except those which we section are local buckling sin- compact (class- called as close to to carry the magn and pressure unde the smaller of chi-	ea shall be taken as nich are classified as as in calculated eithe ength or by deducting 3} limit. o the point of inflection ified moments. er a column base shou aractoristics cube stronaractoristics cube stronarac	the effective cross class d(stander) se by following the p g width of the comp on as possible. Oil uid not axceed the langth of concrete o	revisions of IS ression plate of herwise their co bearing strengt redding mater	801 to emont apacity h oqual
7.3.2 7.3.4.1 7.4.1	According to it the gromprossion member For such section effer account for the post-in excess of the semi-spilices should be to should be adequated. The maximum beanition 0.6 (2), where (4)	oss soctional error except those which is section are ocal buckling single-compact (classification ocal processors the magning pressure under the smaller of chaess, i, of rectanguess,	ea shall be taken as nich are classified as a la calculated eithe ength or by deducting 3} limit. o the point of inflectivified moments. er a column base shour aracteristics cube strugular slab bases, suppular slab ba	the effective cross class 4(stander) se by following the p g width of the comp on as possible. Oil uid not exceed the langth of concrete opening columns un	revisions of IS ression plate of herwise their co bearing strengt redding mater	801 to emont apacity h oqual
7.3.2 7.3.4.1 7.4.1	According to it the gromprossion member For such section effer account for the post-in excess of the semi-splices should be acquated. The maximum bearing to 0.6 f _{ct} , where f _{ct} is The minimum thickness hall be	oss soctional error except those which is except those which is except those which is except those is except as close to carry the magning pressure under the smaller of children, of rectangular except, I, of rectangular except	be shall be taken as nich are classified as a line classified as a line classified as a line classified as a line could be shall	the effective cross class 4(stander) se r by following the p g width of the comp on as possible. Off uild not axceed the i angth of concrete o porting columns un	revisions of IS ression plate of herwise their co bearing strengt r bedding mater ader axial comp	801 to emont apacity h equal ist.
7,3.2 7,3.4.1 7.4.1	According to it the gr compression member for such section effer account for the post- in excess of the semi- Splices should be to should be adequate to the maximum beam to 0.6 I _A , where I _A is The minimum thicker shall be where. W = uniform where.	ross soctional error except those which is except those which is except those which is except those which is except the magning pressure under the smaller of charges, I_a of rectangles, $I_a = \sqrt{2}$	sa shall be taken as nich are classified as a in calculated eithe ength or by deducting 3 } limit. The point of inflective interest in the point of inflective in the point of infle	the effective cross class 4(stander) se r by following the p g width of the comp on as possible. Oit uid not exceed the l angth of concrete o porting columns un > t > t > t > t > t > t > t	revisions of IS ression plate of herwise their c bearing strengt r bedding mater inder axial comp	801 to emont apacity h equal rist.
7.3.2 7.3.4.1 7.4.1	According to it the gr compression member for such section effer account for the post- in excess of the semi- Splices should be to should be adequate to the maximum beam to 0.6 I _A , where I _A is The minimum thicker shall be where. W = uniform where.	ross soctional error except those which is except those which is except those which is except those which is except the magning pressure under the smaller of charges, I_a of rectangles, $I_a = \sqrt{2}$	sa shall be taken as nich are classified as a in calculated eithe ength or by deducting 3 } limit. The point of inflective interest in the point of inflective in the point of infle	the effective cross class 4(stander) se r by following the p g width of the comp on as possible. Oit uid not exceed the l angth of concrete o porting columns un > t > t > t > t > t > t > t	revisions of IS ression plate of herwise their c bearing strengt r bedding mater inder axial comp	801 to emont apacity h equal rist.
7.3.2 7.3.4.1 7.4.1	According to it the groomprossion member For such section effer account for the post-in excess of the semi-splices should be adequated. The maximum beam to 0.61 _{ct} , where I _{ct} is. The minimum thickness that be where where we unifor a significant and the semi-splitted and the semi-s	ross soctional error except those which is except those which is except those which is except the magnitude of the smaller of the except the magnitude of the except	sa shall be taken as nich are classified as a in calculated eithe ength or by deducting 3) limit. The point of inflective commons in a column base shown a ractoristics cube structural stab bases, suppose $\frac{1}{2}$ fy the power on the structural respectively.	the effective cross class 4(stander) se r by following the p g width of the comp on as possible. Oit uid not exceed the l angth of concrete o porting columns un > t > t > t > t > t > t > t	revisions of IS ression plate of herwise their c bearing strengt r bedding mater inder axial comp	801 to emont apacity h equal rist.
7.3.4.1 7.4.1 7.4.3.1	According to it the gr compression membe For such section effet account for the post- in excess of the semi- Splices should be to should be adequate to The maximum beam to 0.6 I _{ct} , where I _{ct} is The minimum thickn shall be where we unifor com a, b = large colun t = flange	ress sectional error except those which is except those which is except those which is except those which is except the magning pressure under the smaller of children is except the magning pressure under the smaller of children is except the	sa shall be taken as nich are classified as a in calculated eithe ength or by deducting 3) limit. The point of inflective common in the point of inflective cube shown a column base shown are column bases, surpluser slab bases, surpluser sla	the effective cross class 4(stander) serby following the powel of the components of the components of the components of the concrete of the co	revisions of IS ression plate of herwise their co bearing strengt r bedding mater ander axial comp me factored los ngle circumscri	801 to emont apacity the equal rial. ression and axia bing the
7.3.2 7.3.4.1 7.4.1	According to it the gr compression member For such section effet account for the post-time account to 0.6 l _{ct} , where l _{ct} is The maximum beant to 0.6 l _{ct} , where l _{ct} is The minimum thicker shall be where we unifor company is a large color in the effective stends standerness ratio, it	ress sectional arr r except those which is except those which is except those which is except those which is except the magning pressure under the smaller of charges, i, of rectangular pressure from pressure from pressure from the smaller pressure from	sa shall be taken as nich are classified as a in calculated eithe ength or by deducting 3) limit. The point of inflective commons in a column base shown a ractoristics cube structural stab bases, suppose $\frac{1}{2}$ fy the power on the structural respectively.	the effective cross class 4 (stander) serby following the paywidth of the compon as possible. Oit will not exceed the langth of concrete or porting columns under the base under the beyond, the rectain taken as 1.05 times.	revisions of IS ression plate of herwise their or bearing strengt r bedding mater ander axial comp me factored for ngle circumsor es the actual or	801 to emont apacity in equal isst. ression and axis bing the

Clause	Code Provision
7.6.2	The minimum width of the lacing bar shall be three times the nominal diameter of the end boils.
7.6.3	The thickness of the flat lacing bar shall not be less than 1/40th of its effective length for single lacing and 1/60th for double lacings.
7.6.4	Lacing bars, shall be inclined at an angle not less than 40° nor more than 70° to the axis of the built up member.
7.6.5	The maximum spacing of lacing bars shall be such that the maximum stenderness ratio of the components of the main member between consecutive frieng connections is not greater than 50 or 70 times the most unfavourable stenderness ratio of the member as a whole, whichever is tess.
7.6.6.1	The lacing shall be proportional to resist a total transverse shear V _r at any point in the member,
	equal to at least 2.5% of the axial force in the member and shall be divided equally among the transverse lacing systems in parallel planes.
7.6.6.3	The stenderness ratio KL/r, of the lacing bars shall not exceed 145. In bolled/riveled connection in
	single facing K = 1.0
	For double facing K = 0.7 For welded construction K = 0.7
7.7.1.4	The effective stendeness ratio of battened columns shall be taken as 1.1 times the actual stendeness ratio.
7.7.2.1	Battens shall be designed to carry the bending moment and shear force arising from transverses shear force V _t equal to 2.5% of the total axial force on the whole compression mamber, divided
	equally between parallel planes of battens.
	Shear to be resisted $V_0 = \frac{V_1C}{NS}$
	Moment to be resisted $M = \frac{V_1C}{2N}$
	where, C = distance between c/c of batters longitudinally N = number of parallel planes of batters
	S = minimum transverse distance between the centrold of the rivet/bolt group/welding connecting batter to the main member.
7.7.2.3	When plates are used for battons, the end battens shall have an effective dopth, longitudinally not less than the perpendicular distance between centrolds of the main members. The intermediate battens shall have an effective depth of not less than 3/4th of this distance but in no case effective depth of any batten be less than two the width of one member in the plane of the battens. The thickness of battens or the lie plates shall not be less than 1/50th of the distance between the innermost connecting line of rivets bolts or welds perpendicular to the main rember.
7.7.3	The spacing of battens shall be such that the stenderness ratio of any component over that distance shall not be more than 50 nor shall be greater the 0.7 times the stenderness ratio of the member as a whole about the axis parallel to the battens.
7.8.1	Compression members composed of two angles, channels or lees back to back in contact or separated by a small distance shall be connected together by riveting bolting or welding so that the ratio of most unfavourable stenderness ratio of each member between the intermediate connections is not greater than 40 or 0.6 times the most unfavourable stenderness ratio as a whole.