
Noncrystalline Solids 

DIFFRACTION PATIERN 
Monatomic amorphous materials 
Radial distribution function 
Structure of vitreous silica, SiO, 

GLASSES 
Viscosity and the hopping rate 

AMORPHOUS FERROMAGNETS 

AMORPHOUS SEMICONDUCTORS 

LOW ENERGY EXCITATIONS IN 
AMORPHOUS SOLIDS 

IIeat capacity calculation 
Thermal conductivity 

FIBER OPTICS 
Rayleigh attenuation 

PROBLEM 

1. Metallic optic fibres? 





The terms amorphous solid, noncrystalline solid, disordered solid, glass, 
or liquid have no precise struct~iral meaning beyond the description that the 
structure is "not crystalline on any significant scale." Tlie principal structural 
order prcscnt is imposed by the approximately constant separation of nearest- 
neighbor atoms or molecules. We exclude from the present discussion disor- 
dered crystalline alloys (Chapter 22) where different atoms randomly occupy 
the sites of a regular crystal lattice. 

DIFFRACTION PATTERN 

The x-ray or neutron diffraction pattern of an amorphous material sucli as 
a liquid or a glass consists of one or more broad diffuse rings, when viewed on 
the planc normal to the incident x-ray beam. The pattern is different from the 
diffraction pattern of powdered crystalline material which shows a large num- 
ber of fairly sharp rings as in Fig. 2.17 of Chap. 2. The result tells us that a liq- 
uid does not have a unit of structure that repeats itself identically at periodic 
intervals in three dimensions. 

In a simple monatomic liquid the positions of the atoms show only a short 
range structure referred to an origin on any one atom. We never find the cen- 
ter of anothcr atom closer than a distance equal to the atomic diameter, but at 
roughly this distance we expect to find about the riuniber of nearest-neighbor 
atoms that we find in a crystalline forrn of the material. 

Although the x-ray pattern of a typical amorphous material is distinctly 
different from that of a typical crystalline material, there is no sharp division 
between them. For crystalline powder samples of smaller and smaller particle 
size, the powder pattern lines broaden continuously, and for small enough 
crystalline particles the pattern becomes similar to the amorphous pattern of a 
liquid or a glass. 

From a typical liquid or glass diffraction pattern, containing three or four 
diffuse rings, the only quantity which can be determined directly is the radial 
distribution function. This is obtained from a Fourier analysis of the experi- 
mental x-ray scattering curve, and gives directly the average number of atoms 
to be found at any distance from a given atom. The method of Fourier analysis 
is equally applicable to a liquid, a glass, or a powdered crystalline material. 

It is convenient to begm the analysis of the diffraction pattern with Eq. 
(2.43). Instead of writing it for the structure factor of the basis, we write the 
sum for all the atoms in the specimen. Further, instead of specializing the scat- 
tering to the reciprocal lattice vectors G characteristic of a crystal, we consider 
arbitray scattering vectors Ak = k' - k, as in Fig. 2.6. We do this because 



scattering from amorphous materials is not limited to the reciprocal lattice 
vectors, which in any event cannot here be defined. 

Therefore the scattered amplitude from an amorphous material is de- 
scribed by 

withf, the atomic form factor of the atom, as in Eq. (2.50). The sum runs over 
all atoms in the specimen. 

The scattered intensity at scattering vector Ak is given by 

in units referred to the scattering froni a single electron. If n denotes the anglc 
between Ak arid r,,, - r,,, then 

where K is the magnitude of Ak and r,, is the magnitude of r,,, - r,,. 
In an amorphous specimen the vector r,,, - r,, rnay take on all orientations, 

so we werage the phase factor over a sphere: 

1 
(exp(iKr cos a ) )  = tl(cus a) exp(iKrn, cos cu) 

sin Kr,, 
(4) 

- -- 
hi,,, ' 

Thus we have the Debye result lor the scattered intensity at Ak: 

Monatomic Amorphous Materials 

For atoms of ur~ly one type, we letf,,, = f, = f and separatr out from the 
surr~rnatiun (5) the terms with n = m For a spccimrn of hT atom?, 

(sin Krm)/Krm . 1 
The sum runs over all atoms rn except the origin atom m = n. 

If p(r) is the concentration of atoms at distance r from a reference atom, 
we can write ( 6 )  as 
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where R is the (very largc) radius of the specimen. Let p, denote the average 
concentration; then (7) may be written as 

R 
I ( K )  = Nf{i + ioR &- 4w2[p(r) - pn](sin Kt-)/& + (pdiX) dr 4 m  sin Kr 

0 

The second integral in (8) gives the scattering from a uniform concentration 
and may be neglected except in the forward region of very small angles; it re- 
duces to a delta function at K = 0 as R + W .  

Radial Distribution Function 

It is convenient to introduce thc liquid structure factor defined by 

S(K) = I/Np . (9) 

Note that this is not at all the same as S(Ak) in (1). From (8) we have, after 
dropping the delta function contribution, 

S(K) = I + lom dr l ~ ' [ ~ ( r )  - &](sin Kr)/Kr . (10) 

We define the radial distribution function g(r) such that 

p(r) = g(r)pn 

Then (10) becomes 

because (sin Kr)/Kr is the spherically syrnrnetric or s term in the expansion of 
exp(iK . r). 

By the Fourier integral theorem in three dimensions, 

This resi~lt allows us to calc~ilate the radial distribution function g(r) (also called 
the two-atom correlation function) from the measured structure factor S(K). 

One of the simplest liquids well suited to x-ray diffraction study is liquid 
sodium. The plot of the radial distribution 4rPp(r )  vs. r is given in Fig. 1, to- 
gether with the distribution of neighbors in crystalline sodium. 



Figure 1 (a) Radial distribution cuwe 4nPp(r) for liquid sodium, (h) verage density 
4?iPp,. (c) Distribution of neighbors in crystalline sodium. (After Tarasov and Warren.) 

Structure of Vitreous' Silica, SiO, 

Vitreous silica (fi~sed quartz) is a simple glass. The x-ray scattering curve is 
given in Fig. 2. The radial distribution curve 4n-rZp(r) vs. r is gven in Fig. 3. 
Because there are two kinds of atoms, p(r) is actually the superposition of two 
electron concentration curves, one about a silicon atorr~ as origin and one 
about an oxygen atom as origin. 

The first peak is at 1.62 A, close to the average S i -0  distance found in 
crystalline silicates. The x-ray workers conclude from thc intensity of the first 
peak that each silicon atom is tetrahedrally surrollnded hy four oxygen atoms. 
The relativc proportions of Si and 0 tell us that each 0 atom is bonded to two 
Si atoms. From the geometry of a tetrahedron, the 0-0 distance should be 
2.65 A, compatible with the distance suggested by the shoulder in Fig. 3. 

The x-ray results are consistent with the standard model of an oxide glass, 
due to Zachariasen. Figure 4 illustrates in two dimensions the irregular struc- 
ture of a glass and the regularly repeating structure of a crystal of identical 
chemical composition. The x-ray results are completely explained by picturing 
glassy silica as a random network in which each silicon is tetrahedrally sur- 
rounded by four oxygens, each oxygen bonded to two silicons, the two bonds 
to an oxygen being roughly diametrically opposite. The orientation of one 
tetrahedral group with respect to a neighboring group about the connecting 
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Figure 2 Scattered x-ray ilitcl~sity vs, scattering anglc 0, lor vitreous SiO,. (After B. E. Warren.) 

Si-0-Si bond can be practically random. There is a definite structural scheme 
involved: each atom has a definite number of nearest neighbors at a definite 
distance, but no unit of structure repeats itself identically at regular intervals 
in three dimmsions, and hence the material is not crystalline. 

It is not possible to explain the x-ray results by assuming that vitreous 
silica consists of very small crystals of some crystalline form of quartz, such as 
cristoballite. Small angle x-ray scattering is not observed, but would be ex- 
pected f r o ~ r ~  discrete particles with breaks and voids between them. The 
scheme of bonding in glass must be essentially continuous, at least for the 
major part of the material, although the schcme of coordination about each 
atom is the same in vitreous silica and in crystalline cristoballite. The low ther- 
mal conductivity of glasses at room temperature, as discussed below, also is 
consistent with the continuous random network model. 

A comparison of experimental and calculated x-ray intensity results for 
anlorphous gernlaniurn is shown in Fig. 5. The calculations are for a random 
network model and for a microcrystallite model. The latter model gives a very 
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Figure 3 Radial distribution curve for vitreous SiO,, as the Fourier transform of Fig. 2. The posi- 
tions of the peaks give the distances of atoms from a silicon or an oxygen. From the areas under 
the peaks it is possible to calculate the number of neighbors at that distance. The vertical lines in- 
dicate the first few average interatomic distances; the heights of the lines are proportional to the 
peak areas. (After B. E. Warren.) 

(a) (b) 
Figure 4 Schematic two-dimensional analogs illustrating the differences between: (a) the regularly 
repeating structure of a crystal and (b) continuous random network of a glass. (After Zachariasen.) 
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Scattering vector 4~ sin O/A in .kl 
Figure 5 Comparison of experimental (dashed curve) and calculated (solid curve) reduced inten- 
sity function for amorphous germanium. (a) Amorphous germanium compared with microciystal- 
lite model. (b) Amorphous germanium compared with random network model. (Results by 
J. Graczyk and P. Chaudhari.) 

poor agreement. The random network model is supported for amorphous sili- 
con by studies of the band gap and spectroscopic work on the 2p shell. 

GLASSES 

A glass has the random structure of the liquid from which it is derived by 
cooling below the freezing point, without crystallization. Also, a glass has the 
elastic properties of an isotropic solid. 

By general agreement, we say that a liquid on being cooled becomes a 
glass when the viscosity equals 1013 poise, where a poise is the CGS unit of 
viscosity.' This defines the glass transition temperature Tg. At temperatures 
above Tg we have a liquid; below Tg we have a glass. The transition is not a 
thermodynamic phase transition, only a transition for "practical purposes." 

'The SI unit of viscosity is 1 Nsm-', so that 1 poise = 0.1 Nsm-'. It is quite common to find 
viscosities given in cp or centipoise, being lo-' poise. 



The value 1013 poise used to define T, is arbitrary, but not unreasonable. If we 
bond a slab of glass 1 cm thick to two plane parallel vertical surfaces, thc glass 
will flow perceptibly in one year under its own weight when the viscosity drops 
below 1013 poise. (For comparison, the viscosity of the mantle of the earth is of 
the order of loz2 poise.) 

Relatively few liquids can be cooled fast enough in the bulk to form a glass 
before crystallization intervenes. Molecules of most substances have high 
enough mmobility in the liquid so that on cooling a liquid-solid melting transi- 
tion occurs a long time before the viscosity increases to 1013 poise or 1015 cp. 
Liquid water has a viscosity 1.8 cp at the freezing point; the viscosity increases 
enormously on frccxing. 

We can often make a glass by depositing a jet of atoms of a substrate 
cooled to a low temperature, a process which will sometimes produce an 
amorphous layer with glasslike properties. Amorphous ribbons of some metal 
alloys may be produced in this way in industrial quantities. 

Viscosity and the Hopping Rate 

Thc viscosity- of a liquid is related to the rate at which molecules undergo 
thermal rearrangement on a local scale, as by hopping into a vacant neighbor 
site or by interchange of two neighbor molecules. The physics of the transport 
process is somewhat different from that of viscosity in the gas phase, but the 
gas phase result gives a qualitative lower limit to the viscosity of the liquid 
phase, a limit that applies to nearest-neighbor hopping of atoms. 

The gas result (TP 14.34) is 

where 1) is the viscosity, p the density, i? the mean thermal velocity, and e the 
mean free path. In the liquid I is of the order of magnitude of the intermole- 
cular separation a. With "tpical" values p = 2 g cm-" r = lo5 cm s-'; 
a ;-. 5 X cm, we have 

as a11 estimate of the lower limit ofthe viscosity of a liquid. (Tahles in chemical 
handbooks only rarely list valucs below this.) 

\Ve givc now a very simple model of the viscosity of a liquid. In order to 
hop siiccessfillly, a molecule must surmount the potential energy barrier pre- 
sented by its neighbors in the liquid. The preceding esti~nate of the minimum 
viscosity applies when this barrier may be neglected. If the barrier is of height 
E, the molecule will have sufficient thermal energy to pass over thc barrier 
only a fraction 
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of the time. Here E is an appropriate free energy and is called the activation 
energy for the process that determines the rate of hopping. It is related to the 
activation energy for self-diffusion. 

The viscosity will be increased as the probability of successful hopping is 
decreased. Thus 

If 77 = 10'' poise at the glass transition, the order of magnitude off must be 

at the transition, using (15). The corresponding activation energy is 

If T g  = 2000 K ,  then k,Tg = 2.7 X 10-'"rg and E = 9.6 X 10-l2 erg - 6 eV. 
This is a high potential energy barrier. 

Glasses with lower values of T,  will have correspo~ldingly lower values of 
E. (Activation energies obtained in this way are often labeled as Ens,.) Materi- 
als that are glass-lormers are characterized by activation energies of the order 
of 1 eV or more; non-glass-formers may have activation encrgies of the order 
of 0.01 cv. 

When being pressed into molds or drawn into tubes, glass is used in a 
range of temperatures at which its viscosity is 1 0 9 0  10"oises. The working 
range for vitreous silica begins over 2000°C, so high that the practical useful- 
ness of the rriaterial is severely limited. In corrlrnon glass, about 25 percent of 
NazO is added as a network modifier to SiOe in order to reduce below 1000°C 
the temperature needed to make the glass fluid enough for the fbrming opera- 
tions necdcd to make electric lamp bnlhs, window glass, and bottles. 

AMORPHOUS FERROMAGNETS 

Amorphous metallic alloys are formed by very rapid quenching (cooling) 
of a liquid alloy, commonly by directing a molten stream of the alloy onto the 
surface of a rapidly rotating dnim. This process produces a continuous "melt- 
spun" ribbon of amorphous alloy in industrial quantities. 

Ferromagnetic amorphous alloys were developed because amorphous ma- 
terials have nearly isotropic properties, and isotropic materials should have es- 
sentially zero magnetocrystalline anisotropy energy. The absence of directions 
of hard and easy magnetization should result in low coercivities, low hysteresis , - 
losses, and high permeahilities. Because amorphoiis alloys are also random al- 
loys, their electrical resistivity is high. All these properties have technological 
value for application as soft magnetic materials. The trade name Metglas is at- 
tached to several of these. 



The transition metal-metalloid (TM-M) alloys are an important class of 
magnetic amorphous alloys. The transition metal component is usually about 
80 percent of Fc, Co, or Ni, with the metalloid component B, C, Si, P, or Al. 
The presence of the metalloids lowers the melting point, making it possible to 
quench the alloy through the glass transition temperature rapidly enough to 
stabilize the amorphous phase. For example, the co~uposition FesnBzo (known 
as Metglas 2605) has T, = 441°C, as compared with the melting temperaturc 
1538°C of pure iron. 

The Curie temperature of this composition in the amorphous phase is 
647 K, and the value of the magnetization M, at 300 K is 1257, compared with 
T,  = 1043 K and M, = 1707 for pure iron. The coercivity is 0.04 (3, and the 
maximum value of the permeability is 3 x 10'. Coercivities as low as 0.006 G 
have been reported for another composition. 

High coercivity materials can be produced by the same melt-spin process 
if the spin rate or quench rate is decreased to produce a fine-grained clys- 
talline phase, which may be of metastable composition. If the grain size is 
arranged to match the optimnm size for single domains, the coercivity can be 

Figure 6 Coercivity at room temperature vs, melt-spin vclocity u,~ for Sm,,,Fe,,. The madmum 
coercivity is 24 kC: and occurs at 1.65 m s-', which is helieved to correspond to s i~~g le  du~rrairr bc- 
havinr in each crystallite. At higher spin rates the coerc i~ty  decreases because the deposited ma- 
terial hecomes amorphous (more isutrupic). At lower spin ratcs the cr).stallites anneal to sizes 
above the single domain regime; domain boundaries give a Inwer coercivity. (After J .  L. Croat.) 
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quite high (Fig. 6). J. L. Croat has reported H ,  = 7.5 kG for the metastable 
alloy Nd,,,Fe,, at the optimum melt-spin velocity 5 m sC1. 

AMORPHOUS SEMICONDUCTORS 

Amorphous semiconductors can be prepared as thin films by evaporation 
or sputtering, or in some materials as bulk glasses by supercooling the melt. 

What happens to the electron energy band model in a solid without regu- 
lar crystalline order? The Bloch theorem is not applicable when the structure 
is not periodic, so that the electron states cannot be described by well-defined 
k values. Thus, the momentum selection rule for optical transitions is relaxed; 
hence all infrared and Raman modes contribute to the absorption spectra. The 
optical absorption edge is rather featureless. Allowed bands and energy gaps 
still occur because the form of the density of states vs. energy is determined 
most strongly by local electron bonding configurations. 

Both electrons and holes can carry current in an amorphous semiconduc- 
tor. The carriers may be scattered strongly by the disordered structure, so that 
the mean free path may sometimes be of the order of the scale of the disorder. 
Anderson proposed that the states near band edges may be localized and do 
not extend through the solid (Fig. 7). Conduction in these states may take 
place by a thermally-assisted hopping process, for which the Hall effect is 
anomalous and cannot be used to determine the carrier concentration. 

Two distinct classes of amorphous semiconductors are widely studied: 
tetrahedrally-bonded amorphous solids such as silicon and germanium, and 
the chalcogenide glasses. The latter are multicomponent solids of which one 
major constituent is a "chalcogen" element-sulfur, selenium, or tellurium. 

The tetrahedrally-bonded materials have properties similar to those of 
their crystalline forms, provided the dangling-bond defects are compensated 
with hydrogen. They can be doped with small amounts of chemical impurities, 
and their conductivity can be sharply modified by injection of free carriers 
from a metallic contact. By contrast, the chalcogenide glasses are largely in- 
sensitive to chemical impurities and to free carrier injection. 

Amorphous hydrogenated silicon is a candidate material for solar cells. 
Amorphous silicon is a much less expensive material than single crystal silicon. 

Figure 7 Density of electron states 
as believed to occur in amorphous 
solids, when states are non-localized 
in the center of the band. Localized 
states are shown shaded. The mobil- 
ity band edges E,, E: separate the 
ranges of energy where states are 
localized and non-localized. (After 
N. Mott and E. A. Davis.) 



Attempts at using pure amorphous silicon, however, failed because of struc- 
tural defects (dangling bonds) which were impossible to eliminate. hltroduc- 
tion of hydrogen into amorphous silicon appears to remove the undesirable 
structural defects. Relatively large proportions of hydrogen are incorporatcd, 
of the order of 10 percent or more. 

LOW ENERGY EXCITATIONS IN AMORPHOUS SOLIDS 

The low temperature heat capacity of pure dielectric crystalline solids is 
lolown (Chapter 5 )  to follow the Debye de law, precisely as expected from the ex- 
citation of long wavelength phonons. The same behavior was expected in glasses 
and other amorphous solids. However, many insulating glasses show an nnex- 
petted linear term in the heat capacity below 1 K. Iudccd, at 25 mK the observed 
heat capacity of vitreous silica exceeds the Debye phonon contribution by a fac- 
tor of 1000. Anomalous linear terms of comparable magnitude are found in all, or 
nearly all, amorphous solids. Their presence is believed to be an intrinsic conse- 
quence of the amorphous states of matter, but the details of why this is so remain 
unclear. There is strong e d e n c e  tlrat the a~lonlalous properties arise from two- 
level systems an3 not from multi-level oscillator systems; in brief, the evidence is 
that the systems can be saturated by intense phonon fields, just as a two-level 
spin system can be saturated by an intcnsc rf magnetic field. 

Heat Capacity Calculation 

Consider an amorphous solid with a concentration N of two-level systems 
at low energies; that is, with a level splitting A much less than the phonon 
Debye cutoff k,8. The partition function of one system is, with 7 = k8T, 

The thermal average energy is 

U = -:A tanh(M2.r) , 

and the heat capacity of the single system is 

Cv = kB(au/a7) = kB(&27)2 sech2(N2~) . (22) 

These results are given in detail in TP, pp. 62-63. 
Now suppose that A is distributed with uniforrrl probability in the range 

A = 0 to A = A,. The average value of Cy is 

The integral cannot be evaluated in closed form 
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Tho limits are of special interest. For T < A,, the sechZx term is roughly 1 
from x = 0 to x = 1,  and roughly zero for x > 1. The value of the integral is 
roughly 1/3, whence 

C, = 2kgT/3h, , (24)  

for T < A,,lkJk,. 
For T a Ao, the value of the integral is roughly $ ( A , , l 2 k , ~ ) ~ ,  so that in this 

limit 

which approaches zero as T increases. 
Thus the interesting region is at low temperatures, for here by (24)  the 

two-level system contributes to the heat capacity a term linear in the tempera- 
ture. This term, originally introduced for dilute magnetic impurities in metals, 
has no connection with the usual conduction electron heat capacity which is 
also proportional to I: 

The empirical result appears to be that all disordered solids have 
N - 10" cm-3 "new type" low energy excitations uniformly distributed in the 
energy in t end  from 0 to 1 K. The anomalous specific heat can now be ob- 
tained from (24) .  For T = 0.1 K and AdkB = 1 K, 

Cr: = g ~ k ~ ( 0 . 1 )  .= 1 erg c K 3  K-I . (26)  

For cornparison, the phonon contribution at 0.1 K is, from (5 .35) ,  

-; 2.8 X lo-' erg cm-3 K-' , 

much smaller than (26) .  
The experimental results (Fig. 8) for vitreous SiOz are represented by 

where c, = 12 erg g-I K-2 and c3 = 18 erg g-' K-4. 

Thermal Conductivity 

The thermal conductivity of glasses is very low. It is limited at room tem- 
perature and above by the scale of the disorder of the structure, for this scale 
determines the mean free path of the dominant thermal phonons. At low tem- 
peratures, below 1 K, the conductivity is carried by long wavelength phouons 
and is limited by phonon scattering from the mysterious two-level systems or 
tunneling states discussed earlier for their contribution to the heat capacity of 
amorphous solids. 



As in Chapter 5, the expression for the thermal conductivity K has the form 

K = $cut , (29) 

where c is the heat capacity per unit volume, v is an average phonon ve1ocit)i 
and e is the phonon mean free path. For vitreous silica at room temperature, 

K -- 1.4 X lo-? J cm-Is-' K-' ; 

c- -1 .6Jcm 3~ ; 

(u) -- 4.2 X 10; cm s-' . 

Thus the Inean free path € - 6 X lo-' cm; by reference to Fig. 3 we see that 
this is of the order of magnitude of the disordcr of thc structure. 

Figure  8 Heat capacity of vitreous silica and soda silica glass as a function of temperature. The 
heat capacity is roughly lincar in T bclow 1 K. The dashed line represents the calculated Debye 
heat capacity of vitreous silica. 

L f  t 
+ * R  

Figure  9 Short phonon mean free path in a disordered structure. A short wavelength phonon 
that dirplaces aton1 L, as diown, will displace atom R by a much smaller distance, because of the 
phase cancellation of the upper and lower paths from L to R. The displacement of R is T + - 0, 
so that the wave incident from L is reflected at 1A. 
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This value of the phonon mean free path is remarkably small. At room 
temperature and ahove (that is, above the Debye temperature), most of the 
phonons have half-wavelengths of the order of the interatomic spacing. It is 
through phase cancellation processes, as in Fig. 9, that the mean free path is 
limited to several interatomic spacings. No other structure for fused qllartz 
will give a 6 A mean free path. The normal modes of vibration of the glass 
structure are utterly unlike plane waves. Rut the modes, as distorted as they 
are, still have quantized amplitudes and therefore may be called phonons. 

FIBER OPTICS 

Fibers of silica-based lightguides carry a high proportion of the data and 
information transmitted on the surface of the earth and under the seas. The 
optical fibers consist of a thin core (=I0 pm) of high-refractive index glass 
surrounded by a cladding. The digital data are carried by light, with a mini- 
mum attenuation near 0.20 db km-' at wavelengths near 1.55 pm, which is in 
the infrared (Fig. 10). A range of 100 km corresponds to a loss of 20 db, power 
readily supplied by an Eu3+ laser amplifier. 

The optic window of high-p~~rity glasses near this wavelength is limited on 
the low frcq~~cncy side hy phonon absorption bands and on the high frequency 
side hy Rayleigh scattering, and, ultimately, by electronic absorption. In the 

Figure 10 The transmission characteristic of communication-quality optical fibers, showing the 
attenuation in units of decibels per k111 as a function of the wavelength of light, in pm. The 
Kayleigh scattering regime is dominant on the left of the curve, except for a strong in~purity ah- 
sorption line associated with OH ions that accompany SiO,: the line is the second harmonic of a 
line at 2.7 pm known as the "water line." Tlle wavelcrrgth nlarked at 1.31 pm is used in 1994 trans- 
mission lines: it was replaced by the wavelength 1.55 pm available from Eu" i i o ~  amplifiers, 
which arc uscd cvc~y 100 km in t).pical long distance applications. The power needed to pump the 
amplifiers is snpplied hy copper wires. (Courtesy of Tingyc Li, AT&T Bell Laboratories.) 



optic window the losses are determined by the Rayleigll scattering intrinsic to 
static fluctuations in the local dielectric constant of an inhomogeneous 
medium, and the attenuation varies a s  the fourth power of the freqitency. 

It is fortunate that an excellent source is available for radiation at 1.55 pm. 
As shown in Fig. 13.24, excited (pumped) erbium Er3+ ions can amplify in an 
erbium-doped section of fiber. 

Ray l e g h  Attenuation 

The attenuation of light waves in glass is dominated at wavelengths in the 
infrared by the same scattering process, called Rayleigh scattering, that is re- 
sponsible for the blue light of the sky. The extinction coefficient, or attenua- 
tion coefficient, h, has the dimension of reciprocal length and for light scat- 
tered in a gas is given, after Rayleigh, by 

where n is the local refractive index and N is the number of scattering centers 
per unit volume. The energy flux as a function of distance has the form 
exp( -hx). 

Derivations of (30) are found in good texts on electrodynamics; the struc- 
ture of the result may be understood by a general argument: The radiant en- 
ergy scattered from a dipole element p is proportional to (dp2/dt")", and this 
accounts for the factor u4. The local polarizability a enters as a2; if there are N 
random scattering centers per unit volume, the scattered energy averaged over 
these random sources will go as N((A(~)~) ,  or ((An)')lN. Thus we have the es- 
sential factors that appear in (30). As applied to a glass, An should refer to the 
variations in polarization around each group of Si-0 honds, and satisfactory 
numerical estimates of the attenuation may he made in this way. 

Problem 

1. Metallic optic fibres? I t  has been specnlated that metallic wires can act as optic 

fibres, transmitting light ulth a lorrg delay appropriate to the high refractive index 

characteristic of metals. Unfortunately the refractive index of a t,ypical metal is 

dominated by a free-electron term in i'", so that the propagatiorr of a light wave is in 

fact highly damped in a metal. Show that in sodium at roo111 t e ~ ~ ~ p e r a t u r e  a wave of 

vacuum wavelength 10 p m  will have a damping length of 0.1 y n .  This may he con- 

trasted with the 100 km damping length found for light in high-quality glass fibres. 


