PRACTICE PAPER

Time allowed: 45 minutes Maximum Marks: 200

General Instructions: As given in Practice Paper - 1.

Section-A

Choose the correct option:					
1.	If the matrix A is both symmetric and skew symmetric, then				
	(a) A is diagonal matrix.	(b) A is zero matrix.	(c) A is square matrix.	(d) None of these	
2.	Let A be a square matrix	of order 3×3 , then $ kA $ is	s equal to		
	(a) k A	(b) $k^2 A $	(c) $k^3 A $	(d) 3k A	
3.	If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then adj $(3A^2 + 12A)$ is equal to				
	(a) [72 -84] -63 51]	(b) $\begin{bmatrix} 51 & 63 \\ 84 & 72 \end{bmatrix}$	(c) $\begin{bmatrix} 51 & 84 \\ 63 & 72 \end{bmatrix}$	(d) $\begin{bmatrix} 72 & -63 \\ -84 & 51 \end{bmatrix}$	
4.	If $x \cos y + y \cos x = \pi$ the	en y" (0) is			
	(a) π	(b) - π	(c) 0	(d) 1	
5.	The slope of the tangent of the locus $y = \cos^{-1}(\cos x)$ at $x = -\frac{\pi}{4}$ is				
	(a) 1	(b) 0	(c) 2	(d) - 1	
6.	Read the following states	nents.			
	Statement I : Integration of $\int_{0}^{1} \frac{e^{x}}{1 + e^{2x}} dx$ is $\tan^{-1} e - \frac{\pi}{4}$.				
	Statement II : $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b+x) dx$				
	Choose the correct option:				
	(a) Statement I is correct but statement II is not correct.				
	(b) Statement II is correct but statement I is not correct.				
	(c) Both statements I and II are correct.				
	(d) None of these.				
7.	The value of $\int \tan (x - \alpha)$	$\tan(x + \alpha)\tan(2x) dx$ is			
	(a) $\log \frac{\sqrt{\sec 2x} \sec (x + \alpha)}{\sec (x - \alpha)}$	+ C	(b) $\log \tan^{-1}(\sec x + \cos x) $	x) + C	
	(c) $\log \left \frac{\sqrt{\sec 2x} \sec(x - \alpha)}{\sec(x + \alpha)} \right $	+ C	(d) $\log \frac{\sqrt{\sec 2x}}{\sec (x - \alpha) \sec (x - \alpha)}$	+ α) + C	

8. If
$$\int \sqrt{\frac{\cos x - \cos^3 x}{1 - \cos^3 x}} dx = f(x)$$
 then $f(x)$ equals

(a)
$$\frac{3}{2}\sin^{-1}(\cos^{3/2}x) + C$$

(b)
$$-\frac{2}{3}\cos^{-1}(\cos^{3/2}x) + C$$

(c)
$$-\frac{2}{3}\sin^{-1}(\cos^{3/2}x) + C$$

(d)
$$\frac{2}{3}\sin^{-1}(\cos^{3/2}x) + C$$

9.
$$\int \frac{mx^{m+2n-1} - nx^{n-1}}{x^{2m+2n} + 2x^{m+n} + 1} dx$$
, equals

(a)
$$\frac{x^m}{x^{m+n}+1}+C$$

(b)
$$\frac{x^n}{x^{m+n}+1}+C$$

(a)
$$\frac{x^m}{x^{m+n}+1} + C$$
 (b) $\frac{x^n}{x^{m+n}+1} + C$ (c) $\frac{x^{m+n}-1}{x^{m+n}+1} + C$

$$(d) = \frac{x^n}{x^{m+n}+1} + C$$

10. Area bounded by the curve $y = x^3$, the x-axis and the abscissae x = -2 and x = 1 is (in square units)

(b)
$$\frac{-15}{4}$$

(c)
$$\frac{15}{4}$$

(d)
$$\frac{17}{4}$$

11. The differential equation of family of curves $y^2 = 4a (x+a)$ is

(a)
$$y^2 = 4 \frac{dy}{dx} \left(x + \frac{dy}{dx} \right)$$

(b)
$$2y\frac{dy}{dx} = 4a$$

(c)
$$y \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0$$

$$(a) \quad y^2 = 4\frac{dy}{dx}\left(x + \frac{dy}{dx}\right) \qquad (b) \quad 2y\frac{dy}{dx} = 4a \qquad \qquad (c) \quad y\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 = 0 \qquad \qquad (d) \quad 2x\frac{dy}{dx} + y\left(\frac{dy}{dx}\right)^2 - y = 0$$

12. If $\frac{dy}{dx} = \frac{x-y}{x+y'}$ then its solution is

(a)
$$y^2 + 2xy - x^2 = 0$$

(b)
$$y^2 + 2xy + x^2 = 0$$

(b)
$$y^2 + 2xy + x^2 = C$$
 (c) $y^2 - 2xy - x^2 = C$ (d) $y^2 - 2xy + x^2 = C$

(d)
$$y^2 - 2xy + x^2 = 0$$

13. Feasible region shaded for a LPP is shown in figure. Maximum of Z = 2x + 3y occurs at the point

- (d) none of these
- 14. The probability that a man can hit a target is $\frac{3}{4}$. He tries 5 times. The probability that he will hit the target

(a)
$$\left(\frac{1}{4}\right)^3$$

(b)
$$\left(\frac{3}{4}\right)^5$$

(c)
$$\left(\frac{1}{4}\right)^2 \left(\frac{3}{4}\right)^3$$

- (d) none of these
- 15. The probability distribution of a random variable is given below

X	0	1	2	3
P(X)	k	$\frac{k}{2}$	$\frac{k}{4}$	<u>k</u> 8

then the variance of k is

(a)
$$\frac{8}{15}$$

(b)
$$\frac{7}{15}$$

(c)
$$\frac{4}{15}$$

(d) None of these

Section-B (B1)

- Identity relation R on a set A is
 - (a) Reflexive only
- (b) Symmetric only
- (c) Transitive only
- (d) Equivalence
- 17. Let $f: (-1, 1) \longrightarrow B$ where $f(x) = \tan^{-1} \left(\frac{2x}{1 x^2} \right)$ is one-one and onto, then B equals

(a)
$$\left[0, \frac{\pi}{2}\right]$$

(b)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(c)
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

$$(d)$$
 $\left(0, \frac{\pi}{2}\right)$

18.	The inverse of	the function	on $f(x) = \frac{e^x - 2e^{-x}}{e^x + 2e^{-x}}$	+ 1 is			
	$(a) \ \log_{10} \frac{2x}{2-x}$		$(b) \ \log_{10} \frac{x}{2-x}$	(c)	$\log_e \left(\frac{2x}{2-x}\right)^{1/2}$	(d)	$\log_e \left(\frac{1}{2-x}\right)^{\frac{1}{2}}$
19.	Two functions	are defined	d as under				
	$f(x) = \begin{cases} x+1, & x \le 1 \\ 2x+1, & 1 \le x \le 2 \end{cases} \text{ and } g(x) = \begin{cases} x^2, & -1 \le x \le 2 \\ x+2, & 2 \le x \le 3 \end{cases}$						
	then (fog) (x) e	quals					
	(a) $\begin{cases} x^2 + 1, \\ 2x^2 + 1, 1 \end{cases}$	$ x \le 1$ $< x \le \sqrt{2}$		(b)	$f(x) = \begin{cases} x^2 + 1, \\ 2x^2 + 1, \end{cases}$	$ x \le 1$ $1 \le x < \sqrt{2}$	
	(c) $\begin{cases} x^2 + 1, & \\ 2x^2 + 1, & x \end{cases}$	x > 1 $ x \ge \sqrt{2}$		(d)	None of these		
20.	Let * be a bina	ry operatio	n on N such that a	a * b = a + b.	Then (3 * 2) * 4 i	s equal to	
	(a) 5		(b) 6	(c)			10
21.	$If f(x) = \sin^{-1} x$, then doma	oin of $f(x)$ is				
	(a) $x \ge 1$ or $x \le 1$	-1	(b) -1 ≤ x ≤ 1	(c)	$x \ge 1$	(d)	None of these
22.	The solution o	of equation	$\tan^{-1} x - \cot^{-1} x = \tan^{-1} x$	$1 - \frac{1}{\sqrt{3}}$ is			
	(a) No solution	1		(b)	$x = \sqrt{3}$		
	(c) Infinite mar	ny solutions		(d)	None of these		
23.	$3\cos^{-1}x - \pi x$	$-\frac{\pi}{2} = 0 \text{ has}$					
	(a) two solution	ns		(b)	one and only on	e solution	
	(c) no solution			(d)	more than one s	olution.	
24.	If $A = 2 \tan^{-1}($	$2\sqrt{2} - 1$) and	$dB = \sin^{-1}\left(\frac{1}{3}\right) + \sin^{-1}\left(\frac{1}{3}\right) +$	$n^{-1}\left(\frac{3}{5}\right)$, the	n		
	(a) $A = B$		(b) A < B		A > B	(d)	none of these
26.			$\ln I + A + A^2$ equals				
	(a) $(I - A)^{-1}$			(c)	I - A	(d)) A
27.	If a, b, c are in						
		x+2 $x+3x+3$ $x+4x+4$ $x+5$	x + 2a x + 2b is x + 2c				
	(a) 0	'	(b) 1	(c)	x	(d)	2x
28.	If A is invertible matrix of order 3×3 , then $ A^{-1} $ is equal to						
	(a) $\frac{1}{A}$		(b) 1 A		-1 3 A	(d)	$\frac{1}{9 A }$
29.	If $y = \left(\frac{x}{n}\right)^{nx} \left(1\right)^{nx}$	$+\log\frac{x}{n}$, y'	(n) is given by				
	(a) $\frac{n^2+1}{n}$				$\frac{1}{n}$		
	(c) $\left(\frac{1}{n}\right)^n$			(d)	$\left(\frac{1}{n}\right)^n \left(\frac{n^2+1}{n}\right)$		

- 30. Let $f(x) = |\sin x|$; $0 \le x \le 2\pi$ then
 - (a) f(x) is differentiable function at infinite number of points.
 - (b) f(x) is non-differentiable at 3 points and continuous everywhere.
 - (c) f(x) is discontinuous everywhere.
 - (d) f(x) is discontinuous at 3 points.
- 31. Let $f(x) = \left[\tan \left(\frac{\pi}{4} + x \right) \right]^{\frac{1}{x}}$,

then the value of k such that f(x) holds continuity at x = 0 is

(b) 1/2

- (d) None of these
- 32. Let $f(x) = x^2 |x|$ then the set of values, where f(x) is three times differentiable, is

(d) None of these

- 33. Which of the following function is decreasing on $\left(0, \frac{\pi}{2}\right)$?
 - (a) tan 2x
- (b) cos x
- (c) cos 3x
- (d) none of these

34. Read the following statements.

Statement I : If $\frac{d}{dx}f(x) = 4x^3 - \frac{3}{x^4}$ such that f(2) = 0, then $f(x) = x^4 + \frac{1}{x^3} - \frac{129}{8}$.

Statement II : $\int \frac{e^x(1+x)}{\cos^2(xe^x)} dx = \tan(xe^x) + C$

Choose the correct option:

- (a) Statement I is correct but statement II is not correct.
- (b) Statement II is correct but statement I is not correct.
- (c) Both statements I and II are correct.
- (d) None of these
- 35. If $\int f(x) \sin x \cos x \, dx = \frac{1}{2(h^2 a^2)} \log(f(x)) + C$ then $\int f(x) \, dx$ equals

(a)
$$\frac{1}{ab} \tan^{-1} \left(\frac{a \tan x}{b} \right) + K$$

(b)
$$ab \tan^{-1} \left(\frac{a \tan x}{b} \right) + K$$

(c)
$$\frac{1}{ab} \tan^{-1} \left(\frac{b \tan x}{a} \right) + K$$

(d)
$$\frac{1}{ab} \tan^{-1} \left(\tan \left(\frac{bx}{a} \right) \right) + K$$

- 36. If $\int \frac{(x^m)^x \log_e(ex)}{1 + (x^{2m})^x} dx = \left(1 \frac{A}{B}\right) \tan^{-1}(x^m)^x + K$ then A + B equals
 - (a) 2m 1
- (b) m − 1
- (c) 2m

- (d) m + 1
- 37. If y = f(x) makes positive intercept of 2 and 0 unit on x and y axes and enclosed an area of $\frac{3}{4}$ square units with the axes then $\int_{0}^{2} xf'(x) dx$ is
 - (a) 0

- (c) $-\frac{3}{4}$

- 38. The general solution of $\frac{dy}{dx} = e^{x-y}(e^x e^y)$ is

 - (a) $e^y = e^x 1 + Ce^{-x}$ (b) $e^x = e^y + 1 + Ce^{-y}$
- (d) None of these

39.	The solution of the differential equation $y \cos\left(\frac{y}{x}\right)(xdy - ydx) + x \sin\left(\frac{y}{x}\right)(xdy + ydx) = 0$ which sat				
	$y(1) = \frac{\pi}{2}$, is				
	(a) $y \sin\left(\frac{y}{x}\right) = \frac{\pi}{x}$	(b) $y \sin\left(\frac{y}{x}\right) = \frac{\pi}{3x}$	(c) $y \sin\left(\frac{y}{x}\right) = \frac{\pi}{2x}$	(d) None of these	
40.	The vector having initial	and terminal points as (2, 5	5, 0) and (-3, 7, 4), respective	ly is	
	(a) $-\hat{i} + 12\hat{j} + 4\hat{k}$	(b) $5\hat{i} + 2\hat{j} - 4\hat{k}$	(c) $-5\hat{i} + 2\hat{j} + 4\hat{k}$	$(d) \hat{i} + \hat{j} + \hat{k}$	
41.	The value of λ such that	the vectors $\vec{a} = 2\hat{i} + \lambda \hat{j} + \hat{k}$ a	and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal	gonal is	
	(a) 0	(b) 1	(c) $\frac{3}{2}$	(d) $\frac{-5}{2}$	
42.	The vectors $\lambda \hat{i} + \hat{j} + 2\hat{k}$, \hat{i}	$+\lambda \hat{j} - \hat{k}$ and $2\hat{i} - \hat{j} + \lambda \hat{k}$ are	coplanar if		
	(a) $\lambda = -2$	(b) $\lambda = 0$	(c) $\lambda = 1$	(d) $\lambda = -1$	
43.	If \vec{a} , \vec{b} and \vec{c} are three \vec{a} . \vec{b} + \vec{b} . \vec{c} + \vec{c} . \vec{a} is	vectors such that $\vec{a} + \vec{b} + \vec{c}$	= 0 and $ \vec{a} = 2, \vec{b} = 3$ and	$ \vec{c} = 5$, then the value of	
	(a) 0	(b) 1	(c) -19	(d) 38	
44.	ABC is a triangle such that the coordinate of A, B, C are $(2, 3, 5)$, $(-1, 3, 2)$ and $(\lambda, 5, \mu)$ respectively. If the median through A is equally inclined to the axis then				
	(a) $\lambda = 5 = \mu$	(b) $\lambda = 5, \mu = 7$	(c) $\lambda = 7, \mu = 10$	(d) $\lambda = 0 = \mu$	
45.	A line OP through original inclined to OZ is	n O is inclined at 30° and 4	15° to OX and OY respective	ely. The angle at which it is	
	(a) 90°	(b) $\cos^{-1}(\frac{-1}{4})$	(c) 60°	(d) Such line does not exist	
46.	The perpendicular distar	nce of a corner of a unit cub	e from a diagonal not passir	ng through it is	
	(a) $\frac{1}{\sqrt{3}}$	(b) $\frac{2}{\sqrt{3}}$	(c) $\sqrt{\frac{2}{3}}$	$(d) \ \frac{2}{\sqrt{3}}$	
47.	The equation of plane containing the line $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$ and the point (0, 7, -7) is				
	$(a)\;x+y+z=1$	(b) $x + y + z = 2$	(c) $x + y + z = 0$	(d) none of these	
48.	If $P(A) = \frac{2}{5}$, $P(B) = \frac{3}{10}$ and $P(A \cap B) = \frac{1}{5}$ then $P(A'/B')$. $P(B'/A')$ is equal to				
	(a) 15/16	(b) $\frac{7}{5}$	(c) 25/42	(d) 1	
49.	If A and B are two events such that $P(B) = \frac{3}{5}$, $P(A/B) = \frac{1}{2}$ and $P(A \cup B) = \frac{4}{5}$, then $P(A)$ is equals to				
	(a) $\frac{3}{10}$	(b) $\frac{1}{5}$	(c) $\frac{1}{2}$	(d) $\frac{3}{5}$	
50.	If $x \in [0, 8]$, the probability that $x^2 - 8x + 12 \ge 0$ is				
	(a) $\frac{1}{2}$	(b) $\frac{3}{4}$	(c) 1/4	(d) none of these	