THEORY OF EQUATIONS

• An expression of the form

 $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$, where $n \in N$ and $a_0, a_1, a_2, \dots, a_n$ are complex numbers $(a_0 \neq 0)$ is a polynomial in x of degree n. deg f(x) = n

- If $f(x) = a_0, a_0 \neq 0$ then f(x) a constant polynomial, or zero degree polynomial.
- Polynomials of degree 1, 2, 3, 4 are respectively called as a linear, quadratic, cubic, biquadratic polynomials.
- **DIVISION ALGORITHM:** If f(x), g(x) are two polynomials $[g(x) \neq 0]$ then there exists polynomials q(x), r(x) uniquely such that f(x)=q(x).g(x)+r(x), here r(x)=0 or deg $r(x) < \deg g(x).q(x)$ is called quotient and r(x) is called remainder of f(x).
- **REMAINDER THEOREM:** If a polynomial f(x) is divided by x a then the remainder is f(a).
- **FACTOR THEOREM:** If f(x) is a polynomial and f(a)=0 then (x-a) is a factor of f(x).
- If f(x) is a polynomial of degree n then f(x)=0 is called a polynomial equation of degree n. It is also called as algebric equation.
 - If $f(\alpha) = 0$ then α is a root of the equation f(x)=0.
- An equation

 $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$

is said to be an equation with

- Real coefficients, if $a_0, a_1, a_2, ..., a_n$ are real numbers.
- Rational coefficients, if $a_0, a_1, a_2, \dots, a_n$ are rational numbers.
- Integer coefficients, if $a_0, a_1, a_2, \dots, a_n$ are integers.
- FUNDAMENTAL THEOREM OF ALGEBRA: Every polynomial equation of degree $n \ge 1$ has at least one root.
- Every polynomial equation of degree 'n' has only 'n' roots and no more.
- In an equation with real coefficients, imaginary roots occur in conjugate pairs.
- In an equation with rational coefficients, irrational roots occur in pairs of conjugate surds.

- The functions of the roots of an equation which remains unaltered in value when any two of the roots are interchanged is called symmetric functions of the roots.
- RELATION BETWEEN THE ROOTS AND THE COEFFICIENTS:

If $\alpha_1, \alpha_2, \dots, \alpha_n$ are the roots of the equation $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$ then

- sum of the roots $= \sum \alpha_1 = S_1 = -\frac{\alpha_1}{\alpha_2}$
- sum of the products of the roots taken two at a

time = $\Sigma \alpha_1 \alpha_2 = S_2 = \frac{a_2}{a_0}$

• sum of the products of the roots taken three at

a time =
$$\sum \alpha_1 \alpha_2 \alpha_3 = S_3 = -\frac{a_3}{a_3}$$

• product of 'n' the roots

$$=\alpha_1.\alpha_2.\alpha_3.\ldots.\alpha_n=S_n=(-1)^n\frac{a_n}{a_n}$$

- In an equation, if all the coefficients are positive, then the equation has no positive root.
- In an equation, if all the coefficients of the even powers of x are of the same signs and the coefficients of odd powers of x are of opposite signs, then the equation has no negative root.
- In an equation, if all the powers of x are odd and all the coefficients are of the same sign, then the equation has no real root except '0'.
- In an equation, if all the powers of x are even and all the coefficients are of the same signs, then the equation has no real root.
- The equation of lowest degree with rational coefficients, having a root $\sqrt{a} + \sqrt{b}$ is

 $x^{4} - 2(a+b)x^{2} + (a-b)^{2} = 0$

- The equation of lowest degree with rational coefficients, having a root $\sqrt{a} + i\sqrt{b}$ is $x^4 - 2(a-b)x^2 + (a+b)^2 = 0$
- The condition that the roots of
 - $ax^3 + bx^2 + cx + d = 0$ may be in
 - A.P. is $2b^3 + 27a^2d = 9abc$
 - G.P. is $ac^3 = b^3d$
 - H.P. is $2c^3 + 27ad^2 = 9bcd$

- Condition that the product of two roots of $x^4 + px^3 + qx^2 + rx + s = 0$ is equal to the product of the other two roots is $p^2s = r^2$
- The condition that one root of $ax^{3} + bx^{2} + cx + d = 0$ may be the sum of the other two roots is $8a^{2}d + b^{3} = 4abc$
- The condition that the product of two of the roots of $ax^3 + bx^2 + cx + d = 0$ may be -1 is a(a+c)+d(b+d)=0
- If α, β, γ are the roots of $ax^3 + bx^2 + cx + d = 0$ then

•
$$\alpha^{2} + \beta^{2} + \gamma^{2} = \frac{b^{2} - 2ac}{a^{2}}$$

• $\alpha^{3} + \beta^{3} + \gamma^{3} = \frac{3abc - b^{3} - 3a^{2}c}{a^{3}}$

• $\alpha, \beta, \gamma, \delta$ are the roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$ then

•
$$\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2} = \frac{b^{2} - 2ac}{a^{2}}$$

• $\alpha^{3} + \beta^{3} + \gamma^{3} + \delta^{3} = \frac{3abc - b^{3} - 3a^{2}d}{a^{3}}$

- A root α of of f(x) = 0 is said to be a multiple root of order 'm' or multiplicity 'm' if it occurs m times.
- A multiple root α of order 'm' of f(x) = 0 is a multiple root of order m 1 of $f^{1}(x) = 0$
- If $\alpha_1, \alpha_2, \dots, \alpha_n$ are the roots of the equation f(x)=0 then the equation whose roots are $-\alpha_1, -\alpha_2, \dots, -\alpha_n$ is f(-x)=0.
- If $\alpha_1, \alpha_2, \dots, \alpha_n$ are the roots of the equation f(x) = 0 and $k \neq 0$ then the equation whose roots

are $k\alpha_1, k\alpha_2, \dots, k\alpha_n$ is $f\left(\frac{x}{k}\right) = 0$.

- The equation whose roots are reciprocals of the roots of the equation f(x) = 0 is $f\left(\frac{1}{x}\right) = 0$.
- The equation whose roots are exceed by k than those of f(x)=0 is f(x-k)=0.
- The equation whose roots are diminished by k than those of f(x)=0 is f(x+k)=0.

If $\alpha_1, \alpha_2, ..., \alpha_n$ are the roots of f(x)=0 then the equation whose roots are $\alpha_1^2, \alpha_2^2, ..., \alpha_n^2$ is $f(\sqrt{x})=0$. If α, β, γ are the roots of $f(x) = x^3 + ax^2 + bx + c = 0$ then the equation whose roots are • $\alpha + \beta, \beta + \gamma, \gamma + \alpha$ is f(-a - y) = 0• $\alpha\beta, \beta\gamma, \gamma\alpha$ is $f(\frac{-c}{y}) = 0$ • $\alpha\beta, \beta\gamma, \gamma\alpha$ is $f(\frac{-c}{y}) = 0$ • $\alpha(\beta + \gamma), \beta(\gamma + \alpha), \gamma(\alpha + \beta)$ is $f(\frac{c}{y - b}) = 0$ • $\alpha\beta + \frac{1}{\gamma}, \beta\gamma + \frac{1}{\alpha}, \gamma\alpha + \frac{1}{\beta}$ is $f(\frac{1-c}{y}) = 0$

•
$$\alpha - \frac{1}{\beta \gamma}, \beta - \frac{1}{\gamma \alpha}, \gamma - \frac{1}{\alpha \beta}$$
 is $f\left(\frac{cy}{c+1}\right) = 0$

• If the second term in the transformed equation of f(x)=0 is to be removed then the roots of the equation

f(x)=0 are to be diminished by 'h', where $h = -\frac{a_1}{a_0 n}$.

- If an equation is unaltered by changing 'x' into $\frac{1}{x}$, then it is a reciprocal equation. It is denoted by R.E.
- A reciprocal equation $f(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$ is called a
 - $f(x) = x + a_1 x + a_2 x + \dots + a_n = 0$ is called a reciprocal equation of the first type if $a_{n-1} = a_1, a_{n-2} = a_2, \dots,$
 - A reciprocal equation $f(x) = x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$ is a reciprocal equation of the second type if $a_{n-1} = -a_1, a_{n-2} = -a_2, \dots$
- A reciprocal equation of the first type and even degree is a standard reciprocal equation.
- If f(x) = 0 is a R.E. of the first type and odd degree, then x+1 is a factor of f(x).
- If f(x) = 0 is a R.E. of the second type and odd degree, then x-1 is a factor of f(x).
- If f(x) = 0 is a R.E. of the second type and even degree then $x^2 1$ is a factor of f(x).

LEVEL - I

PROBLEMS ON RELATION BETWEEN ROOTS & COEFFICIENTS AND FINDING THE ROOTS OF THE EQUATION:

If $1, 1, \alpha$ are the roots of $x^3 - 6x^2 + 9x - 4 = 0$ then 1. $\alpha =$ 3. -6 4. 6 2.4 1. _4 If $-1, 2, \alpha$ are the roots of $2x^3 + x^2 - 7x - 6 = 0$ then 2. $\alpha =$ 1. $\frac{-3}{2}$ 2. $\frac{3}{2}$ 3. 3 4. -3 If sum of the roots of the equation 3. $5x^4 - kx^3 + 8x + 1 = 0$ is 6 then K = 1.6 2. -63. -304.30 4. If sum of the roots of the equation $2x^9 - 11x^7 + 6x^4 + 8 = 0$ is 'a' then 'a' = 1. $\frac{11}{2}$ 2. $\frac{-11}{2}$ 3. 0 4. $\frac{2}{11}$ 5. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $3x^4 - 8x^3 + 2x^2 - 9 = 0$ then $\Sigma \alpha \beta =$ 1. $\frac{2}{3}$ 2. $\frac{-2}{3}$ 3. $\frac{8}{3}$ 4. $\frac{-8}{3}$ If $\alpha, \beta, \gamma, \delta$ are the roots of the equation 6. $9x^4 + Kx^2 - 7x + 4 = 0$ and $\Sigma \gamma \delta = 2$ then K = 2. -18 1.18 3.9 4.2 7. If $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are the roots of the equation $7x^4 + 2x^3 - 4x + 11 = 0$ then $\Sigma \alpha_1 \alpha_2 \alpha_3 =$ 1. $\frac{-4}{7}$ 2. $\frac{4}{7}$ 3. $\frac{2}{7}$ 4. $\frac{-2}{7}$ If $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ are the roots of the equation 8. $3x^4 - (l+m)x^3 + 2x + 5l = 0$ and $\Sigma \alpha_1 = 3$, $\alpha_1 \alpha_2 \alpha_3 \alpha_4 = 10$ then (l,m) =1. (9,1) 2. (-9,-1) 3. (-6,-3) 4. (6,3)9. If α , β and 1 are the roots of $x^3 - 2x^2 - 5x + 6 = 0$ then $(\alpha, \beta) =$ 2. (3,-2) 3. (-3,-2) 4. (-3,2) 1.(3,2)10. The roots of $x^3 + x^2 - 4x - 4 = 0$ are 1. -1, -2, -2 2. -1, -2, 2 3. 1, -2, 2 4. -2, 2, 4The roots of $x^{3} - 12x^{2} + 39x - 28 = 0$ are 11. 1. 1, -4, 7 2. 1, 4, -7 3. 1, 4, 7 4. 1, -4, -7The roots of $x^{3} + x^{2} - 16x + 20 = 0$ are 12. 1. 2, 2, -5 2. 2, 2, -4 3. 2, -2, -5 4. -2, -2, 5

13.	The roots o	f the equation	$x^3 - 9x^2 + 14$	x + 24 = 0 are
	11,-4,6	21, 4, -6	31, -4, -6	41,4,6
14.	The roots of	of the equation	$n x^3 - 5x^2 - 2x^2$	x + 24 = 0 are
	12, -3, 4	22, 3, 4	32, 3, -4	4. 2, -3, -4
15.	If α, β, γ	are the ro	oots of the	e equation
	2	4	1 1	1 _
	$2x^3 - 5x^2 + 3$	3x-1=0 ther	$\frac{1}{\alpha\beta} \frac{1}{\beta\gamma} \frac{1}{\gamma} \frac{1}{\gamma}$	α^{-}
	14	25	3. 5	44
16.	If α, β, γ	are the ro	oots of the	e equation
	$2x^3 - x^2 + x$	-1=0 then a	$\alpha^2 + \beta^2 + \gamma^2 =$	
	1. $\frac{5}{4}$	2. $\frac{3}{4}$	3. $\frac{-5}{4}$	4. $\frac{-3}{4}$
17.	If α, β, γ	are the ro	oots of the	e equation
	$x^3 + px^2 + q$	x + r = 0 then	$\alpha^2 + \beta^2 + \gamma^2$	=
	1. $p^2 + 2q$	2. $-p^2 + 2q$	3. $-p^2 - 2q$	4. $p^2 - 2q$
18.	If α, β, γ a	re the roots	of $x^3 + x^2 + x^3$	x+1=0 then
	$(\alpha - \beta)^2 + ($	$(\beta - \gamma)^2 + (\gamma - \gamma)^2$	$(\alpha)^2 =$	
	1.3	23	3.4	44
19.	If $3x^4 - 27x$	$x^{3} + 36x^{2} - 5 =$	0 then $s_1 + s_2$	=
	1.3	2. 21	321	43
20.	If $x^5 - x^2 + x^2$	4x-9=0 the	$n s_3 + s_4 - s_5 =$	=
	1.14	2. –4	3. –9	4.4
21.	If $x^4 + 2x^3 - 2x^3 $	$-4x^2 - 4x + 4 =$	$= 0$ then $2s_1 - s_2$	$s_2 + s_3 - s_4 =$
	1.3	2.2	3.1	4.0
22.	If $7x^4 + kx - 1$	$-9 = 0$ and s_3	= -8 then k	=
22	1.28	2. – 28	3.56	4. – 56
23.	If $2x^9 - 5x^4$	+k = 0 and $k = 0$	$s_9 = 16$ then K	$x = \frac{1}{2}$
24	If $\alpha \beta \gamma \beta \gamma$	2 10	$\int \frac{3}{2} \int \frac{3}{2} dx^2 + bx^2$	4. -32
21.	$(\alpha \beta)$	e ine 10015 0	x + ax + bx	+c=0, then
	$\Sigma\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)$	=		
	1. $\frac{ab}{c}$	2. $\frac{ab}{c} - 1$	3. $\frac{ab}{c} - 2$	4. $\frac{ab}{c} - 3$
25.	If α, β, γ and	the roots of	$f x^3 + ax^2 + bx$	+c=0, then
	$\pi(\alpha+\beta-2)$	$2\gamma) =$		
	1. $2a^3 - 9al$	b + 27c	2. $2a^3 + 9ab$	<i>p</i> +27 <i>c</i>
26	3. $2a^3 - 9ab$	b-27c	4. $2a^3 + 9ab$	p-27c
26.	If α, β, γ	are the root	$x^3 + ax^3$	+b=0 then
	$(\alpha + \beta)^{-1} + 0$	$(\beta + \gamma)^{-1} + (\gamma - \gamma)^{-1}$	$(+\alpha)^{-1} =$	2
	1. $\frac{a}{b}$	2. $-\frac{a}{b}$	3. $\frac{a^2}{h^2}$	4. $-\frac{a^2}{b^2}$
27.	If one root	of $x^3 - kx^2 + k$	x-4=0 is th	e reciprocal
	of another	then $K =$		1
	1.2	2.3	3.4	4.5

28. If one root of $x^3 + 2x^2 + 3x + k = 0$ is the sum of the other two roots then K =1.0 2.1 3.2 4.3 29. If the product of two of the roots $x^{3} - kx^{2} + 5x + 3 = 0$ is -1 then k = 1.2 2.3 3.4 4.5 30. If 1,3,-4 are the roots of $x^3 + kx + 12 = 0$ then k = 1.11 2. -113.13 4. -13 31. If α, β, γ are the roots of $x^3 + 2x^2 + 3x + 8 = 0$ then $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) =$ 1. -22.2 3.4 4. - 432. If the sum of two roots of the equation $x^4 - x^3 + 2x^2 + kx + 17 = 0$ equals to the sum of the other two then k =1. $\frac{7}{8}$ 2. $-\frac{7}{8}$ 3. $\frac{9}{8}$ 4. $-\frac{9}{8}$ 33. If the equation $2x^3 - 9x^2 + 12x + k = 0$ has two equal roots then k =1. -5 2.5 3.4 4.6 34. If $\frac{a}{k}$, a, at are the roots of $x^3 - px^2 + qx - r = 0$, then a =1. p^2 2. r^2 3. $\frac{p}{q}$ 4. $\frac{q}{p}$ 35. If $k\sqrt{-1}$ is a root of the equation $x^4 + 6x^3 - 16x^2 + 24x - 80 = 0$ then k = 2. ± 2 3. ± 3 1. ± 1 4. ± 4 36. The roots of the equation $x^4 - 10x^3 + 50x^2 - 130x + 169 = 0$ are of the form $a \pm ib$ and $b \pm ia$, then (a,b) = 1. (3,2) 2. (2,1) 3. (-3,2) 4. (-3,-2)PROBLEMS ON FINDING ROOTS WHEN **EOUATION IS GIVEN:** 37. If one root of $x^3 - 5x^2 + 2x + 8 = 0$ is double the other then the roots are 1. -1,3,6 2. -1,2,4 3. 1,2,4 4. 1,3,6 38. If one root of $x^3 + 4x^2 - 4x - 16 = 0$ is double the other then the roots are 2. -6, -3, 21. -4, -2, 24. -1. -2. 4 3.2,2,4 If one root of $ax^4 + bx^3 + cx^2 + dx + e = 0$, where a, 39 b, c, d, e are rational numbers, is $\sqrt{2} + \sqrt{3}$ then the other roots are 1. $\sqrt{2} - \sqrt{3}$, 2, 5 2. $\sqrt{2} - \sqrt{3}$, -2, 5 3. $\sqrt{2} - \sqrt{3}, -\sqrt{2} + \sqrt{3}.5$ 4. $\sqrt{2} - \sqrt{3}, -\sqrt{2} + \sqrt{3}, -\sqrt{2} - \sqrt{3}$

40. If $\sqrt{5} - i\sqrt{7}$ is a root of $ax^4 + bx^3 + cx^2 + dx + e = 0$, where a, b, c, d, e are rational numbers, then the other roots are 1. $\sqrt{5} + i\sqrt{7}, \frac{2}{3}, \frac{1}{3}$

2.
$$\sqrt{5} + i\sqrt{7}, -\sqrt{5} + i\sqrt{7}, \frac{2}{3}$$

3.
$$\sqrt{5} + i\sqrt{7}, -\sqrt{5} + i\sqrt{7}, -\sqrt{5} - i\sqrt{7}$$

4. $\sqrt{5} - i\sqrt{7}, \frac{2}{3}, \frac{1}{3}$

41. If two roots of $4x^3 - 12x^2 + 9x - 2 = 0$ are equal then the roots are

1.
$$\frac{1}{2}, \frac{1}{2}, 2$$
 2. $-\frac{1}{2}, -\frac{1}{2}, 2$ 3. $\frac{1}{4}, \frac{1}{4}, 1$ 4. $\frac{1}{4}, \frac{1}{4}, 2$

42. If the two roots of $9x^3 + 24x^2 + 13x + 2 = 0$ are equal then the roots are

1.
$$-2, \frac{1}{3}, \frac{1}{3}$$
2. $2, -\frac{1}{3}, -\frac{1}{3}$ 3. $1, -\frac{1}{3}, -\frac{1}{3}$ 4. $-2, -\frac{1}{3}, -\frac{1}{3}$

43. If two roots of $x^3 - 7x^2 + 4x + 12 = 0$ are in the ratio 1:3 then the roots are

$$1. -1, 1, 3 \qquad 2. -1, 2, 6 \qquad 3. 2, 3, 6 \qquad 4. 2, -3, 6$$

44. If two roots of $9x^3 - 30x^2 + 31x - 10 = 0$ are in the ratio 2:5 then the roots are

1.
$$1, -\frac{2}{3}, -\frac{5}{3}$$
 2. $-1, \frac{2}{3}, \frac{5}{3}$ 3. $1, \frac{2}{3}, \frac{5}{3}$ 4. 1, 2, 5

45. If the sum of two of the roots of $x^3 - 5x^2 - 4x + 20 = 0$ is zero then the roots are

1. 2, -2, 4 2. 2, -2, 3 5. 2, -2, 5 4. 2, -2, 6
46. If the sum of two of the roots of
$$x^4 - 5x^3 - 3x^2 + 15x = 0$$
 is zero then the roots are 1. 0, 5, $\pm\sqrt{3}$ 2. 0, 5, $\pm\sqrt{2}$ 3. 0, 5, $\pm\sqrt{5}$ 4. 0, 5, $\pm\sqrt{6}$

47. If one root of the equation $4x^3 - x^2 - 16x + 4 = 0$ is 8 times the other, then the roots are

1. 1, 2, 8 2.
$$\frac{1}{2}$$
, 4, -1 3. $\frac{1}{4}$, -2, 2 4. 2, 4, 16

- 48. If the sum of two roots of the equation $x^{3}-3x^{2}-16x+k=0$ is zero then k = 1. 24 2. 36 3. -36 4. 48
- 49. If the sum of two roots of the equation $x^{3}-3x^{2}+kx+48=0$ is zero then k = 1. 16 2. -16 3. 24 4. -24 50. If the product of two roots of $3+k^{2}+21=20$, o is 15 then k =

$$x^{3} + kx^{2} + 31x - 30 = 0$$
 is 15 then $k = 1.2$
1.2
2. -2
3. -10
4. 10

51.	If the product of two roo	ots of $x^3 + 3x^2 - 10x + k = 0$
	is 8 then $k =$	2 24 4 10
52	110 2.24	324 4. 10
32.	If one root of $3x^3 + kx^2$.	+53x-15=0 is the recip-
	125 2. 25	3.5 45
53.	If two roots of $x^3 + ax^2$.	+bx+c=0 are connected
	by the relation $\alpha\beta + 1 = 0$	then the condition is
	1. $c^2 + ac + b + 1 = 0$	2. $c^2 - ac + b + 1 = 0$
	3. $c^2 + ac + b = 0$	4. $c^2 - ac + b = 0$
54.	If one of the roots of 27.	$x^3 - 108x^2 + 117x - 28 = 0$ is
	equal to half the sum of	the other two, then one of
	its roots is	
	1. $\frac{3}{4}$ 2. $-\frac{3}{4}$	3. $-\frac{4}{3}$ 4. $\frac{4}{3}$
55.	If 1, 2, 3 are the roots o	f $x^3 + ax^2 + bx + c = 0$ then
	(a, b, c) =	
	1. (-6,11,-6)	2. (6,11,6)
	3. (-6,11,6)	4. (6,11,-6)
56.	The roots of the equation	on $x^4 + 3x^3 - 3x - 1 = 0$ are
	1. $-1.1.\frac{-3\pm\sqrt{5}}{5}$	2. 1.1. $\frac{-3\pm\sqrt{5}}{5}$
	2	2
	3. $-1, -1, \frac{-3 \pm \sqrt{5}}{2}$	4. $-1, 1, \frac{3 \pm \sqrt{5}}{2}$
57.	The roots of the equation	$n \ 2x^4 + x^3 - 6x^2 + x + 2 = 0$
	are	
	1. $\frac{1}{2}$, 1, 1, 2	2. 1,1,-2, $-\frac{1}{2}$
	2	2
	3. 1,1,2, $-\frac{1}{2}$	4. 1,1,-2, $\frac{1}{2}$
	DI EMS ON FINDINA	CEOUATION
WH	EN ROOTS ARE GIV	EN:
58.	The equation whose roo	ots are 1,1,-2 is
	1. $x^3 + 3x - 2 = 0$	2. $x^3 + x - 2 = 0$
-	3. $x^3 + 2x - 3 = 0$	4. $x^3 - 3x + 2 = 0$
59.	The equation whose roo	ots are $-2, 1, 3$ 1s
	1. $x^3 + 2x^2 + 3x - 6 = 0$	$2 \cdot x^3 - 2x^2 - 5x + 6 = 0$
60	5. $x^3 + x^2 - x - 1 = 0$ The equation whose real	4. $x^3 - x^2 + x + 1 = 0$
00.	The equation whose for $1 - 3 + 2 + 2 + 2 = 0$	$2^{-3} + 2^{-2} + 2^{-1} + 1^{-0}$
	1. $x^3 + 2x^2 + 3x + 2 = 0$ 3. $x^3 - 2x^2 - 2x + 1 = 0$	2. $x^3 + 3x^2 + 3x + 1 = 0$ 4. $x^3 - 2x^2 - 3x + 2 = 0$
61.	The equation whose root	$x^{2} - 2x^{2} - 3x + 2 = 0$ ots are 2, 1 ± 3 <i>i</i> is
	1. $x^3 - 4x^2 + 14x - 20 = 0$	
	2. $x^3 - x^2 + 5x - 14 = 0$	
	3. $x^3 + 2x^2 - 3x - 10 = 0$	
	4. $x^3 - 3x^2 - 14x + 10 = 0$	

62.	The equation whose roo	ots are 0, 1, 2, -3 is			
	1. $x^4 - 5x^2 + 4x = 0$	2. $x^4 - 6x^2 + 5x = 0$			
	3. $x^4 - 7x^2 + 6x = 0$	4. $x^4 - 8x^2 + 7x = 0$			
63.	The equation whose roo	ots are 0, 0, 3, -4 is			
	1. $x^4 + x^3 + 12x^2 = 0$	2. $x^4 + x^3 - 12x^2 = 0$			
	3. $x^4 - x^3 + 12x^2 = 0$	4. $x^4 - x^3 - 12x^2 = 0$			
64.	The equation whose r	oots are $2 + \sqrt{3}$, $2 - \sqrt{3}$,			
	$1+2i, \ 1-2i$ 18				
	$1 \cdot x^4 - 7x^3 - 25x^2 - 43x + 40 = 0$				
	$2 \cdot x^4 - 7x^3 + 25x^2 + 43x - 40 = 0$				
	3. $x^4 + 6x^3 + 14x^2 - 22x + 3$	5 = 0			
<i>(</i> -	4. $x^4 - 6x^3 + 14x^2 - 22x + 3$	5 = 0			
65.	The cubic equation which I	has two roots $1, 3 - i\sqrt{2}$ is			
	1. $x^3 + 7x^2 + 17x - 11 = 0$				
	2. $x^3 - 7x^2 + 17x - 11 = 0$	4 2 2			
	$3. x^3 - 7x^2 + 17x + 11 = 0$	4. $x^3 + 7x^2 - 8 = 0$			
66.	The equation whose roc	ots are $-1 \pm i, -1 \pm \sqrt{2}$ 1s			
	1. $x^4 + 4x^3 + 5x^2 + 2x - 2 = 0$ 2. $x^4 + 4x^3 - 5x^2 + 2x + 2 = 0$				
	$3. x^4 - 4x^3 + 5x^2 + 2x - 2 =$	= 0			
67	4. $x^{4} - 4x^{3} + 5x^{2} + 2x + 2 =$ The equation whose root	=0			
07.	$\frac{1}{10} r^{6} + 8r^{4} = 16r^{2} = 0$	$2x^{6} 4x^{4} 16x^{2} = 0$			
	$3. x^{6} - 8x^{4} + 16x^{2} = 0$	$\begin{array}{c} 2. \ x & -4x & -10x & -0 \\ 4. \ x^{6} + 4x^{4} + 16x^{2} - 0 \end{array}$			
68.	The equation whose ro	ots are $0, 0, 1, 1, -1$ is			
	1. $x^5 + x^4 - x^3 - x^2 = 0$	2. $x^5 - x^4 + x^3 - x^2 = 0$			
	3. $x^5 - x^4 - x^3 + x^2 = 0$	4. $x^5 + x^4 - x^3 + x^2 = 0$			
69.	If $\Sigma \alpha = \frac{2}{3}, \Sigma \alpha \beta = \frac{4}{3}$ and α	$\alpha\beta\gamma = \frac{8}{3}$ then the equation			
	whose roots are α, β, γ	is			
	1. $x^3 - 2x^2 + 4x - 8 = 0$	2. $3x^3 + 2x^2 - 4x + 8 = 0$			
	3. $3x^3 - 2x^2 + 4x - 8 = 0$	4. $x^3 + 2x^2 - 4x + 8 = 0$			
70.	If two of the roots of $2x^2$	$x^3 + 7x^2 + 2x - 3 = 0$ are dif-			
	fer by 2 then the roots a	re			
	1. $-3, -1, \frac{1}{2}$ 2. $-3, -1, \frac{1}{3}$	3. $3, 1, \frac{1}{2}$ 4. $-3, 1, \frac{1}{2}$			
71.	If the product of	two of the roots			
	$x^4 - 8x^3 + 21x^2 - 20x + 5 =$	$_0$ is 5 then the roots are			
	1. $\frac{2\pm\sqrt{5}}{2}, \frac{5\pm\sqrt{5}}{2}$	2. $\frac{3\pm\sqrt{5}}{2}, \frac{5\pm\sqrt{5}}{2}$			
	3. $1,5,1\pm\sqrt{2}$	4. $\frac{4\pm\sqrt{5}}{2}, \frac{5\pm\sqrt{5}}{2}$			

SR. MATHEMATICS

THEORY OF EQUATIONS

82. If The roots of the equation 72. If $\sqrt{2}$ and 3i are two roots of a biquadratic equa $x^{3}-24x^{2}+188x-480=0$ are in A.P. then one of tion with rational coefficients, then its equation is its roots is 1. $x^4 - 7x^2 - 18 = 0$ 2. $x^4 - 7x^2 + 18 = 0$ 3.7 2.8 4. –7 1. -8 3. $x^4 + 7x^2 - 18 = 0$ 4. $x^4 + 7x^2 + 18 = 0$ 83. If the roots of $x^3 - 9x^2 + 23x - 15 = 0$ are in A.P. 73. $f(x) = 2x^4 - 7x^3 + ax + b$ is divisible by x -1 and then the common difference of A.P. is x - 2 then (a, b) =1. ±5 2. +4 3. ±3 4. +2 2. (19, 14) 1. (19, -14) 84. If the roots of $x^3 - 12x^2 + 39x + k = 0$ are in A.P. 3. (-19, 14) 4. (-19, -14) then k =1.28 2. -284. – 18 PROBLEMS ON LOWEST DEGREE 3.18 WITH RATIONAL COEFFICIENTS: 85. If the roots of $x^3 - 3x^2 + kx + 3 = 0$ are in A.P. then k=74. The equation of fourth degree with rational coeffi-1. – 1 3. - 3 2.1 4.3 cients one of whose roots is $\sqrt{3} + \sqrt{2}$ is If the roots of $x^{3} - 18x^{2} + 107x - 210 = 0$ are in A.P. 86. then the roots are 1. $x^4 - 10x^2 - 1 = 0$ 2. $x^4 + 10x^2 - 1 = 0$ 1. 3, 6, 9 2. 4, 6, 8 3. 2, 6, 10 4. 5, 6, 7 3. $x^4 + 10x^2 + 1 = 0$ 4. $x^4 - 10x^2 + 1 = 0$ The roots of $x^4 - 8x^3 + 14x^2 + 8x - 15 = 0$ are in A.P. 87. 75. The equation of lowest degree with rational coefthen the roots are ficients having a root $\sqrt{5} + \sqrt{7}$ is 1. -1,2,5,8 2. -1,1,3,5 3. 1,2,3,4 4. 1,3,5,7 1. $x^4 - 24x^2 + 4 = 0$ 2. $x^4 + 24x^2 - 4 = 0$ 88. If the roots of $px^3 + qx^2 + rx + s = 0$ are in A.P. then 4. $x^4 + 24x^2 + 4 = 0$ 3. $x^4 - 24x^2 - 4 = 0$ the roots of $8px^3 + 4qx^2 + 2rx + s = 0$ are in 76. The equation of lowest degree with rational coef-1. A.P. 4. A.G.P. 2. G.P. 3. H.P. ficients having a root $\sqrt{3} - \sqrt{5}$ is 89. If the roots of $ax^3 + bx^2 + cx + d = 0$ are in A.P. then 1. $x^4 + 16x^2 - 4 = 0$ 2. $x^4 - 12x^2 + 4 = 0$ the roots of $a(x+k)^{3} + b(x+k)^{2} + c(x+k) + d = 0$ 3. $x^4 - 16x^2 + 4 = 0$ 4. $x^4 - 12x^2 - 4 = 0$ are in 77. The equation of the lowest degree with rational 2. G.P. 3. H.P. 4. A.G.P. 1. A.P. coefficients having a root $\sqrt{3} + i\sqrt{2}$ is **PROBLEMS ON G.P.:** 1. $x^4 + 2x^2 - 25 = 0$ 2. $x^4 - 10x^2 + 1 = 0$ The condition that the roots of $ax^3 + bx^2 + cx + d = 0$ 90. 3. $x^4 + 10x^2 - 1 = 0$ 4. $x^4 - 2x^2 + 25 = 0$ may be in G.P. if 78. The equation of the lowest degree with rational 1. $ab^3 = c^2 d$ 2. $a^{3}c = bd^{3}$ coefficients having a root $\sqrt{7} - i$ is 3. $ac^3 = b^3 d$ 4. $a^{3}b = cd^{2}$ 1. $x^4 - 16x^2 + 36 = 0$ 2. $x^4 - 12x^2 + 64 = 0$ 91. If the roots of $x^3 + 3px^2 + 3qx + r = 0$ are in G.P., 4. $x^4 - 12x^2 + 36 = 0$ 3. $x^4 - 16x^2 + 64 = 0$ the condition is 79. The equation of the lowest degree with rational 1. $pr = q^3$ 2. $p^2r = q^3$ 3. $p^3r = q^3$ 4. $pr^3 = q^3$ coefficients having a root 1 + i is 92. If the roots of $x^3 - 7x^2 + 14x + k = 0$ are in G.P. then 2. $x^4 - 4 = 0$ 1. $x^4 + 4 = 0$ k =3. $x^4 - 4x^2 + 1 = 0$ 4. $x^4 + 4x^2 + 1 = 0$ 2.8 3.7 1. -84. –7 93. If the roots of $kx^3 - 26x^2 + 52x - 24 = 0$ are in G.P. **PROBLEMS ON A.P.**: then k =The condition that the roots of $ax^3 + bx^2 + cx + d = 0$ 80. 3.4 1.3 2. -34. _4 may be in A.P. if 94. Condition for the roots of the equation 2. $2b^3 + 27a^2d = -9abc$ 1. $2b^3 + 27a^2d = 9abc$ $x^{3} - px^{2} + qx - r = 0$ are in G.P. is 4. $2b^3 - 27a^2d = -9abc$ 3. $2b^3 - 27a^2d = 9abc$ 1. q = pr 2. $q^2 = p^2 r$ 3. $q^3 = pr^3$ 4. $q^3 = p^3 r$ 81. If the roots of the equation $x^3 + 3px^2 + 3qx + r = 0$ 95. If the roots of $ax^3 + bx^2 + cx + d = 0$ are in G.P. then are in A.P. the condition is the roots of $ax^3 + 3bx^2 + 9cx + 27d = 0$ are in 1. $2p^3 = 3pq + r$ 2. $2p^3 = 3pq$ 1. A.P. 2. G.P. 3. H.P. 4. A.G.P. 3. $2p^3 + r = 3pq$ 4. $2p^3 - r = 3pq$

PRO	BLEMS ON H.P.:	106.	The equation whose roots are those of equation
96.	If the roots of $x^3 + 3ax^2 + 3bx + c = 0$ are in H.P.		$x^4 + x^3 - x - 25 = 0$ with contrary signs
	then		1. $x^4 + x^3 - x - 25 = 0$ 2. $x^4 + x^3 + x - 25 = 0$
	1. $2b^2 = c(3ab - c)$ 2. $2b^3 = c(3ab - c)$		3. $x^4 + x^3 + x + 25 = 0$ 4. $x^4 - x^3 + x - 25 = 0$
	3. $2b^3 = c^2(3ab - c)$ 4. $2b^2 = c^2(3ab - c)$	107.	The equation whose roots are those of
97.	If the roots of $x^3 + px^2 + qx + r = 0$ are in H.P. then		$x^n + x^{n-2} + x^{n-5} + m = 0$ with contrany signs (n is
	1. $2q^3 - 27r^2 = 9 pqr$ 2. $2q^3 + 27r^2 = 9 pqr$		even as $n \ge 6$)
	3. $2a^3 + 27r^2 = -9 par$ 4. $2a^3 - 27r^2 = -9 par$		1. $x^n - x^{n-2} + x^{n-5} + m = 0$
98.	If the roots of the equation $x^3 - lx^2 + mx - n = 0$ are		2. $x^n + x^{n-2} - x^{n-5} + m = 0$
	in H.P., then the mean root is		3. $x^n + x^{n-2} + x^{n-5} + m = 0$
	$1 \frac{3n}{2} 2 \frac{2n}{2} 3 \frac{n}{2} 4 - \frac{n}{2}$		4. $x^n - x^{n-2} - x^{n-5} + m = 0$
	1. $\frac{1}{m}$ 2. $\frac{1}{m}$ 3. $\frac{1}{m}$ 4. $-\frac{1}{m}$	108.	If 5, -7, 2 are the roots of $lx^3 + mx^2 + nx + p = 0$
99.	If the roots of the equation $x^3 - 3px^2 + 3qx - r = 0$		then the roots of $lx^3 - mx^2 + nx - p = 0$ are
	are in H.P., then the mean root is		15, -7, -2 2. 5, 7, 2
	1. $\frac{3r}{r}$ 2. $\frac{2r}{r}$ 3. $\frac{r}{r}$ 4. $-\frac{r}{r}$		3. 7, -5, -2 47, -5, 2
100	q q q q q	109.	The equation whose roots are 2 times the roots of
100.	The condition that the roots of $ax^3 + bx^2 + cx + d = 0$ may be in H P is		$x^3 + 3x^2 - 5x + 1 = 0$ is
	1. $2c^3 + 27ad^2 - 9bcd$ 2. $2b^3 + 27a^2d - 9abc$		$1. \ x^3 + 6x^2 - 20x + 8 = 0$
	3. $2b^3 + 27ad^2 = 9abc$ 4. $2c^3 + 27a^2d = 9bcd$		2. $x^3 + 6x^2 + 20x + 8 = 0$
101.	If the roots of $2x^3 + kx^2 - x + 1 = 0$ are in H.P. then		3. $x^3 - 6x^2 - 20x + 8 = 0$ 4. $x^3 - 6x^2 + 20x + 8 = 0$
	k=	110.	The equation whose roots are multiplied by -3 of
	$1 \frac{-50}{2}$ $2 \frac{52}{2}$ $3 \frac{-52}{2}$ $4 \frac{50}{2}$		those of $9x^3 - 6x^2 + 5x - 4 = 0$ 1s
100	1. 9 2. 9 5. 9 4. 9		1. $x^3 + 2x^2 - 5x + 12 = 0$ 2. $x^3 - 2x^2 + 5x + 12 = 0$
102.	If the roots of $ax^3 + bx^2 + cx + d = 0$ are in H.P. then the roots of $dx^3 - cx^2 + bx - a = 0$ are in	111	3. $x^3 + 2x^2 + 5x + 12 = 0$ 4. $x^3 - 2x^2 - 5x + 12 = 0$
	1. A.P. 2. G.P. 3. H.P. 4. A.G.P.	111.	I he equation whose roots are 5 times the roots of
			$x^{2} + 1 = 0$ is
PRO	BLEMS ON, EQUATION WHEN		1. $x^{+} + 5 = 0$ 2. $x^{+} + 25 = 0$ 4. 4. (25. a)
103	IS ARE EXCLED BY KEIC.,: If $\alpha \beta \gamma$ are the roots of $\beta \beta - \beta - \beta - \beta - \beta - \beta$, then	112	5. $x^{+}+125=0$ 4. $x^{+}+625=0$ 16 $x^{-}-2x^{-}-x^{-}-4x^{-$
105.	the equation whose roots are $-\alpha - \beta - \gamma$ is	112.	If α, β, γ are the roots of $4x^3 - 7x^2 + 2x - 6 = 0$ then
	1. $2r^3 + 5r^2 + 7r + 8 = 0$		the equation whose roots are $\frac{\alpha}{2}, \frac{\beta}{2}, \frac{\gamma}{2}$ is
	$2x^{2} + 5x^{2} + 7x + 6 = 0$ $2x^{2} + 5x^{2} - 7x - 8 = 0$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3. $-2x^3 - 5x^2 - 7x + 8 = 0$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	4. $2x^3 - 5x^2 + 7x - 8 = 0$		$2 \cdot 52x - 26x + 4x - 6 = 0$ $3 \cdot 22x^3 - 28x^2 - 4x - 6 = 0$
104.	If α, β, γ are the roots of $7x^3 + x - 11 = 0$ then the		$\begin{array}{c} 3 \cdot 32x - 28x - 4x - 6 = 0 \\ 4 \cdot 22x^3 - 28x^2 - 4x + 6 = 0 \end{array}$
	equation whose roots are $-\alpha, -\beta, -\gamma$ is	112	-52x - 28x - 4x + 6 = 0
	1. $7x^3 - x + 11 = 0$ 2. $7x^3 - x - 11 = 0$	115.	(1 - 5, 6, 9) are the roots of px + qx + rx + s = 0 then
	3. $7x^3 + x + 11 = 0$ 4. $7x^3 + x - 11 = 0$		the roots of $27 px^3 + 9qx^2 + 3rx + s = 0$ are
105.	If $\alpha, \beta, \gamma, \delta$ are the roots of		11.2.3 23.6.9 32.4.6 4. $-\frac{1}{2}, \frac{2}{2}, 1$
	$3x^4 - 8x^3 + x^2 - 10x + 5 = 0$ then the equation whose	114	If 1 5 7 and the master of 2 a 2 a different them
	roots are $-\alpha, -\beta, -\gamma, -\delta$ is	114.	If 1, 5, 7 are the roots of $ax^3 + bx^2 + cx + d = 0$ then
	1. $3x^4 + 8x^5 + x^2 + 10x + 5 = 0$		the foots of $ax^3 + 2bx^2 + 4cx + 8d = 0$ are
	$2 \cdot 3x^{4} + 8x^{5} + x^{2} - 10x + 5 = 0$		1. 2, 10, 14 2. 2, 20, 20
	$3 \cdot 3x^4 - 8x^3 + x^2 - 10x + 5 = 0$		3. 1, 5, 7 4. $\frac{1}{2}, \frac{5}{2}, \frac{7}{2}$
	$4. \ 3x^4 - 8x^3 + x^2 + 10x + 5 = 0$		

115. The equation whose roots are diminished by 1 than those of $4x^3 - x^2 + 2x - 3 = 0$ is 1. $4x^3 - 11x^2 + 12x + 2 = 0$ 2. $4x^3 - 11x^2 + 12x - 3 = 0$ 3. $4x^3 + 11x^2 + 12x + 2 = 0$ 4. $4x^3 + 11x^2 + 12x - 3 = 0$ 116. The equation whose roots are diminished by 3 than those of $x^{3} - x^{2} - x + 1 = 0$ is 1. $x^3 + 8x^2 + 20x + 16 = 0$ 2. $x^3 - 8x^2 - 20x + 16 = 0$ 3. $x^3 - 8x^2 + 20x + 16 = 0$ 4. $x^3 + 8x^2 - 20x + 16 = 0$ 117. The equation whose roots are exceed by $\frac{1}{2}$ than those of $8x^3 - 4x^2 + 6x - 1 = 0$ is 1. $8x^3 - 16x^2 + 8x - 3 = 0$ 2. $8x^3 - 16x^2 - 8x - 3 = 0$ 3. $8x^3 - 8x^2 + 8x - 3 = 0$ 4. $4x^3 - 8x^2 + 8x - 3 = 0$ 118. The equation whose roots are diminished by 2 than those of $x^4 - 5x^3 + 7x^2 - 17x + 11 = 0$ is 1. $x^4 + 3x^3 - x^2 - 17x - 19 = 0$ 2. $x^4 + 3x^3 + x^2 - 17x - 19 = 0$ 3. $x^4 + 3x^3 + x^2 + 17x - 19 = 0$ 4. $x^4 + 3x^3 - x^2 + 17x - 19 = 0$ 119. The equation whose roots are exceed by 2 than those of $2x^3 + 3x^2 - 4x + 5 = 0$ is 1. $2x^3 + 9x^2 - 8x + 9 = 0$ 2. $2x^3 + 9x^2 + 8x + 9 = 0$ 3. $2x^3 - 9x^2 + 8x + 9 = 0$ 4. $2x^3 - 9x^2 - 8x + 9 = 0$ 120. The equation whose roots are the roots of $x^{4}+1=0$ each increases by 1 is 1. $x^4 + 1 = 0$ 2. $x^4 - 4x^3 + 6x^2 - 4x + 2 = 0$ 3. $x^4 + 4x^3 - 6x^2 - 4x + 2 = 0$ 4. $x^4 - 1 = 0$ 121. If -3,1,8 are the roots of $px^3 + qx^2 + rx + s = 0$ then the roots of $p(x-3)^3 + q(x-3)^2 + r(x-3) + s = 0$ are 1. 0, 4, 11 2. -6, -2, 5 3. -2, 2, 9 4. -1, 3, 10 122. If $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ are the roots of $ax^3 + bx^2 + cx + d = 0$ then the roots of $a(x+1)^3 + b(x+1)^2 + c(x+1) + d = 0$ are 1. $-\frac{1}{2}, -\frac{1}{3}, -\frac{1}{4}$ 2. $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}$ 3. $-\frac{1}{2}, -\frac{2}{3}, -\frac{3}{4}$ 4. $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}$

123. If $f(x) = x^3 - 2x^2 + 7x + 5$ then f(x-2) =1. $x^3 + 8x^2 + 27x - 25$ 2. $x^3 - 8x^2 + 27x - 25$ 3. $x^3 + 8x^2 + 27x + 25$ 4. $x^3 - 8x^2 - 27x + 25$ 124. If $f(x) = 3x^4 - 9x + 1$ then f(x+1) =1. $3x^4 + 12x^3 + 18x^2 + 3x - 5$ 2. $3x^4 - 12x^3 - 18x^2 + 3x - 5$ 3. $3x^4 - 18x^2 + 3x$ 4. $3x^4 + 18x^2 - 3x$ 125. The equation whose roots are the squares of the roots of $x^3 + ax + b = 0$ is 1. $x^3 + 2ax^2 - a^2x - b^2 = 0$ 2. $x^3 + 2ax^2 + a^2x - b^2 = 0$ 3. $x^6 + ax^2 + 6 = 0$ 4. $x^6 - ax^2 + 6 = 0$ 126. The equation whose roots are the squares of the roots of $x^4 + 3x + 8 = 0$ is 1. $x^4 - 16x^2 - 9x - 64 = 0$ 2. $x^4 + 16x^2 - 9x - 64 = 0$ 3. $x^4 + 16x^2 - 9x + 64 = 0$ 4. $x^4 - 16x^2 + 9x - 64 = 0$ 127. If α, β, γ are the roots of the equation $x^{3} + qx + r = 0$ the equation whose roots are $-\alpha^{-1}, -\beta^{-1}, -\gamma^{-1}$ is 1. $rx^3 + qx^2 - 1 = 0$ 2. $rx^3 - qx^2 - 1 = 0$ 3. $rx^3 + qx^2 + 1 = 0$ 4. $rx^3 - qx^2 + 1 = 0$ 128. The equation whose roots are cubes of the roots of $x^3 + 3x^2 + 2 = 0$ is 1. $x^3 - 33x^2 + 12x + 8 = 0$ 2. $x^3 + 33x^2 + 12x + 8 = 0$ 3. $x^3 - 33x^2 + 8 = 0$ 4. $x^3 + 33x^2 + 8 = 0$ 129. If α, β, γ are the roots of $x^3 - 3x^2 + 4x - 7 = 0$, then $(\alpha+2)(\beta+2)(\gamma+2) =$ 1. 25 2. -25 3.35 4. -35 130. If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 - 2x^3 + 2x^2 + 1 = 0$ then the equation whose roots are $2 + \frac{1}{\alpha}, 2 + \frac{1}{\beta}, 2 + \frac{1}{\gamma}, 2 + \frac{1}{\delta}$ is 1. $x^4 - 2x^3 + 29 = 0$ 2. $x^4 + 6x^2 + 29 = 0$ 3. $x^4 - 14x + 29 = 0$ 4. $x^4 - 8x^3 + 26x^2 - 42x + 29 = 0$ 131. On diminishing the roots of $x^5 + 4x^3 - x^2 + 11 = 0$ by 3, the transformed equation is $y^5 + p_1y^4 + p_2y^3 +$ $p_3y^2 + p_4y + p_5 = 0$ then $p_3 =$ 1. 353 2. 507 3. 305 4.94

132. The equation whose roots are cubes of the roots	140. The quotient and the remainder when
of $x^3 + 3x^2 + 2 = 0$ is	$2x^5 - 3x^4 + 5x^3 - 3x^2 + 7x - 9$ is divided by $x^2 - x - 3$
$1. \ x^3 - 33x^2 + 12x + 8 = 0$	are
2. $x^3 + 33x^2 + 12x + 8 = 0$	1. $2x^3 - x^2$, 41 2. $2x^3 - x^2$, 41x + 3
3. $x^3 + 33x^2 - 12x - 8 = 0$	3. $2x^3 - x^2 + 10x + 4$, $41x + 3$
4. $x^3 - 33x^2 - 12x - 8 = 0$	4. $2x^3 - x^2 + 10x - 4$, 41
	141. The quotient and the remainder when
PROBLEMS ON ELIMINATING	$x^4 - 11x^3 + 44x^2 - 76x + 48$ is divided by
2ND TERM IN THE GIVEN EQUATION:	$x^2 - 7x + 12$ are
133. The transformed equation of $x^3 - 6x^2 + 10x - 3 = 0$	1. $x^2 - 4x - 2$, 0 2. $x^2 - 4x + 4$, 0
by eliminating second term is	3. $x^2 - 4x$, 0 4. $x^2 + 4x$, 0
1. $x^3 + 2x + 1 = 0$ 2. $x^3 - 2x + 1 = 0$	142. The value of b so that $x^4 - 3x^3 + 5x^2 - 33x + b$ is
3. $x^3 - 2x - 1 = 0$ 4. $x^3 + 1 = 0$	divisible by $x^2 - 5x + 6$ is
134. The transformed equation of $x^3 + 6x^2 + 12x - 19 = 0$ by	1. 45 2. 48 3. 51 4. 54
eliminating second term is	
1. $x^3 + 3x - 27 = 0$ 2. $x^3 - 3x + 27 = 0$	PROBLEMS ON REMOVING
3. $x^3 + 27 = 0$ 4. $x^3 - 27 = 0$	FRACTIONAL COEFFICIENTS:
135. The transformed equation of $x^4 + 8x^3 + x - 5 = 0$ by	143. The transformed equation of $x^3 - \frac{5}{2}x^2 - \frac{7}{18}x + \frac{1}{108} = 0$
eliminating second term is	by removing fractional coefficients is
$\frac{1}{2} \cdot x^4 - 24x^2 + 65x - 55 = 0$	$\int x^3 - 15x^2 + 14x - 2 = 0 \qquad 2x - x^3 - 15x^2 - 14x - 2 = 0$
$2 \cdot x^4 + 24x^2 - 65x + 55 = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$3. \ x^4 - 24x^2 - 65x - 55 = 0$	144. The transformed equation of
4. $x^4 + 24x^2 + 65x + 55 = 0$	1 1 1
136. The transformed equation of	$x^{3} - \frac{1}{4}x^{2} + \frac{1}{3}x - \frac{1}{144} = 0$ by removing fractional
$x^4 + 4x^3 + 2x^2 - 4x - 2 = 0$ by eliminating second	coefficients is
	1. $y^3 - 3y^2 + 48y - 12 = 0$
$1 \cdot x^{2} + 4x^{2} + 1 = 0 \qquad 2 \cdot x^{2} + 4x^{2} - 1 = 0$	$2, v^3 + 3v^2 + 48v + 12 = 0$
$\begin{array}{c} 5 \cdot x^{2} - 4x^{2} + 1 = 0 \\ 137 \text{The third term of } x^{3} + 2x^{2} + x + 1 = 0 \text{ is eliminated} \end{array}$	$\frac{1}{3} - \frac{1}{3} + \frac{1}$
by putting $x = y + h$. The values of 'h' are	$3 \cdot y = 3y + 40y + 12 = 0$
$\begin{array}{c} \begin{array}{c} 1. \\ 1. \\ 1. \\ 1. \\ 1. \\ 1. \\ 1. \\ 1. $	4. $y^3 + 3y^2 + 48y - 12 = 0$
	145. The transformed equation of
PROBLEMS ON QUOTIENT	$\frac{2}{3}x^4 + \frac{1}{4}x^3 - \frac{x}{768} + \frac{1}{256} = 0$ with integral coefficients
AND REMAINDERS:	and unity for the coefficient of the first term is
138. If $x^4 - 6x^3 + 3x^2 + 26x - 24$ is divided by x-4 then	$1, r^4 + 3r^3 - r + 1 = 0, 2, r^4 - 3r^3 + r + 1 = 0$
the quotient is	$3 x^{4} + 2x^{3} x + 24 = 0 \qquad 4 x^{4} + 2x^{3} x + 1 = 0$
1.0 2. $x^3 + 2x^2 - 5x + 6$	146 If $\alpha \beta \gamma \delta$ are the roots of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1 \text{ for } 11 \text{ or } 0, p, r, 0 \text{ are the roots of} \\ 4 \text{ or } 2, r \text{ or then} \end{array}$
139. The quotient and the remainder when	$x^{+} - x^{-} - /x^{2} + x + 6 = 0$ then
$3x^4 - x^3 + 2x^2 - 2x - 4$ is divided by (x+2) are	$\alpha^4 + \beta^4 + \gamma^4 + \delta^4 =$
1. $3x^3 - 7x^2 + 16x - 34, 64$	1.79 2.89 3.99 4.109
2. $3x^3 + 7x^2 - 16x - 34$, 64	14/. If α, β, γ are the roots of $4x^3 - 7x^2 + 1 = 0$ then
3. $3x^3 - 7x^2 - 16x - 34$, 64	$\alpha^{-4} + \beta^{-4} + \gamma^{-4} =$
4. $3x^3 + 7x^2 + 16x - 34$, 64	198 2. 98 3. 96 496

32

148. The number of real roots of $x^{10} - x^7 + x^5 + 2x^4 + 6 = 0$ is 1. atmost five 2. atmost four 3. atmost three 4. atmost two 149. The number of negative roots of $x^4 - x^3 + x^2 + 9 = 0$ is 1.3 2.2 3.1 4.0 150. The number of imaginary roots of $x^6 - 2x^5 - 7x + 4 = 0$ is 1. atleast three 2. atleast four 3. atmost three 4. atmost four **PROBLEMS ON RECIPROCAL EQUATIONS: RECIPROCAL EQUATION IS DENOTED BY R.E.:** 151. If α is a root of R.E. f(x) = 0 then is also a root of f(x) = 01. $-\alpha$ 2. α^2 3. $\frac{1}{\alpha}$ 4. 2α 152. If $ax^3 + bx^2 + cx + d = 0$ is a R.E. of the first type then 1. a = d, b = c2. a = c, b = d3. a = -d, b = -c4. a = -c, b = -d153. If $px^3 + qx^2 + rx + s = 0$ is a R.E. of second type then 1. p = s, q = r2. p = -s, q = -r3. p = s, q = -r4. p = -s, q = r154. $2x^4 - 15x^3 + 19x^2 - 15x + 2 = 0$ is a 1. R.E. of first type 2. R.E. of second type 3. Standard R.E. 4. None 155. If f(x) = 0 is a R.E. of first type and odd degree then a factor of f(x) is 1. x-2 2. x-1 3. x 4. x+1 156. If f(x) = 0 is a R.E. of first type and odd degree then a root of f(x) = 0 is 1.2 2.1 3.0 4. -1 157. If f(x) = 0 is a R.E. of second type and seventh degree then a factor of f(x) is 4. x+1 1. x - 22. x - 13. x 158. If f(x) = 0 is a R.E. of second type and fifth degree then a root of f(x) = 0 is 2.1 3. -1 4.2 1.0 159. If f(x) = 0 is a R.E. of second type and even degree then a factor of f(x) is 2. x - 11. x+13. $x^2 - 1$ 4. x^2 **PROBLEMS ON MULTIPLE ROOTS:** 160. The multiple roots of $x^4 - 2x^3 - 11x^2 + 12x + 36 = 0$ are 2.2, -3 3.-2, -3 4.-2, 31.2,3

161. The multiple roots of $x^{5} - 3x^{4} - 5x^{3} + 27x^{2} - 32x + 12 = 0$ are 1. 1, 2 2. 2, 3 3. 3, 4 4.4,1 162. The order of the multiple roots of 2 of the equation $x^4 - 5x^3 + 6x^2 + 4x - 8 = 0$ is 2.2 4.4 3.3 1.1 163. The order of the multiple root of -1 of the equation $x^4 + 4x^3 + 6x^2 + 4x + 1 = 0$ is 2.2 3.3 4.4 1.1 164. If f(x) = 0 has a repeated root a, then another equation having a as root is 2. f(3x) = 01. f(2x) = 03. f'(x) = 04. f''(x) = 0**PROBLEMS ON ONE ROOT OF EQUATION LIE BETWEEN 'a' & 'b':** 165. One root of $x^3 - 3x^2 + 4x - 1 = 0$ lies between 1.0 and 1 2.1 and 2 3.2 and 3 4.4 and 5 166. One root of $x^3 + x^2 - 2x - 1 = 0$ lies between 1.-2 and -32.0 and 1 3.1 and 2 4.2 and 3 167. One root of $x^3 - 7x + 7 = 0$ lies between 2. -2 and -11. -1 and 0 3. -3 and -24. -4 and -3**PROBLEMS ON DEGREE OF AN EQUATION:** 168. The degree of the equation $\left(x^{\frac{3}{2}}+2\right)^2 = (3x+1)^2$ is 1.3 2.4 3.5 4.6 169. The degree of the equation $\frac{4}{x} + \frac{x}{7} = \frac{x-1}{3}$ is 1.1 2.2 3.3 4.4 **PROBLEMS ON SYMMETRIC TERM OF ROOTS:** 170. If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$ then $\Sigma \alpha^2 \beta^2 =$ 1. $q^2 - 2pr$ 2. $q^2 + 2pr$ 3. q + 2pr 4. q - 2pr171. If α , β , γ are the roots of $4x^3 - x^2 + 10x + d = 0$ then $\Sigma \alpha (\beta + \gamma) =$ 1. 10 2. -10 3.5 4.-5 172 If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$ then $\Sigma \alpha (\beta + \gamma) =$ 1. 2q 2. -2q 3. 2p 4. -2p 173. If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$ then $\Sigma \alpha^2 \beta =$ 1. 3r + pq 2. 3r - pq 3. pq - 3r 4. pq + 3r

174.	If α, β, γ ar	e the roots o	of $x^3 + 2x^2 + 3x^2$	x+4=0 then
	$\Sigma \alpha^2 \beta^2 =$	2 14	2 14	4 7
175.	1. / If α , β , γ are	2. −14 e the roots o	3.14 f $r^3 + 3r^2 + 2r$	4 /
175.	1		x + 3x + 2x	+5 = 0, enem
	$\Sigma \frac{1}{\alpha^2 \beta^2} =$			
	1. $\frac{4}{9}$	2. $\frac{5}{9}$	3. $-\frac{5}{9}$	4. $-\frac{4}{9}$
176.	If α, β, γ ar	e the roots o	of $x^3 + ax^2 + bx$	c + c = 0, then
	$\Sigma \alpha^2 (\beta + \gamma)$	=		
177	1. $ab+3c$	2. $ab - 3c$	3.3c-ab	4. 3c+ab
1//.	If α, β, γ af $\sum \alpha^2 \beta =$	e the roots ($x^3 + 2x^2 + 3x^3$	x+4=0 then
	$2\alpha \ \beta = 16$	2. –12	3.12	4.6
178.	If α, β, γ ar	e the roots o	of $x^3 + px^2 + qx^2$	x + r = 0 then
	$\Sigma \frac{1}{\alpha^2 \beta^2} =$			
	1. $\frac{p^2 - 2q}{r^2}$	2. $\frac{p^2 + 2q}{r^2}$	3. $\frac{p^2 + 2q}{r}$	4. $\frac{p^2 - 2q}{r}$
179.	If α, β, γ ar	e the roots c	of $x^3 + px^2 + qx$	x + r = 0 then
	$\Sigma \frac{\beta^2 + \gamma^2}{\beta \gamma} =$			
	1. $\frac{pq}{r} - 1$	2. $\frac{pq}{r} - 2$	3. $\frac{pq}{r} - 3$	4. $\frac{pq}{r} - 4$
180.	If α, β, γ ar	e the roots c	of $x^3 + px^2 + qx$	x + r = 0 then
	$(\beta + \gamma - 3\alpha)$	$(\gamma + \alpha - 3\beta)($	$(\alpha + \beta - 3\gamma) =$	
	1. $3p^3 + 16p$	pq + 64r	2. $3p^3 - 16p^3$	pq + 64r
	3. $3p^3 - 16p$	pq	4. $3p^3 + 16p^3$	pq
181.	If α, β, γ	are the ro	oots of the	e equation
	$x^3 + px^2 + qx$	x + r = 0 such	that $\alpha + \beta = 2$ $pr + \alpha = 2$	0 then
	3. pr - q	0	2. $pr + q = 4$. $pq = r$	0
182.	If α, β, γ as	re the roots	of $x^3 - x - 1$	= 0 then the
	transform	ed equati	on having	the roots
	$\frac{1+\alpha}{1-\alpha}, \frac{1+\beta}{1-\beta},$	$\frac{1+\gamma}{1-\gamma}$ is obta	ined by takin	$g_{X} =$
	1. $\frac{2y-1}{y+1}$	2. $\frac{y-1}{y+1}$	3. $\frac{y-1}{2y+1}$	4. $\frac{y-1}{3y+1}$
		KEY	Y	
	1.2	2.1	3.4	4.3
	5.1 9.2	6. 1 10-2	7.2 11-3	8.4 12-1
	13. 4	14.2	15.3	16.4
	17.4	18.4	19.2	20.2
	21.4 25.1	22. 3 26. 1	23.4 27.4	24. 4 28. 3
1				

29. 4 33. 1 37. 2 41. 1 45. 3 49. 2 53. 1 57. 2	30. 4 34. 4 38. 1 42. 4 46. 1 50. 3 54. 4 58. 4	31. 2 35. 2 39. 4 43. 2 47. 3 51. 3 55. 1 59. 2	32. 2 36. 1 40. 3 44. 3 48. 4 52. 1 56. 1 60. 3
61. 1 65. 2	62. 3 66. 1	63. 2 67. 3	64. 4 68. 3
69. 3 72. 1	70.1	71.2	72.3
73. 1 77. 4	74. 4 78. 2	73. 1 79. 1	70. 3 80. 1
81.3	82.2	83.4	84.2
85.1	86.4	87.2	88.1
89. l 03. l	90. 3 04 4	91.3	92.1
97. 2	94. 4 98. 1	99. 2 99. 3	100.1
101.3	102. 1	103.2	104.3
105.1	106.4	107.2	108.3
109.1	110.3	111.4	112.2
113.1 117 A	114. 1 118-2	115.3	116. I 120. 2
121.1	122.3	123. 2	120.2
125.2	126.3	127.2	128.2
129.3	130.4	131.3	132.2
133.2	134.4	135.1	136.3
137.4	138.4	139. I 143 4	140.3
141.2 145.3	142.4	143.4	144.1
149.4	150.2	151.3	152.1
153.2	154.3	155.4	156.4
157.2	158.2	159.3	160.4
161. l 165. 1	162.3	163.4	164.3
169 2	100.3	107.4	108.4
173.2	174.4	175.2	176.3
177.4	178.1	179.3	180. 2
181.4	182.2		

HINTS

11.	$s_1 = 12$ verify options.
16.	a = 2; b = -1; c = 1; d = -1

use formula
$$s_2 = \frac{b^2 - 2ac}{a^2}$$

25. Put
$$a = 1$$
; $b = 1$, $c = 1$
 $p x = -1$, $x = i$, $x = -i$
 $p a = -1$, $b = i$, $g = -i$
Verify the options

26.
$$(-g)^{1} + (-a)^{1} + (-b)^{1} = \frac{gbg + ag + abu}{gab}$$

104. Put x = -x31. $y = a + b = s_1 - g$ y = -2 - g = -2 - x110. Put $X = \frac{x}{2}$ Put y = -2 - x and verify s_2 . 32. Use $P^3 + 8r = 4pq$ Use the condition of G.P. 34. $q^3 = p^3 r \mathbf{b}$ $r = \overset{\mathfrak{A}}{\underset{\mathbf{b}}{\mathbf{c}}} \frac{\overrightarrow{\mathbf{o}}}{\overrightarrow{\mathbf{c}}} \mathbf{b}$ $a = r^{1/3} = \frac{q}{p}$ 35. Substitute x = ik and verify value of k from options. 36. $s_1 = 2(a+b) = 10$ a + b = 5 then verify from the options. 44. Find $s_1 = \frac{30}{9} = \frac{10}{3}$ 1. Verify sum of roots in options. 49. Take roots a, - a, b 51. a bg = -k P 8g = -ka + b + g = -3b (a + b) = -3-r 2 ab+g(a+b)=-10 p g(-3-g)=-18Find value of g are 58. $s_3 = 1(1)(-2)$ verify s, in options. 60. $s_1 = -1 + 2 + \sqrt{3} + 2 - \sqrt{3} = 3$ Verify in options. 62. Find $s_3 = a^2$ a bg = 1(2)(-3)= -6 3. verify in options. Find $s_2 = a^{\circ} a b = 3(-4)(-4) = -12$ 63. Verify in options. 4. 65. Roots are 1, 3- $i\sqrt{2}$, 3+ $i\sqrt{2}$ Find $s_1 = 1 + 3 - i\sqrt{2} + 3 + i\sqrt{2} = 7$ $s_3 = 1(3 - i\sqrt{2})(3 + i\sqrt{2}) = 11$ Now verify s_1 and s_2 in options. 5. 68. Verify S_{γ} 70. Verify $s_1 = -\frac{7}{2}$ in options. 73. f(1) = 0 and f(2) = 0. 6. Substitute a = 3, b = 2 in the formula 74. $x^{4} - 2(a+b)x^{2} + (a-b)^{2} = 0$ Apply the formula $x^{4} - 2(a+b)x^{2} + (a-b)^{2} = 0$. 75. Apply the formula $x^{4} - 2(a+b)x^{2} + (a-b)^{2} = 0$. 76. Use the formula $x^4 - 2(a - b)x^2 + (a + b)^2 = 0$ 77. 7. Use the formula $x^{4} - 2(a - b)x^{2} + (a + b)^{2} = 0$ 78. 86. $s_2 = 210$ Verify product of roots in options.

117. Put $X = x - \frac{1}{2}$ 126. Put $X = \sqrt{x}$ 131. Roots of $dx^3 + cx^2 + bx + a = 0$ are in A.P. 137. $3h^2 + 4h + 1 = 0$. Since all coefficients are positive, so both values of 'h' are negative. LEVEL-2 If the roots of the equation $x^{4}-6x^{3}+18x^{2}-30x+25=0$ are of the form $\alpha \pm i\beta$ and $\beta \pm i\alpha$, then $(\alpha, \beta) =$ 1. (-1, -2) 2. (1, 2) 3. (1, -2) 4. (5, 1)If two roots α, β of the equation $x^{4}-5x^{3}+11x^{2}-13x+6=0$ are connected by the relation $2\alpha + 3\beta = 7$ then the roots of the equation 1. -1. 3. $1\pm i\sqrt{2}$ 2. -1, 3, $1\pm i\sqrt{3}$ 3. 2, 1, $1 \pm i\sqrt{2}$ 4. 2, 1, $1 \pm i\sqrt{3}$ If two of the roots of $x^3 + ax + b = 0$ are equal, the condition is 1. $27b^2 - 4a^3 = 0$ 2. $27b^2 + 4a^3 = 0$ 3. $27b - 4a^2 = 0$ 4. $27b + 4a^2 = 0$ If α is an imaginary root of $x^{5} - 1 = 0$, then the equation whose roots are $\alpha + \alpha^4$ and $\alpha^2 + \alpha^3$ is 1. $x^2 - x - 1 = 0$ 2. $x^2 + x - 1 = 0$ 3. $x^2 - x + 1 = 0$ 4. $x^2 + x + 1 = 0$ The real root of the equation $x^3 + 12x - 12 = 0$ is 1. $2\sqrt[3]{2} - \sqrt[3]{5}$ 2. $2\sqrt[3]{2} + \sqrt[3]{5}$ 3. $2\sqrt[3]{2} + \sqrt[3]{4}$ 4. $2\sqrt[3]{2} - \sqrt[3]{4}$ If α , β , γ are the roots of the equation $x^3 - x + 2 = 0$ then the equation whose roots are $\alpha\beta + \frac{1}{\gamma}, \beta\gamma + \frac{1}{\alpha}, \gamma\alpha + \frac{1}{\beta}$ is 1. $2y^3 + y^2 + 1 = 0$ 2. $2y^3 - y^2 + 1 = 0$ 3. $y^3 + y^2 + 1 = 0$ 4. $2y^3 + y^2 - 1 = 0$ If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$ then $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) =$ 1. pq-r 2. r-pq 3. p+pqr4. pq+r

8. If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$ then $\Sigma \alpha^3 \beta^3 =$ 1. $q^3 + 3pqr + 3r^3$ 2. $q^3 - 3pqr + 3r^3$ 3. $q^3 + 3pqr + 3r^2$ 4. $q^3 - 3pqr + 3r^2$ 9. If the product of the two roots of $x^{4} + px^{3} + qx^{2} + rx + s = 0$ is equal to the product of the other two, then 1. $ps^2 = r$ 2. $p^2s = r^2$ 3. $ps = r^3$ 4. $p^2s = r^3$ 10. If one root of $x^3 + ax^2 + bx + c = 0$ is the sum of the other two roots then 1. $a^3 = 4(ab-c)$ 2. $a^3 = 4(ab-2c)$ 3. $a^3 = ab - c$ 4. $a^3 = ab - 2c$ 11. If the sum of two roots of the equation $x^4 + px^3 + qx^2 + rx + 8 = 0$ equals to the sum of the other two, then $p^3 + 8r =$ 1. pq 2. 2pq 3. 3pg 4. 4pq If one root of the equation $x^3 + qx + r = 0$ is double 12. the other then $343r^2 + 36q^3 + 1 =$ 1.1 2.0 4. _2 3. -1 13. If α, β, γ are the roots of the equation $x^{3} + 2x + 1 = 0$ then the equation whose roots are $\beta^2 \gamma^2, \gamma^2 \alpha^2, \alpha^2 \beta^2$ is 1. $v^3 - 4v^2 - 4v - 1 = 0$ 2. $v^3 + 4v^2 - 4v - 1 = 0$ 3. $y^3 + 4y^2 + 4y - 1 = 0$ 4. $y^3 - 4y^2 + 4y - 1 = 0$ 14. If α, β, γ are the roots of the equation $x^{3}+3x-2=0$ then the equation whose roots are $\alpha(\beta+\gamma),\beta(\gamma+\alpha),\gamma(\alpha+\beta)$ is 1. $v^3 + 6v^2 + 9v + 4 = 0$ 2. $v^3 + 6v^2 - 9v + 4 = 0$ 3. $v^3 + 6v^2 + 9v - 4 = 0$ 4. $v^3 - 6v^2 + 9v + 4 = 0$ 15. If α, β, γ are the roots of the equation $x^{3} + qx + r = 0$ then the equation whose roots are $\beta \gamma - \alpha^2, \gamma \alpha - \beta^2, \alpha \beta - \gamma^2$ is 1. $(y-q)^3 = 0$ 2. $(y-r)^3 = 0$ 3. $(y-q+r)^3 = 0$ 4. $(y+q-r)^3 = 0$ 16. If α, β, γ are the roots of $x^3 - x^2 + x + 2 = 0$ then the equation whose roots are $\beta^2 \gamma^2, \gamma^2 \alpha^2, \alpha^2 \beta^2$ is 1. $y^3 - 5y^2 + 4y + 16 = 0$ 2. $y^3 - 5y^2 - 4y - 16 = 0$ 3. $v^3 + 5v^2 - 4v + 16 = 0$ 4. $v^3 + 5v^2 + 4v - 16 = 0$ 17. If α, β, γ are the roots of $x^3 + 2x - 3 = 0$ then the transformed equation having the roots $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}, \frac{\beta}{\gamma} + \frac{\gamma}{\beta}, \frac{\gamma}{\alpha} + \frac{\alpha}{\gamma}$ is obtained by taking x = 1. $\frac{3}{2}(1-y)$ 2. $-\frac{3}{2}(1+y)$ 3. 3(1-y) 4. 3(1+y)

If α , β , γ are the roots of $x^3 + ax + b = 0$ then the trans-18. having formed equation the roots $(\beta - \gamma)^2$, $(\gamma - \alpha)^2$, $(\alpha - \beta)^2$ is obtained by taking x= 1. $\frac{b}{v+a}$ 2. $\frac{2b}{v+a}$ 3. $\frac{3b}{v+a}$ 4. $\frac{4b}{v+a}$ If α , β , γ are the roots of a cubic equation satisfying 19. the relations $\alpha + \beta + \gamma = 2$, $\alpha^2 + \beta^2 + \gamma^2 = 6$ and $\alpha^3 + \beta^3 + \gamma^3 = 8$ then the equation is 1. $x^3 + 2x^2 - x + 2 = 0$ 2. $x^3 - 2x^2 - x + 2 = 0$ 3. $x^3 - 2x^2 + x + 2 = 0$ 4. $x^3 - 3x^2 - x + 2 = 0$ If $\sqrt{5} + \sqrt{2}$ is a root of 20. $3x^5 - 4x^4 - 42x^3 + 56x^2 + 27x - 36 = 0$, then the rational root is 3. 12 4. -4/3 1. 4/3 2. 3/4 If the sum of two roots of $x^5 + ax + b = 0$ is zero, 21. then the value of b is 1. a 2. 1 3. -1 4.0 The condition that the product of two roots of 22. $ax^3 + bx^2 + cx + d = 0$ may be equal to -1 is 1. c(a+d) + b(a+d) = 02. d(b+d) + a(a+c) = 03. a(b+c) + b(c+d) = 04. a(a+b) + d(a+c) = 0If 1,2,3 are the roots of $ax^3 + bx^2 + cx + d = 0$, 23. then the roots of $ax\sqrt{x} + bx + c\sqrt{x} + d = 0$ are 2. 1,4,9 1. 2,3,4 4. $1,\sqrt{2},\sqrt{3}$ 3. 2.4.6 24. The equation whose roots are a+b, a-b, -a+b, a-b is 1. $x^4 - 2(a^2 + b^2)x^2 + (a^2 - b^2)^2 = 0$ 2. $x^4 - 2(a^2 + b^2)x^2 + (a^2 + b^2)^2 = 0$ 3. $x^4 + 2(a^2 + b^2)x^2 + (a^2 - b^2)^2 = 0$ 4. $x^4 - 2(a^2 - b^2)x^2 + (a^2 - b^2)^2 = 0$ 25. For the equation $6x^4 - 13x^3 - 35x^2 - x + 3 = 0$, $2 + \sqrt{3}$, is a root, then the quadratic equation to which rational roots of f(x) = 0 are roots is 1. $6x^2 + 11x + 3 = 0$ 2. $6x^2 - 11x + 3 = 0$ 3. $6x^2 + 11x - 3 = 0$ 4. $6x^2 - 11x - 3 = 0$ 26. If a, b, g, d are the roots of $x^4 + 2x^3 + x^2 + 2x + 1 = 0$, then the value of $\mathbf{a}^{2}\mathbf{b}$ is 1. 2 2.3 3.4 4. 6

27. If a and b are two roots of $x^4 - x^3 + 1 = 0$ then the value of $\frac{a^3(1-a)}{b^3(1-b)} =$ 2. 2 3. Not defined 4. 0 1.1 28. If a,b,c,d are real then $\frac{1}{x-a} + \frac{1}{x-b} + \frac{1}{x-c} + \frac{1}{x-d} = 0$ has 1. all real roots 2. all imaginary roots 3. two real roots 4. three real roots 29. If $(x^2 - x + 1)$ is a factor of $f(x) = ax^3 + bx^2 + cx + bx^2 + bx^2$ d where a^{1} 0 and a,b,c,d are real, then the real root of f(x) = 0 is 1. a/d 2. d/a 3. -a/d4. -d/a30. The number of real roots of the equation $\underbrace{\overset{\alpha}{\xi}}_{x} + \frac{1 \overset{\alpha}{\underline{o}}}{\frac{1}{x} \overset{\alpha}{\underline{o}}} + \underbrace{\overset{\alpha}{\xi}}_{x} + \frac{1 \overset{\alpha}{\underline{o}}}{\frac{1}{x} \overset{\alpha}{\underline{o}}} = 0 is$ 1. 2 2.3 3. 6 4.0 If 2,3 are roots of $2x^3 + mx^2 - 13x + n = 0$ then the 31. other root is 1. 4 2. 5/2 3. -5/2 4.3 If $f(x) = x^3 + ax^2 + bx + c = 0$ has roots a, b, g and 32. a,b,c are real and if the roots of $x^{3} + a_{1}x^{2} + b_{1}x + c_{1} = 0$ are $(a - b)^{2}$, $(b - g)^{2}$ and $(g-a)^2$ then $c_1 = 0 \not\models \text{ roots of } f(x) = 0$ are 1. real and distinct 2. such that at least two of them are equal 3. such that two of them are non real 4. real and equal KEY 3.2 1.2 2.3 4.2 5.4 6.4 7.2 8.4 9.2 10.2 12.1 13.1 14.4 11.4 15.1 16.2 17.2 18.3 19.2 20.1 21.4 22.2 23.2 24.1 25.1 26.3 27.1 28.1 29.1 30.4 31.3 32.2 HINTS Use the formula $x^{4} - 2(a - b)x^{2} + (a + b)^{2} = 0$ 1. $y = a + b = s_1 - g$; and y = -r - g = -r - x6. Put y = -r - x and verify s_3 . 19. $s_1 = b^2 g^2 + g^2 a^2 + a^2 b^2 = s_2^2 - 2s_3 s_1$ $s_1 = 5$ Also $s_2 = b^2 g^2 g^2 a^2 a^2 b^2 = (a b g)^4 = s_2^4 = (-2)^4 = 16$

Roots are $\pm \sqrt{5} \pm \sqrt{2}$, a. So s₁=0 + a =4/3 20. $b \ a = \frac{4}{2}$ 21. Take two roots as a, - a $a^5 + aa + b = 0$ and $a^5 - aa + b = 0$. The value of b is obtained by adding these two equations. 22. ab = -1 $abg = \frac{-d}{a}p \quad g = \frac{d}{a}$. substitute $x = \frac{d}{a}$ in given equation. 23. The second equation is obtained by replacing x by \sqrt{x} . Hence the roots are a^2, b^2, g^2 27. a, b satisfies equation $a^{4} - a^{3} + 1 = 0 P a^{3} (1 - a) = 1$ $b^4 - b^3 + 1 = 0 p b^3 (1 - b) = 1$ 29. $x = \frac{1 \pm \sqrt{3}i}{2} \mathbf{p} \frac{1 + \sqrt{3}i}{2}, \frac{1 - \sqrt{3}i}{2}$ **LEVEL - III** If $1, \alpha_1, \alpha_2, \dots, \alpha_{n-1}$ are the roots of $x^n - 1 = 0$ then 1. $(1-\alpha_1)(1-\alpha_2)....(1-\alpha_{n-1}) =$ 2.1 1.0 3. -n4. n If $\frac{A_1^2}{x-a_1} + \frac{A_2^2}{x-a_2} + \dots + \frac{A_k^2}{x-a_k} = m$ and A_i, a_i, m are 2. different rational numbers then the equation has 1. no imaginary roots 2. no positive roots 3. no negative roots 4. no real roots If $x^4 + px^3 + rx + s^2$ is a perfect square then 3. 1. $ps = \pm r, p^3 \pm sr = 0$ 2. $ps = \pm q$, $p^3 + sr = p^2$ 3. ps = 1, $p^3 + sr = 0$ 4. $ps = 0, p^3 + sr = 4$ The equation whose roots are reciprocals of the 4. roots of $x^4 + 3x^3 - 6x^2 + 2x - 4 = 0$ is $px^4 + qx^3 + rx^2 + sx + 1 = 0$ then q + r =2. -4 3. -3 4.5 1.4 Number of transformed equations of 5. $x^{4} + 2x^{3} - 12x^{2} + 2x - 1 = 0$ by eliminating third term is 1.0 2. 1 3. 2 4. 3

6. For D ABC, D, R, r, r_1 , r_2 , r_3 , s have the usual meanings, then if the cubic equation with roots r_1 , $r_2, r_3 \text{ is } x^3 + lx^2 + mx + n = 0$, then l = 01. -(4R+r) 2. 1+r/R4. (4R+r)3. 2(R+r)If $x^3 + ax + 1 = 0$ and $x^4 + ax^2 + 1 = 0$ have a 7. common root then a = 1. 2 2. -2 4.3 3. 0 8. If there is a multiple root of order 3 for the equation $x^4 - 2x^3 + 2x - 1 = 0$, then the other root is 1. -1 3. 1 2. 0 4. 2 9. If a , b, g are the roots of x^3 - 7x + 6 = 0, then the equation whose roots are $(a - b)^{2}$, $(b - g)^{2}$, $(g - a)^{2}$ is 1. $(x-7)^3 - 21(x-7)^2 + 972 = 0$ 2. $(x+1)^3 - 21(x+1)^2 + 972 = 0$ 3. $(x+7)^3 - 21(x+7)^2 + 972 = 0$ 4. $(x+7)^3 - 21(x+7)^2 - 400 = 0$ 10. If a , b, g are the roots of $x^3 + 2x + 1 = 0$, then the equation whose roots are $\frac{a^2}{b+g}$, $\frac{b^2}{g+a}, \frac{g^2}{a+b}$ is 1. $x^3 - 2x - 1 = 0$ 2. $x^3 + 2x^2 + 1 = 0$ 3. $x^3 + 2x - 1 = 0$ 4. $x^3 - 2x^2 - 1 = 0$ 11. If a + b + g = 1, $a^2 + b^2 + g^2 = 2$, $a^{3} + b^{3} + g^{3} = 3$ then $a^{4} + b^{4} + g^{4} =$ 1. $\frac{25}{5}$ 2. 6 3. 7 4. $\frac{9}{2}$ 12. If $a_1, a_2, a_3, \dots, a_n$ are the roots of the equation $(x - b_1)(x - b_2)....(x - b_n) = A$ and if the equation having $b_1, b_2, b_3, \dots, b_n$ as the roots is $(x - a_1)(x - a_2)...(x - a_n) = k$ then k = 1. A 2. *_ A* 3. $\frac{A}{a_1 a_2 \dots a_n}$ 4. $\frac{-A}{a_1 a_2 \dots a_n}$

13.	If $a_{1}, a_{2}, a_{3}, \dots, a_{n}$	are the roots of			
	$x^n + ax + b = 0$, then				
(a 1 -	$(a_{2})(a_{1} - a_{3})(a_{1} - a_{4})$)($a_1 - a_n$)=			
	1. na_1^{n-1}	2. a			
	3. $na_1^{n-1} + a$	4. $na_1^{n-1} - a$			
14	If a local factor of				
14.	$11 2 + \sqrt{3}$ is a root of $(x^4 + 12x^3 + 25x^2 + x)$	12 - 0 then			
	6x - 15x - 55x - x 1. only two roots are ra	tional			
	2. only two roots are re	al but not equal			
15.	If a , b, g are the roots o	$f x^{3} + px^{2} + qx + r = 0$			
	then the value of $(1 + a)$	$(2)(1+b^2)(1+g^2)$ is			
	$1 (u+u)^2 + (a+1)^2$	$(1 - 1)^2 + (1 - 1)^2$			
	1. $(r+p) + (q+1)$	2. $(r - p) + (q - 1)$			
	3. $(1+p)^{2} + (1+q)^{2}$	4. $(r - p)^{2} + (r - q)^{2}$			
	KEY	ľ			
	01 4 02 1 02	1 04 2 05 2			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 04.2 03.3 1 09.1 10.3			
	11. 1 12.2 13.	3 14. 1 15.2			
HINTS					
2	4 . 3 .	(2) (2) (2) (2)			
3.	Let $x^2 + px^3 + rx$	$z + s^2 = \left(x^2 + 2ax + b\right) .$			
Л	$p = 2a, r = 2ab, s^2 = 2ab, s^2 = 2a^2 + 2a^3 + 2$	$= b^2$			
	a + r = -4	5x + 5x + 1 - 0			
5.	For eliminating third t	erm, take h value from			
	$\frac{n(n-1)}{2!}$. $p_0h^2 + (n-1)$	$(1).p_1.h + p_2 = 0$. Since			
	it is quadratic equation '	h' has two values. So, we			
0	Put $v = (a + b)^2$.	$4ab = r^2 + \frac{24}{4} = 1$			
۶.		r			
	$=\frac{r^3+24}{r}=\frac{7r+18}{r}P$	$r = \frac{18}{y-7}$ is a root.			

THEORY OF EQUATIONS

10. Put $a + b + g = 0 p \frac{a^2}{b + g} = -a$ 11. Take equation as $x^3 + px^2 + qx + r = 0$. Using s_1, s_2, s_3 find p,q,r and hence s_4 . 12. $(x - b_1)(x - b_2)...(x - b_n) - A$ $= (x - a_1)(x - a_2)...(x - a_n).$ $(x - b_1)(x - b_2)....(x - b_n)$ $= (x - a_1)(x - a_2)....(x - a_n) + A.$ 13. $(a_1 - a_2)(a_1 - a_3)....(a_1 - a_n) =$ $Lt_{x^{\mathbb{R}}a_{1}}\frac{x^{n}+ax+b}{x-a_{1}}$ 14. $(x^2 - 4x + 1)(6x^2 + 11x + 3) = 0$ remaining roots are $x = -\frac{1}{2}, -\frac{3}{2}$ 15. Put x = i, p - i - p + qi + r = (i + a)(i + b)(i + g)take modulus on either side and squaring on both sides. LEVEL-IV 01. If the quotient of $2x^{5} - 3x^{4} + 5x^{3} - 3x^{2} + 7x - 9$ when it is divided by $x^2 - x - 3$ is $Ax^{3} + Bx^{2} + Cx + D$ then the ascending order of A, B, C, D is 1) A, C, D, B 2) B, A, D, C 3) B, D, A, C 4) A, B, C, D 02. If 1, -1, 2 are the roots of $x^{3} + Ax^{2} + Bx + C = 0$ then the ascending order of A, B, C is 1) A, B, C 2) B, A, C 3) C, B, A 4) C, A, B 03. If $x^4 - 16x^3 + 86x^2 - 176x + 105 = 0$ then the descending order of S_1, S_2, S_3, S_4 is 1) S_4, S_1, S_3, S_2 2) S_4, S_3, S_2, S_1 3) S_1, S_2, S_3, S_4 4) S_3, S_4, S_2, S_1 The transformed equation of $x^4 + 8x^3 + x - 5 = 0$ 04. so that the second term is absent is $Ax^4 + Bx^2 + Cx + D = 0$ then the descending order of A, B, C, D is 2) C, A, D, B 1) C, D, B, A 3) C, A, B, D 4) D, B, A, C

05. The transformed equation of $x^{4} - \frac{1}{2}x^{3} + \frac{3}{4}x^{2} - \frac{5}{4}x + \frac{1}{16} = 0$ with integer coefficients and unity for the coefficient of first term is $x^4 + Ax^3 + Bx^2 + Cx + D = 0$ then the increasing order of A, B, C, D is 1) C, A, D, B 2) C, A, B, D 3) A, C, B, D 4) B, D, A, C The transformed equation of 06. $x^{4}-5x^{3}+7x^{2}-17x+11=0$ by diminishing the roots by 2 is $x^4 + Ax^3 + Bx^2 + Cx + D = 0$ then ascending order of A, B, C, D is 1) D, C, A, B 2) D, B, A, C 3) D, C, B, A 4) A, B, C, D WHICH OF THE FOLLOWING IS TRUE 07. I. The quotient and remainder of $x^{4} + x^{3} - 13x^{2} + 5x - 1$ when divide by x - 3 are $x^{3}+4x^{2}-x+2$ and 5 II. The quotient and remainder of $2x^{5}-3x^{4}+5x^{3}-7x^{2}+3x-4$ when divided by x - 2 are $2x^3 + x^2 + 7x + 17$, 20 1) only I is true 2) only II is true 3) both I and II are true 4) Neither I nor II true 08. I. The equation whose roots are 1, -1, 3 is $x^3 - 3x^2 - x + 3 = 0$ II. The equation whose roots are -2, $3\pm\sqrt{5}$ is $x^3 - 4x^2 - 8x + 8 = 0$ 1) only I is true 2) only II true 3) both I and II is true 4) neither I nor II true I. The roots of $5x^3 - 8x^2 + 7x - 4 = 0$ are $1, -3, \frac{18}{5}$ 09. II. The roots of $15x^3 - 23x^2 + 9x - 1 = 0$ are, $1, \frac{1}{3}, \frac{1}{5}$ 1) only I is true 2) only II true 3) both I and II is true 4) neither I nor II true 10. I. If α, β, γ are the roots of $x^3 + ax^2 + bx + c = 0$ then $\alpha^2 + \beta^2 + \gamma^2 = a^2 - 2b$ II. If $\alpha, \beta, \gamma, \delta$ are the roots of $x^{4} + ax^{3} + bx^{2} + cx + d = 0$ then $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 = a^2 - 2b$ 1) only I is true 2) only II true 3) both I and II is true 4) neither I nor II true

I. The equation of lowest degree with rational co-11. efficients, one of whose roots is $\sqrt{7} + \sqrt{3}$ is $x^4 - 20x^2 + 16 = 0$ II. The equation of lowest degree with rational coefficients, one of whose roots is $\sqrt{2} + \sqrt{3}$ i is $x^4 + 2x^2 + 25 = 0$ 1) only I is true 2) only II true 3) both I and II is true 4) neither I nor II true I. The roots of the equation 12. $x^{3}-9x^{2}+26x-24=0$ are in A.P. II. The roots of the equation $6x^3 - 11x^2 + 6x - 1 = 0$ are in G.P. 1) only I is true 2) only II true 3) both I and II is true 4) neither I nor II true 13. I. The equation whose roots are the squares of the roots of $x^{3} - x^{2} + 8x - 6 = 0$ is $x^{3} + 15x^{2} + 52x + 36 = 0$ II. The equation whose roots ar the cubes of the roots of $x^{3} + 3x^{2} + 2 = 0$ is $x^3 + 33x^2 + 12x + 8 = 0$ 1) only I is true 2) only II true 3) both I and II is true 4) neither I nor II true

MATCH THE FOLLOWING

14. If α, β, γ are the roots of $x^3 - px^2 + qx - r = 0$ then match the following

I)
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} =$$
 a) $\frac{p^2 - 2q}{r^2}$
II) $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} =$ b) $\frac{q^2 - 2pr}{r^2}$
III) $\frac{1}{\alpha^2} + \frac{1}{\beta^2} + \frac{1}{\gamma^2} =$ c) $\frac{p}{r}$
IV) $\frac{1}{\alpha^2\beta^2} + \frac{1}{\beta^2\gamma^2} + \frac{1}{\gamma^2\alpha^2} =$ d) $\frac{q}{r}$
1) c, d, a, b 2) d, c, b, a
3) c, a, b, d 4) c, b, a, d

15. If α, β, γ are the roots of

 $f(x) = x^3 + ax^2 + bx + c = 0$ then the equation whose roots are

I)
$$\alpha + \beta, \beta + \gamma, \gamma + \alpha$$
 a) $f\left(\frac{1-c}{y}\right) = 0$
II) $\alpha\beta, \beta\gamma, \gamma\alpha$ b) $f\left(\frac{cy}{c+1}\right) = 0$
III) $\beta\gamma + \frac{1}{\alpha}, \gamma\alpha + \frac{1}{\beta}, \alpha\beta + \frac{1}{\gamma}$ c) $f(-a-y) = 0$

IV) $\alpha - \frac{1}{\beta \gamma}, \beta - \frac{1}{\gamma \alpha}, \gamma - \frac{1}{\alpha \beta} d$ $f\left(\frac{-c}{y}\right) = 0$ 1) c, a, b, d 2) c, b, a, d 3) a, b, c, d 4) c, d, a, b 16. Match the following: Equation Roots 1) $x^3 - 3x^2 - 16x + 48 = 0$ a) 6, 4, -1 2) $x^3 - 7x^2 + 14x - 8 = 0$ b)1,1/3,1/5 3) $15x^3 - 23x^2 + 9x - 1 = 0$ c) 1, 2, 4 4) $x^3 - 9x^2 + 14x + 24 = 0$ d) 4, 3, -4 2) d, a, b, c 1) d, c, b, a 3) a, d, b, c 4) d, c, a, b If α, β, γ are the roots of the equations 17. $f(x) = x^3 + ax^2 + bx + c = 0$ then equation whose roots are Match the following a) $f\left(\frac{c}{y-b}\right) = 0$ I) $-\alpha, -\beta, -\gamma$ b) $f\left(\frac{c}{\sqrt{y}}\right) = 0$ II) $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ III) $\alpha^2 \beta^2$, $\beta^2 \gamma^2$, $\gamma^2 \alpha^2$ c) f(-x) = 0IV) $\alpha(\beta+\gamma),\beta(\gamma+\alpha),\gamma(\alpha+\beta)$ d) $f\left(\frac{1}{x}\right)=0$ 1) c, d, a, b 2) c, a, b, d 3) c, d, b, a 4) a, b, c, d 18. If $\alpha,\beta,\gamma,\delta$ are the roots of the equation $x^4 - 16x^3 + 86x^2 - 176x + 105 = 0$ then match the following a) 86 I) Σα II) $\sum \alpha \beta =$ b) 105 III) $\sum \alpha \beta \gamma =$ c) 16 IV) $\alpha\beta\gamma\delta = d$) 176 1) c, a, b, d 2) c, b, a, d 3) c, b, d, a 4) c, a, d, b 19. Match the following : Roots of the equation Equation I. 2, 3, 6 a) $2x^3 + x^2 - 7x - 6 = 0$ II. 1, -1, 3 b) $x^3 - 11x^2 + 36x - 36 = 0$ III. -1, 2, -3/2 c) $x^2 - 3x - x - 3 = 0$ IV. 1, -2, 3 d) $x^3 - 2x^2 - 5x + 6 = 0$ 1) b, c, a, d 2) b, c, d, a 3) b, a, d, c 4) c, b, d, a

Let α, β, γ be the roots of $ax^3 + bx^2 + cx + d = 0$ 20. $ax^4 + bx^3 + cx^2 + dx + c = 0$ then $\sum \alpha \beta = \frac{c}{\alpha}$ Match the following: I) the condition that a) $2c^3 + 27ad^2 = 9bcd$ 1. Both A and R are true and R is the correct explanation of A. α, β, γ to be in A.P. 2. Both A and R are true but R is not the correct II) the condition that b) $2b^3 + 27a^2d = 9abc$ explanation of A α,β,γ to be in G.P. 3. A is true but R is false III) The conditon 4. A is false but R is true c) $ac^3 = db^3$ 24. Assertion(A): The equation whose roots, exceed that α, β, γ to be in H.P. by 2 than those of $2x^3 + 3x^2 - 4x + 5 = 0$ is 1) a, b, c 2) b, a, c 3) b, c, a 4) a, c, b 21. Match the following $2x^3 - 7x^2 + 8x + 99 = 0$. Reason (R): The equation whose roots, exceed I) The equation a) $x^3 - 8x^2 + 19x - 15 = 0$ by h than those of f(x)=0 is f(x-h)=0. whose roots are 1. Both A and R are true and R is the correct multiplied by 3 of explanation of A. those of 2. Both A and R are true but R is not the correct $x^{3} + 2x^{2} - 4x + 1 = 0$ is explanation of A II) the equation b) $x^3 + 5x^2 + 10x + 10 = 0$ 3. A is true but R is false whose roots are 4. A is false but R is true exceed by 1 then 25. Assertion(A): The equation whose roots are those of squares of the roots of $x^3 - 2x^2 - 2x + 3 = 0$ is $x^{3}-5x^{2}+6x-3=0$ is $x^3 - 8x^2 + 16x - 9 = 0$. III) The equation c) $4x^4 - 2x^3 + 6x^2 - 3x - 1 = 0$ Reason (R): The equation whose roots are the whose roots are squares of the roots of f(x)=0 is $f(\sqrt{x})=0$ diminish by 1 than those of 1. Both A and R are true and R is the correct $x^{3} + 2x^{2} + 3x + 4 = 0$ is explanation of A. 2. Both A and R are true but R is not the correct IV) The equation d) $x^3 + 6x^2 - 36x + 27 = 0$ explanation of A whose roots are 3. A is true but R is false the reciprocals of 4. A is false but R is true the roots of 26. Assertion(A): The equation whose roots are 3 $x^4 + 3x^3 - 6x^2 + 2x - 4 = 0$ is times the roots of $6x^4 - 7x^3 + 8x^2 - 7x + 2 = 0$ 1) d, c, a, b 2) d, a, b, c is $2x^4 - 7x^3 + 24x^2 - 63x + 54 = 0$. 3) c, a, b, d 4) c, d, a, b Reason (R): The equation whose roots are multi-Assertion(A): One root of $x^3 - 2x^2 - 1 = 0$ lies 22. between 2 and 3. plied by k of those of f(x) = 0 is $f\left(\frac{x}{k}\right) = 0$ Reason (R): If f(x) is continuous function and f(a), f(b). have opposite signs then one root of f(x)=01. Both A and R are true and R is the correct lies between a and b. explanation of A. 1. Both A and R are true and R is the correct 2. Both A and R are true but R is not the correct explanation of A. explanation of A 2. Both A and R are true but R is not the correct 3. A is true but R is false explanation of A 4. A is false but R is true 3. A is true but R is false 27. Assertion(A): the of If roots 4. A is false but R is true $ax^4 + bx^3 + cx^2 + dx + e = 0$ are in H.P. Then the 23. Assertion(A): $3x^4 - 10x^3 + 4x^2 - x - 6 = 0$ then roots of $ex^4 + dx^3 + cx^2 + bx + a = 0$ are in A.P. $S_2 = \frac{4}{2}$. Reason (R): If $\alpha_1, \alpha_2, ---, \alpha_n$ are the roots of f(x) = 0 then the equation whose roots are Reason (R): $\alpha, \beta, \gamma, \delta$ are the roots of

$$\frac{1}{\alpha_1}, \frac{1}{\alpha_2}, \dots, \frac{1}{\alpha_n}$$
 is $f\left(\frac{1}{x}\right) = 0$.

 Both A and R are true and R is the correct explanation of A.
 Both A and R are true but R is not the correct

explanation of A

- 3. A is true but R is false
- 4. A is false but R is true

KEY

2.1	3.4	4.3	5.1
7.1	8.3	9.2	10.3
12.1	13.2	14.2	15.4
17.3	18.4	19.1	20.3
22.1	23.1	24.4	25.1
27.1			
	2. 1 7. 1 12. 1 17. 3 22. 1 27. 1	2. 13. 47. 18. 312. 113. 217. 318. 422. 123. 127. 1	2. 13. 44. 37. 18. 39. 212. 113. 214. 217. 318. 419. 122. 123. 124. 427. 1

LEVEL-V

If α is a repeated root of f(x) = 0 where α is repeated for 'm' times ($m \le n$ where n is order of of equation) then ' α ' is called repeated root or multiple root. ' α ' satisfies

$$f(x) = 0, f'(x) = 0, f''(x) = 0, \dots, f^{m-1}(x) = 0$$

'm' is called order of multiple root of f(x) = 0

- 1. Multiple root of the equation $x^4 - 6x^2 + 8x - 3 = 0$ is
- 1) 1 2) 2 3) -1 4) -3 2. '2' is multiple of $x^{5} - 10x^{4} + 40x^{3} - 80x^{2} + 80x - 32 = 0$

 $x^{5}-10x^{4}+40x^{3}-80x^{2}+80x-32=0$ then order of multiple root is 1) 5 2) 4 3) 3 4) 2

3. α' is a multiple root of f(x) = 0 then α' must satisfy

1)
$$f''(x) = 0$$

2) $f'''(x) = 0$
3) $f^{m-1}(x) = 0$
4) $f'(x) = 0$
KEY

2)1

II. If
$$\alpha, \beta, \gamma, \delta$$
... are the roots of $f(x) = 0$ then the equation whose roots of $a + k$, $\beta + k$, $\gamma + k$ is $f(x-k) = 0$

3)4

The equation whose roots are $k\alpha, k\beta, k\gamma, \dots$ is f(x/k) = 0. The equation whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}$ ··· is f(1/x) = 0If $\alpha, \beta, \gamma, \delta$ are the roots of 1. $x^4 - 2x^3 + x^2 - 3x + 5 = 0$ then $(\alpha+2)(\beta+2)(\gamma+2)(\delta+2) =$ 1) 7 2) 10 3) 47 4) 25 If α, β, γ are the roots $2x^3 - 5x^2 + 4x + 1 = 0$ 2. then the values of $\sum \left(\frac{1}{\alpha}+1\right) \left(\frac{1}{\beta}+1\right)$ is 1) -2 2) -5 3) -100 4) -10 **KEY** 1)3 2)4**PREVIOUS EAMCET QUESTIONS EAMCET-2001** Each of the roots of the equation 1. $x^3 - 6x^2 + 6x - 5 = 0$ are increased by k so that the new transformed equation does not contain x^2 term. Then k = 1. $-\frac{1}{3}$ 2. $-\frac{1}{2}$ 3. -1 4. -22. The roots of the equation x^{3} - 14 x^{2} + 56x - 64 = 0 are in progression. 1. Arithmetico-geometric 2. Harmonic 3. Arithmetic 4. Geometric 3. If there is a multiple root of order 3 for the equation $x^4 - 2x^3 + 2x - 1 = 0$, then the other root is 1. -1 2. 0 3.1 4. 2 4. The equation whose roots are the negatives of the roots of the equation $r^7 \pm 3r^5 \pm r^3$ $r^2 \pm 7r \pm 2 = 0$

$$x + 3x + x - x + 7x + 2 = 0$$
1. $x^{7} + 3x^{5} + x^{3} + x^{2} - 7x + 2 = 0$
2. $x^{7} + 3x^{5} + x^{3} + x^{2} + 7x - 2 = 0$
3. $x^{7} + 3x^{5} + x^{3} - x^{2} - 7x - 2 = 0$
4. $x^{7} + 3x^{5} + x^{3} - x^{2} + 7x - 2 = 0$

SR. MATHEMATICS

1)1

THEORY OF EQUATIONS

5. The biquadratic equation, two of whose roots are 15. α, β, γ are the roots of the equation 1 + i, 1- $\sqrt{2}$ is $x^{3} - 10x^{2} + 7x + 8 = 0$ 1. $x^4 - 4x^3 + 5x^2 - 2x - 2 = 0$ Match the following 2. $x^4 - 4x^3 - 5x^2 + 2x + 2 = 0$ a) $-\frac{43}{4}$ 1) $\alpha + \beta + \gamma$ 3. $x^4 + 4x^3 - 5x^2 + 2x - 2 = 0$ 4. $x^4 + 4x^3 + 5x^2 - 2x + 2 = 0$ b) $\frac{-7}{8}$ 2) $\alpha^2 + \beta^2 + \gamma^2$ **EAMCET-2002** To remove the 2nd term of the equation 6. 3) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ c) 86 x^4 - $8x^3$ + x^2 - x + 3 = 0 diminished the root of the equation by 4) $\frac{\alpha}{\beta\gamma} + \frac{\beta}{\gamma\alpha} + \frac{\gamma}{\alpha\beta}$ 1. 1 2. 2 3. 3 4.4 d) 0 7. The maximum possible number of real roots of e) 10 the equation $x^5 - 6x^2 - 4x + 5 = 0$ is 1) e, c, a, b 2) d, c, a, b 1. 3 2. 4 3. 5 4. 0 3) e, c, b, a4) e, b, c, a 8. If a,b,g are the roots of the equation 16. If f(x) is a polynomial of degree n with rational $x^{3} + ax^{2} + bx + c = 0$ then $a^{-1} + b^{-1} + g^{-1} =$ coefficients and 1+2i, $2-\sqrt{3}$ and 5 are three roots of f(x)=0, then the least value of n is 1. $\frac{a}{c}$ 2. $-\frac{b}{c}$ 3. $\frac{c}{a}$ 4. $\frac{b}{a}$ 1) 5 2)4 3) 3 4)6 **EAMCET-2005** 9. If $\frac{1+\sqrt{3}i}{2}$ is a root of the equation 17. The roots of the equation $x^3 - 3x - 2 = 0$ are 1) -1, -1, 2 2) - 1, 1, -2 x^4 - x^3 + x - 1 = 0 then its real roots are 3) -1, 2, -3 4) -1, -1, -2 1. 1,1 2. -1, -1 3. 1, 2 4.1, -1 18. If α, β, γ are the roots of $x^3 + 2x^2 - 3x - 1 = 0$ then 10. If a , b, g are the roots of $2x^3 - 2x - 1 = 0$ then $\alpha^{-2} + \beta^{-2} + \gamma^{-2} =$ $(a^{a} ab)^{2} =$ 3) 14 1) 12 2) 13 4) 15 1. -1 2. 1 3. 2 4.3 **EAMCET - 2003** 19. If 1, 2, 3 and 4 are the roots of the equtaiton 11. If α,β,γ are the roots of the equation $x^{4} + ax^{3} + bx^{2} + cx + d = 0$, then a + 2b + c = $x^{3} + 4x + 1 = 0$ then (E-2007) $(\alpha + \beta)^{-1} + (\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1} =$ 1) -25 2) 0 3) 10 4) 24 1)2 2) 3 3)4 4) 5 20. If α, β, γ are 12. Let $\alpha \neq 0$ and P(x) be a polynomial of degree the roots of greater than 2. If P(x) leaves remainders $x^{3} \cdot 2x^{2} + 3x - 4 = 0$ then the value of α and $-\alpha$ when divided respectively by $x + \alpha$ and $\alpha^2 \beta^2 - \beta^2 \gamma^2 + \gamma^2 \alpha^2$ is (E-2007) $x - \alpha$ then the remainder when P(x) is divided by 1)72) -5 $x^2 - \alpha^2$ is 3) - 3 4) 0 1) 2x2) -2x 3) x 4) -x If the sum of two of the roots of 13. **KEY** $x^{3} + px^{2} + qx + r = 0$ is zero then pq =1) -r 2) r 3) 2r 4) -2r 1.4 2.4 3. 1 4. 2 5.1 **EAMCET-2004** 6. 2 7.1 8. 2 9. 4 10.2 14. If the roots of the equation 11.3 12.4 13.2 14.1 15.3 $4x^3 - 12x^2 + 11x + k = 0$ are in A.P. Then K = 16.1 17.1 18.2 19.3 20.1 1) -3 2) 1 3) 2 4) 3