Class: XII

**SESSION: 2022-2023** 

# SUBJECT: Mathematics SAMPLE QUESTION PAPER - 17

with SOLUTION

Time Allowed: 3 Hours Maximum Marks: 80

#### **General Instructions:**

- This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

#### Section A

1. 
$$\int \tan^2 \frac{x}{2} dx = ?$$

[1]

a) 
$$2\tan\frac{x}{2} - x + C$$

b) 
$$\tan \frac{x}{2} + x + C$$

c) 
$$\tan \frac{x}{2} - x + C$$

d) 
$$2\tan\frac{x}{2} + x + c$$

| 2. | Area of the region bounded by the curv                                                    | $x = y = \cos x$ between $x = 0$ and $x = \pi$ is                        | [1] |
|----|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----|
|    | a) 2 sq units                                                                             | b) 3 sq units                                                            |     |
|    | c) 4 sq units                                                                             | d) 1 sq units                                                            |     |
| 3. | The angle between the lines $\frac{x-2}{2} = \frac{y-1}{7}$                               | $\frac{z+3}{-3}$ and $\frac{x+2}{-1} = \frac{y-4}{2} = \frac{z-5}{4}$ is | [1] |
|    | a) $\cos^{-1}\left(\frac{3}{8}\right)$                                                    | b) $\frac{\pi}{3}$                                                       |     |
|    | c) $\frac{\pi}{6}$                                                                        | d) $\frac{\pi}{2}$                                                       |     |
| 4. | Area of the region in the first quadrant the circle $x^2 + y^2 = 32$ is                   | enclosed by the x-axis, the line $y = x$ and                             | [1] |
|    | a) $32\pi$ sq units                                                                       | b) $4\pi$ sq units                                                       |     |
|    | c) $16\pi$ sq units                                                                       | d) 24 sq units                                                           |     |
| 5. | If the vectors $\vec{a}=3\hat{i}+\hat{j}-2\hat{k}$ and $\vec{b}=$ other then $\lambda=$ ? | $\hat{i} + \lambda \hat{j} - 3\hat{k}$ are perpendicular to each         | [1] |
|    | a) -6                                                                                     | b) -3                                                                    |     |
|    | c) -1                                                                                     | d) <b>-</b> 9                                                            |     |
| 6. | If A and B are two events such that $P(A = A) = A$                                        | $A(A) = \frac{4}{5}$ , and $P(A \cap B) = \frac{7}{10}$ , then P (B /    | [1] |
|    | a) $\frac{1}{10}$                                                                         | b) $\frac{17}{20}$                                                       |     |
|    | c) $\frac{7}{8}$                                                                          | d) $\frac{1}{8}$                                                         |     |
|    |                                                                                           |                                                                          |     |

| 7.  | In a LPP, the linear inequalities or restr                                                                              | ictions on the variables are called                                                                       | [1] |
|-----|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----|
|     | a) Limits                                                                                                               | b) Inequalities                                                                                           |     |
|     | c) Linear constraints                                                                                                   | d) Constraints                                                                                            |     |
| 8.  | It is given that the probability that A caprobability that B can solve the same p one of A and B can solve a problem is | In solve a given problem is $\frac{3}{5}$ and the roblem is $\frac{2}{3}$ . The probability that at least | [1] |
|     | a) $\frac{13}{15}$                                                                                                      | b) $\frac{2}{15}$                                                                                         |     |
|     | c) $\frac{1}{15}$                                                                                                       | d) $\frac{2}{5}$                                                                                          |     |
| 9.  | Which of the following transformations $\frac{dz}{dx} + \frac{z}{x} \log z = \frac{z}{x^2} (\log z)^2$ into the form    |                                                                                                           | [1] |
|     | a) $u = e^{x}$                                                                                                          | b) $u = \log x$                                                                                           |     |
|     | c) $u = (\log z)^2$                                                                                                     | $d)_{u} = (\log z)^{-1}$                                                                                  |     |
| 10. | If $ \vec{a}  = \sqrt{2}$ , $ \vec{b}  = \sqrt{3}$ and $ \mathbf{a} + \mathbf{b}  = \sqrt{6}$ , the                     | nen what is $ ec{a} + ec{b} $ equal to?                                                                   | [1] |
|     | a) 2                                                                                                                    | b) 4                                                                                                      |     |
|     | c) 3                                                                                                                    | d) 1                                                                                                      |     |
| 11. | $\int rac{(1+	an x)}{(1-	an x)} dx = ?$                                                                                |                                                                                                           | [1] |
|     | a) $\log  \cos x - \sin x  + C$                                                                                         | b) $\log  \cos x + \sin x  + C$                                                                           |     |
|     | c) none of these                                                                                                        | d) - $\log  \cos x - \sin x  + C$                                                                         |     |
| 12. | The degree of the differential equation                                                                                 | $\left(1+rac{dy}{dx} ight)^3=\left(rac{d^2y}{dx^2} ight)^2$ is                                          | [1] |
|     | a) 2                                                                                                                    | b) 1                                                                                                      |     |
|     | c) 3                                                                                                                    | d) 4                                                                                                      |     |
| 13. | The solution of the DE $\frac{dy}{dx} = 1 - x + y$                                                                      | xy is                                                                                                     | [1] |
|     | a) $e^y=x-rac{x^2}{2}+C$                                                                                               | b) $\log(1+y)=x-rac{x^2}{2}+C$                                                                           |     |
|     | c) none of these                                                                                                        | d) $e^{(1+y)}=x-rac{x^2}{2}+C$                                                                           |     |

| 14. | For any 2 × 2 matrix, If A(adj A) = $\begin{bmatrix} 10 \\ 0 \end{bmatrix}$                                  | $\begin{bmatrix} 0 & 0 \\ 10 \end{bmatrix}$ , then  A  is equal to              | [1] |
|-----|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----|
|     | a) 20                                                                                                        | b) 10                                                                           |     |
|     | c) 0                                                                                                         | d) 100                                                                          |     |
| 15. | The value of k for which $f(x) = \begin{cases} \frac{\sin 5x}{3x} \\ k \end{cases}$                          | $x^2$ , if $x \neq 0$ is continuous at $x = 0$ is $x^2$ , if $x = 0$            | [1] |
|     | a) $\frac{5}{3}$                                                                                             | b) $\frac{3}{5}$                                                                |     |
|     | c) 0                                                                                                         | d) $\frac{1}{3}$                                                                |     |
| 16. | Find a particular solution of $x\left(x^2-1\right)$                                                          | $\frac{dx}{dy} = 1; y = 0 \text{ when } x = 2.$                                 | [1] |
|     | a) $y=rac{1}{2}	ext{log}\Big(rac{x^3-1}{x^2}\Big)-rac{1}{2}lograc{3}{4}$                                 | b) $y=rac{1}{2}\mathrm{log}\Big(rac{x^2-1}{x^3}\Big)+rac{1}{2}lograc{3}{4}$ |     |
|     | $^{	ext{c)}}y = \ 	frac{1}{2} 	ext{log} \Big( 	frac{x^2-1}{x^2} \Big) - \ 	frac{1}{2} 	ext{log} 	frac{3}{7}$ | d) $rac{x^4}{4} - rac{x^2}{2} = y + 2$                                        |     |
| 17. | The straight line $\frac{x-3}{3} = \frac{y-2}{1} = \frac{z-1}{0}$ is                                         |                                                                                 | [1] |
|     | a) perpendicular to z-axis                                                                                   | b) parallel to z-axis                                                           |     |
|     | c) parallel to y-axis                                                                                        | d) parallel to x-axis                                                           |     |
| 18. | The domain of the function defined by f                                                                      | $f(x) = \sin^{-1} x + \cos x \text{ is}$                                        | [1] |
|     | a) [-1, 1]                                                                                                   | b) <i>φ</i>                                                                     |     |
|     | c) $(-\infty, \infty)$                                                                                       | d) $[-1, \pi + 1]$                                                              |     |
| 19. | by ax + by > M has no point in common has no maximum value.  Reason (R): m is the minimum value or           | let M and m be the maximum and e of Z, if the open half plane determined        | [1] |
|     | a) Both A and R are true and R is the correct explanation of A.                                              | b) Both A and R are true but R is not the correct explanation of A.             |     |
|     | c) A is true but R is false.                                                                                 | d) A is false but R is true.                                                    |     |

20. **Assertion (A):** Every differentiable function is continuous but converse is not true. [1]

**Reason (R):** Function f(x) = |x| is continuous.

- a) Both A and R are true and R is the correct explanation of A.
- b) Both A and R are true but R is not the correct explanation of A.
- c) A is true but R is false.
- d) A is false but R is true.

#### Section B

- 21. Find the solution of  $\frac{dy}{dx} = 2^{y-x}$  [2]
- 22. Find which of the functions is continuous or discontinuous at the indicated points: [2] f(x) = |x| + |x 1| at x = 1
- 23. Cartesian equation of a line AB is  $\frac{2x-1}{2} = \frac{4-y}{7} = \frac{z+1}{2}$  write the direction ratios of [2] a line parallel to AB.

OR

Write the direction cosines of the line whose cartesian equation is 2x = 3y = -z.

- 24. A company has estimated that the probabilities of success for three products introduced in the market are  $\frac{1}{3}$ ,  $\frac{2}{5}$  and  $\frac{2}{3}$  respectively. Assuming independence, find the probability that none of the products is successful.
- 25. Find the principal value of  $\cot^{-1}(\sqrt{3})$ . [2]

#### **Section C**

- 26. Minimize Z=400x + 200y subject to  $5x+2y \ge 30$   $2x+y \ge 15$  $x \le y, x \ge 0, y \ge 0$
- 27. Calculate the area under the curve  $y = 2\sqrt{x}$  included between the lines x = 0 and x = 1.

OR

If S be the area of the region enclosed by  $y=e^{-x^2}$ , y=0 and x=1, then show that  $1-\frac{1}{e} \leq S \leq \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left(1-\frac{1}{\sqrt{2}}\right)$ 

28. Find the acute angle between the lines whose direction ratios are proportional to 2 [3] : 3:6 and 1:2:2

OR

Find the vector and Cartesian equations of the line passing through the points A(2, -1, 4) and B(1, 1, -2).

29. Evaluate 
$$\int_1^5 (|x-1|+|x-2|+|x-4|)dx$$
: [3]

OR

Evaluate 
$$\int_1^4 f(x) dx, ext{ where } f(x) = egin{cases} 2x+8, & 1 \leq x \leq 2 \ 6x & , 2 \leq x \leq 4 \end{cases}$$

30. Find the area bounded by the circle  $x^2 + y^2 = 16$  and the line y = x in the first quadrant. [3]

31. If 
$$y\sqrt{x^2+1} = \log(\sqrt{x^2+1}-x)$$
. Prove that  $(x^2+1)\frac{dy}{dx} + xy + 1 = 0$  [3]

#### Section D

32. Given 
$$A = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ , find BA and use this to solve the system of equations  $y + 2z = 7$ ,  $x - y = 3$ ,  $2x + 3y + 4z = 17$ .

OR

The sum of three numbers is 6. If we multiply third number by 3 and add second number to it, we get 11. By adding first and third number we get double of the second number. Find the numbers using matrix method.

- 33. Show that the points A (1, -2, -8), B (5, 0, -2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC. [5]
- 34. Let  $A = R \{3\}$  and  $B = R \{1\}$ . Consider the function of f:  $A \to B$  defined by  $f(x) = \frac{x-2}{x-3}$  is one one and onto.

OR

Each of the following defines a relation on N:

i. x is greater than y, x,  $y \in N$ 

ii. 
$$x + y = 10, x, y \in N$$

iii. xy is square of an integer x,  $y \in N$ 

iv. 
$$x + 4y = 10x, y \in N$$
.

Determine which of the above relations are reflexive, symmetric and transitive.

35. Evaluate: 
$$\int \frac{\sin x \cos x}{(\cos^2 x - \cos x - 2)} dx.$$
 [5]

#### Section E

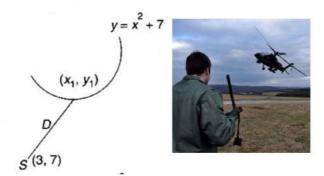
[4]

36. Read the text carefully and answer the questions:

An Apache helicopter of the enemy is flying along the curve given by  $y = x^2 + 7$ . A soldier, placed at (3, 7) want to shoot down the helicopter when it is nearest to

Page 6 of 32

him.



- (i) If P  $(x_1, y_1)$  be the position of a helicopter on curve  $y = x^2 + 7$ , then find distance D from P to soldier place at (3, 7).
- (ii) Find the critical point such that distance is minimum.
- (iii) Verify by second derivative test that distance is minimum at (1, 8).

OR

Find the minimum distance between soldier and helicopter?

### 37. Read the text carefully and answer the questions:

[4]

Consider 2 families A and B. Suppose there are 4 men, 4 women and 4 children in family A and 2 men, 2 women and 2 children in family B. The recommended daily amount of calories is 2400 for a man, 1900 for a woman, 1800 for children and 45 grams of proteins for a man, 55 grams for a woman and 33 grams for children.



- (i) Represent the requirement of calories and proteins for each person in matrix form.
- (ii) Find the requirement of calories of family A and requirement of proteins of family B.
- (iii) Represent the requirement of calories and proteins If each person increases the protein intake by 5% and decrease the calories by 5% in matrix form.

OR

If A and B are two matrices such that AB = B and BA = A, then find  $A^2 + B^2$  in terms of A and B.

38. Read the text carefully and answer the questions:

[4]

Akash and Prakash appeared for first round of an interview for two vacancies. The probability of Nisha's selection is  $\frac{1}{3}$  and that of Ayushi's selection is  $\frac{1}{2}$ .



- (i) Find the probability that both of them are selected.
- (ii) The probability that none of them is selected.

## **SOLUTION**

### Section A

1. **(a)** 
$$2\tan\frac{x}{2} - x + C$$

**Explanation:** Given integral is  $\int \tan^2 \frac{x}{2}$ 

Let, 
$$\frac{x}{2} = z$$

$$\Rightarrow$$
 dx = 2dz

So.

$$\int \tan^2 \frac{x}{2} dx$$

$$=2\int \tan^2 z dz$$

$$=2\int \frac{\sin^2 z}{\cos^2 z} dz$$

$$= 2\int \frac{1-\cos^2 z}{\cos^2 z} dz$$
 where c is the integrating constant.

$$=2\int \left(\sec^2 z - 1\right) dz$$

$$= 2 [\tan z - z] + c$$

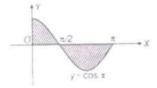
$$=2\left[\tan\frac{x}{2}-\frac{x}{2}\right]+c$$

Hence, 
$$\int \tan^2 \frac{x}{2} = 2 \left[ \tan \frac{x}{2} - \frac{x}{2} \right] + c$$

2. (a) 2 sq units

## **Explanation:**

Required area enclosed by the curve  $y = \cos x$  and  $x = \pi$ 



$$A = \int_0^{\pi/2} \cos x dx + \left| \int_{\pi/2}^{\pi} \cos x dx \right|$$
$$= \left[ \sin \frac{\pi}{2} - \sin 0 \right] + \left| \sin \frac{\pi}{2} - \sin \pi \right|$$

$$= 1 + 1 = 2$$
 sq. units

3. **(d)** 
$$\frac{\pi}{2}$$

**Explanation:** Let's consider the first parallel vector to be  $\vec{a} = 2\hat{i} + 7\hat{j} - 3\hat{k}$  and second parallel vector be  $\vec{b} = -\hat{i} + 2\hat{j} + 4\hat{k}$ 

For the angle, we can use the formula  $\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \times |\vec{b}|}$ 

For that, we need to find the magnitude of these vectors

$$|\vec{a}| = \sqrt{3^2 + 2^2 + (7)^2}$$
  
=  $\sqrt{62}$ 

$$|\vec{b}| = \sqrt{1 + 2^2 + 4^2}$$
  
=  $\sqrt{21}$ 

$$\Rightarrow \cos\alpha = \frac{(2\hat{\imath} + 7\hat{\jmath} - 3\hat{k}) \cdot (-\hat{\imath} + 2\hat{\jmath} + 4\hat{k})}{\sqrt{21} \times \sqrt{62}}$$

$$\Rightarrow \cos\alpha = \frac{-2 + 14 - 12}{\sqrt{21} \times \sqrt{62}}$$

$$\Rightarrow \cos\alpha = \frac{0}{\sqrt{21} \times \sqrt{62}}$$

$$\Rightarrow \alpha = \cos^{-1}0$$

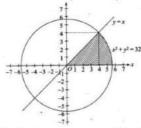
The negative sign does not affect anything in cosine as cosine is positive in the fourth quadrant

$$\therefore \ \alpha = \frac{\pi}{2}$$

### 4. **(b)** $4\pi$ sq units

## **Explanation:**

We have, y = 0, y = x and the circle  $x^2 + y^2 = 3$  in the first quadrant



Solving y = x with the circle

$$x^2 + x^2 = 32$$

$$\Rightarrow x^2 = 16$$

$$\Rightarrow x = 4$$

When 
$$x = 4$$
,  $y = 4$ 

For point of intersection of circle with the x-axis,

Put 
$$y = 0$$

$$x^2 + 0 = 32$$

$$\Rightarrow$$
 x =  $\pm 4\sqrt{2}$ 

So, the circle intersects the x-axis at (  $\pm 4\sqrt{2}$ ,0)

From the figure, area of shaded region

$$A = \int_0^4 x dx + \int_4^4 \sqrt{2} \sqrt{(4\sqrt{2})^2 - x^2} dx$$

$$= \left[\frac{x^2}{2}\right]_0^4 + \left[\frac{x}{2}\sqrt{(4\sqrt{2})^2 - x^2} + \frac{(4\sqrt{2})^2}{2}\sin^{-1}\frac{x}{4\sqrt{2}}\right]_0^{4\sqrt{2}}$$

$$= \frac{16}{2} + \left[ 0 + 16\sin^{-1}1 - \frac{4}{2}\sqrt{(4\sqrt{2})^2 - 16} - 16\sin^{-1}\frac{4}{4\sqrt{2}} \right]$$

$$= 8 + \left[ 16 \cdot \frac{\pi}{2} - 2 \cdot \sqrt{16} - 16 \cdot \frac{\pi}{4} \right]$$

$$= 8 + [9\pi - 8 - 4\pi] = 4\pi \text{ sq. units}$$

5. (d) -9

**Explanation:** Here,  $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$  and  $\vec{b} = \hat{i} + \lambda\hat{j} - 3\hat{k}$ 

Since  $\vec{a} \perp \vec{b}$ 

$$\vec{a} \cdot \vec{b} = 0$$

$$\Rightarrow (3\hat{i} + \hat{j} + 2\hat{k}) \cdot (\hat{i} + \lambda\hat{j} - 3\hat{k}) = 0$$

$$\Rightarrow 3 + \lambda + 6 = 0$$

$$\Rightarrow \lambda = -9$$

6. (c)  $\frac{7}{8}$ 

**Explanation:**  $P(A) = \frac{4}{5}$ ,  $P(A \cap B) = \frac{7}{10}$  (Given)

Now we know,

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$= \frac{\frac{7}{10}}{\frac{5}{5}}$$

$$= \frac{\frac{7}{10} \times \frac{5}{4}}{\frac{7}{8}}$$

7. (c) Linear constraints

**Explanation:** In a LPP, the linear inequalities or restrictions on the variables are called Linear constraints.

8. (a)  $\frac{13}{15}$ 

**Explanation:** P(A) = probability that A can solve the problem

$$= 3/5$$

And P(B) = probability that B can solve the problem = 2/3

$$P(A \cup B) = P(A) + P(B) - P(A \cap B),$$

Since the events are independent

$$\Rightarrow$$
 P(A  $\cap$  B) = P(A).P(B)

$$\Rightarrow P(A \cup B) = 3/5 + 2/3 - 2/5 = 13/15$$

9. **(d)** 
$$u = (\log z)^{-1}$$

Explanation: We have,

$$\frac{dz}{dx} + \frac{z}{x} \log z = \frac{z}{x^2} (\log z)^2$$

$$\frac{dz}{dx} = \frac{z}{x^2} (\log z)^2 - \frac{z}{x} \log z \dots (i)$$

Put 
$$v = (log z)^{-1}$$

$$\frac{dv}{dx} = \frac{-1}{(\log z)^2} \frac{1}{z} \frac{dz}{dx}$$

$$\frac{dz}{dx} = -z(\log z)^2 \frac{dv}{dx} \dots (ii)$$

From (i) and (ii)

$$-z(\log z)^2 \frac{dv}{dx} = \frac{z}{r^2} (\log z)^2 - \frac{z}{x} \log z$$

$$(\log z)\frac{dv}{dx} = -\frac{1}{x^2}(\log z) + \frac{1}{x}$$

$$\frac{dv}{dx} = -\frac{1}{x^2} + \frac{u}{x}$$

$$\frac{dv}{dx} - \frac{u}{x} = -\frac{1}{x^2}$$

$$P(x) = \frac{-1}{x}, q(x) = \frac{-1}{x^2}$$

Given differential equation can be reduced.

using 
$$v = (\log z)^{-1}$$

10. (a) 2

# **Explanation: 2**

11. **(d)** - 
$$\log |\cos x - \sin x| + C$$

# **Explanation:**

The integral is 
$$\int \frac{(1+\tan x)}{(1-\tan x)} dx$$

since we know that, 
$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$

$$\sin (a + b) = \sin a \cos b + \cos a \sin b$$

$$\int \cot x = \log (\sin x) + c$$

$$\Rightarrow \int \frac{1 + \frac{\sin x}{\cos x}}{1 - \frac{\sin x}{\cos x}} dx \text{ (Rationalizing the denominator)}$$

$$1 - \frac{\sin x}{\cos x}$$

$$\Rightarrow \int \frac{\cos x + \sin x}{\cos x - \sin x} dx$$
Put  $\cos x - \sin x = t$ 

$$(-\sin x - \cos x) dx = dt$$

$$(\sin x + \cos x) dx = -dt$$

$$\int \frac{-dt}{t} = -\log t + c$$

$$\Rightarrow -\log|\cos x - \sin x| + c$$
12. (a) 2

**Explanation:** We have 
$$\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{1/2} = \frac{d^2y}{dx^2}$$

$$\Rightarrow \left[1 + \left(\frac{dy}{dx}\right)^2\right]^3 = \left(\frac{d^2y}{dx^2}\right)^2$$

So, the degree of differential equation is 2.

13. **(b)** 
$$\log(1+y) = x - \frac{x^2}{2} + C$$

**Explanation:** Here, 
$$\frac{dy}{dx} = 1 - x + y - xy$$

$$\frac{dy}{dx} = 1 - x + y(1 - x)$$

$$\frac{dy}{dx} = (1+y)(1-x)$$

$$\frac{\mathrm{d}y}{1+y} = (1-x)\mathrm{d}x$$

On integrating on both sides, we obtain

$$\log(1+y) = x - \frac{x^2}{2} + c$$

14. **(b)** 10

Explanation: We know that

 $A \times adjA = |A| I_{nxn}$ , where I is the unit matrix of order nxn.----[1]

$$A(\text{adj}A) = \begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$$
 Using the above property of matrices (1), we get

$$A(\text{adj}A) = 10 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A(adj A) = (10) I_{2x2}$$

$$|A| I_{2x2} = 10 I_{2x2}$$

$$|A| = 10$$

15. (a) 
$$\frac{5}{3}$$

**Explanation:** Since f(x) is continuous on 0, then we

$$\Rightarrow \lim_{x \to 0} \frac{\sin 5x}{3x} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin 5x}{3x} \times \frac{5x}{5x} = f(0)$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin 5x}{5x} \times \frac{5x}{3x} = f(0)$$

$$\Rightarrow f(0) = \frac{5}{3}$$

$$\Rightarrow$$
 k =  $\frac{5}{3}$ 

16. **(d)** 
$$\frac{x^4}{4} - \frac{x^2}{2} = y + 2$$

**Explanation:**  $x(x^2 - 1)dx = dy$ 

$$\int (x^3 - x)dx = \int dy$$

$$\frac{x^4}{4} - \frac{x^2}{2} = y + c$$

Here y = 0 when x = 2

$$\frac{2^4}{4} - \frac{2^2}{2} = 0 + c$$

$$4 - 2 = c$$

$$\therefore c = 2$$

Therefore, the required solution is  $\frac{x^4}{4} - \frac{x^2}{2} = y + 2$ 

17. (a) perpendicular to z-axis

Explanation: We have,

$$\frac{x-3}{3} = \frac{y-2}{1} = \frac{z-1}{0}$$

Also, the given line is parallel to the vector  $\vec{b} = 3\hat{i} + \hat{j} + 0\hat{k}$ 

Let  $x\hat{i} + y\hat{j} + z\hat{k}$  be perpendicular to the given line.

Now.

$$3x + 4y + 0z = 0$$

It is satisfied by the coordinates of z-axis, i.e. (0, 0, 1)

Hence, the given line is perpendicular to z-axis.

18. (a) [-1, 1]

**Explanation:** The domain of cos is R and the domain of  $\sin^{-1}$  is [-1, 1]. Therefore, the domain of  $\cos x + \sin^{-1} x$  is R  $\cap [-1, 1]$ , i.e., [-1, 1].

19. (b) Both A and R are true but R is not the correct explanation of A.

Explanation: In case, the feasible region is unbounded, we have

**Assertion:** M is the maximum value of Z, if the open half plane determined by ax + by > M has no point in common with the feasible region. Otherwise, Z has no maximum value.

**Reason:** Similarly, m is the minimum value of Z, if the open half plane determined by ax + by < m has no point in common with the feasible region. Otherwise, Z has no minimum value. Hence, Assertion is true and Reason is true but Reason is not the correct explanation of Assertion.

20. (c) A is true but R is false.

Explanation: Assertion: It is a true statement.

**Reason:** We have, f(x) = |x|

At 
$$x = 0$$
,

LHL = 
$$\lim_{h \to 0^{-}} \frac{f(0-h)-f(0)}{-h}$$
  
 $h \to 0^{-}$   
=  $\lim_{h \to 0^{-}} \frac{|0-h|-0}{-h}$   
=  $\lim_{h \to 0^{-}} \frac{\frac{h}{-h}}{-h} = -1$   
and RHL =  $\lim_{h \to 0^{+}} \frac{f(0+h)-f(0)}{h}$   
=  $\lim_{h \to 0^{+}} \frac{h \to 0^{+}}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1$ 

Here, LHD  $\neq$  RHD, hence f(x) is not continuous at x = 0.

#### Section B

21. Given that, 
$$\frac{dy}{dx} = 2^{y-x}$$

$$\Rightarrow \frac{dy}{dx} = \frac{2^{y}}{2^{x}}$$

$$\Rightarrow \frac{dy}{2^{y}} = \frac{dx}{2^{x}}$$

$$\Rightarrow \int 2^{-y} dy = \int 2^{-x} dx \text{ (Integrating both sides)}$$

$$\Rightarrow \frac{-2^{-y}}{\log 2} = \frac{-2^{-x}}{\log 2} + C$$

$$\Rightarrow -2^{-y} + 2^{-x} = C \log 2$$

$$\Rightarrow 2^{-x} - 2^{-y} = C \log 2$$

$$\Rightarrow 2^{-x} - 2^{-y} = K \text{ [Where, K = C log 2]}$$

22. We have, 
$$f(x) = |x| + |x - 1|$$
 at  $x = 1$   
At  $x = 1$ ,  $LHL = \lim_{x \to 1} [|x| + |x - 1|]$   
 $x \to 1^-$   
=  $\lim_{x \to 0} [|1 - h| + |1 - h - 1|] = 1 + 0 = 1$   
 $x \to 0$   
And  $RHL = \lim_{x \to 1^-} [|x| + |x - 1|]$   
=  $\lim_{x \to 1^-} [|1 + h| + |1 + h - 1|] = 1 + 0 = 1$   
 $n \to 0$   
and  $f(1) = |1| + |0| = 1$   
 $\therefore$  LHL = RHL =  $f(1)$   
Hence,  $f(x)$  is continuous at  $x = 1$ 

23. Given equation of a line can be written is

$$\frac{x - \frac{1}{2}}{1} = \frac{y - 4}{-7} = \frac{z + 1}{2}$$

The direction ratios of a line parallel to AB are (1, -7, 2)

OR

According to the question we are given that

$$2x = 3y = -z$$

The equation of the given line can be re-written as

$$\frac{x}{\frac{1}{2}} = \frac{y}{\frac{1}{3}} = \frac{z}{-1}$$

$$\frac{x}{3} = \frac{y}{2} = \frac{z}{-6}$$

The direction ratios of the line 3, 2, -6.

Hence, the direction cosines of the line

$$\frac{3}{\sqrt{3^2+2^2+(-6)^2}}, \frac{2}{\sqrt{3^2+2^2+(-6)^2}}, \frac{-6}{\sqrt{3^2+2^2+(-6)^2}}$$

$$= \frac{3}{7}, \frac{2}{7}, -\frac{6}{7}$$

- 24. Consider the following events:
  - A = First product is successful,
  - B = Second product is successful,
  - C = Third product is successful

We have,

$$P(A) = \frac{1}{3}$$
,  $P(B) = \frac{2}{5}$  and  $P(C) = \frac{2}{3}$ 

Therefore, Required probability is given by,

P(None of the products is successful)

$$=P(\bar{A}\cap\bar{B}\cap\bar{C})$$

= 
$$P(\bar{A})P(\bar{B})P(\bar{C})$$
 [ : A, B, C are independent events ]

$$= (1 - \frac{1}{3}) \times (1 - \frac{2}{5}) \times (1 - \frac{2}{3})$$

$$= \frac{2}{3} \times \frac{3}{5} \times \frac{1}{3} = \frac{2}{15}$$

25.  $\cot^{-1}x$  represents an angle in  $(0, \pi)$  whose cotangent is x.

Let 
$$x = \cot^{-1}(\sqrt{3})$$

$$\Rightarrow \cot x = \sqrt{3} = \cot \left(\frac{\pi}{6}\right)$$

$$\Rightarrow x = \frac{\pi}{6}$$

$$\therefore$$
 Principal value of  $\cot^{-1}(\sqrt{3})$  is  $\frac{\pi}{6}$ .

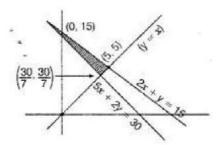
### Section C

26. we have minimise Z=400x + 200y subject to  $5x + 2y \ge 30$ .

$$2x + y \ge 15, x \le y, x \ge 0, y \ge 0$$

On solving x-y=0 and 5x+2y=30, we get

$$y = \frac{30}{7}, x = \frac{30}{7}$$



On solving x - y = 0 and 2x + y = 15 we get x = 5, y = 5

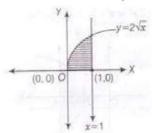
So, from the shaded feasible region it is clear that coordinates of corner points are

$$(0,15)$$
,  $(5,5)$  and  $\left(\frac{30}{7}, \frac{30}{7}\right)$ .

| <b>Corner Points</b>                      | Corresponding value of $X = 400x + 200y$                              |  |
|-------------------------------------------|-----------------------------------------------------------------------|--|
| (0, 15)                                   | 3000                                                                  |  |
| (5, 5)                                    | 3000                                                                  |  |
| $\left(\frac{30}{7}, \frac{30}{7}\right)$ | $400 \times \frac{30}{7} + 200 \times \frac{30}{7} = \frac{18000}{7}$ |  |
|                                           | = 2571.43 (minimum)                                                   |  |

Hence, the minimum is Rs 2571.43.

27. We have,  $y = 2\sqrt{x}$ . x = 0 and x = 1.



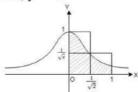
 $\therefore$  Area of shaded region,  $A = \int_0^1 (2\sqrt{x}) dx$ 

$$= 2 \cdot \left[ \frac{x^{3/2}}{3} \cdot 2 \right]_{0}^{1}$$

$$= 2 \left( \frac{2}{3} \cdot 1 - 0 \right) = \frac{4}{3} \text{ sq units}$$

OR

$$As, y = e^{-x^2}$$



since,  $x^2 \le x$  when  $x \in [0, 1]$   $\Rightarrow -x^2 \ge -x$ 

$$\Rightarrow -x^2 \ge -x$$

$$\Rightarrow e^{-x^2} \ge e^{-x}$$

$$\therefore \int_0^1 e^{-x^2} dx \ge \int_0^1 e^{-x} dx$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} S \ge -(e^{-x})_0^1 = 1 - \frac{1}{e} \dots (1)$$

Also,  $\int_0^1 e^{-x^2} dx \le$  Area of the two rectangles

$$\leq \left(1 \times \frac{1}{\sqrt{2}}\right) + \left(1 - \frac{1}{\sqrt{2}}\right) \times \frac{1}{\sqrt{e}}$$

$$\leq \left(1 \times \frac{1}{\sqrt{2}}\right) + \left(1 - \frac{1}{\sqrt{2}}\right) \times \frac{1}{\sqrt{e}}$$

$$\leq \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left( 1 - \frac{1}{\sqrt{2}} \right) \dots (2)$$

From (1) and (2), we conclude that

$$1 - \frac{1}{e} \le S \le \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left( 1 - \frac{1}{\sqrt{2}} \right)$$

If S be the area of the region enclosed by  $y = e^{-x^2}$ , y = 0 and x = 1, then

$$1 - \frac{1}{e} \le S \le \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{e}} \left( 1 - \frac{1}{\sqrt{2}} \right)$$

28. Given that the direction ratios of the lines are proportional to 2:3:6 and 1:2:2.

Let us denote the lines in the form of vectors as  $\vec{A}$  and  $\vec{B}$ .

Suppose we write the vectors:

$$\Rightarrow \vec{A} = 2\vec{i} + 3\vec{j} + 6\vec{k}$$

$$\Rightarrow \vec{B} = 1\vec{i} + 2\vec{j} + 2\vec{k}$$

We know that the angle between the vectors  $a_1\vec{i} + b_1\vec{j} + c_1\vec{k}$  and  $a_2\vec{i} + b_2\vec{j} + c_2\vec{k}$  is given by:

$$\alpha = \cos^{-1} \left( \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}} \right)$$

$$\Rightarrow \alpha = \cos^{-1}\left(\frac{(2\times1) + (3\times2) + (6\times2)}{\sqrt{2^2 + 3^2 + 6^2}\sqrt{1^2 + 2^2 + 2^2}}\right)$$

$$\Rightarrow \alpha = \cos^{-1} \left( \frac{2+6+12}{\sqrt{4+9+36}\sqrt{1+4+4}} \right)$$

$$\Rightarrow \alpha = \cos^{-1}\left(\frac{20}{\sqrt{49}\sqrt{9}}\right)$$

$$\Rightarrow \alpha = \cos^{-1}\left(\frac{20}{7\times3}\right)$$

$$\Rightarrow \alpha = \cos^{-1}\left(\frac{20}{21}\right)$$

Hence the required acute angle between the two vectors is given by  $\cos^{-1}\left(\frac{20}{21}\right)$ .

OR

Vector equation of the given line:

Let the position vectors of A and B be  $\vec{r}_1$  and  $r_2$  respectively. Then

$$\vec{r}_1 = 2\hat{i} - \hat{j} + 4\hat{k} \text{ and } r_2 = \hat{i} + \hat{j} - 2\hat{k}$$

$$\therefore \quad (\vec{r}_2 - \vec{r}_1) = (\hat{i} + \hat{j} - 2\hat{k}) - (2\hat{i} - \hat{j} + 4\hat{k}) = (-\hat{i} + 2\hat{j} - 6\hat{k})$$

: the vector equation of the line AB is

$$\vec{r} = \vec{r}_1 + \lambda (\vec{r}_2 - \vec{r}_1)$$
 for some scalar,  $\lambda$ ,

i.e., 
$$\vec{r} = (2\vec{i} - \vec{j} + 4\vec{k}) + \lambda(-\vec{i} + 2\vec{j} - 6\vec{k})$$
 ...(i)

Cartesian equations of the given line:

Taking  $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$  equation (i) becomes

$$(x\hat{i} + y\hat{j} + z\hat{k}) = (2\hat{i} - \hat{j} + 4\hat{k}) + \lambda(-\hat{i} + 2\hat{j} - 6\hat{k})$$

$$\Leftrightarrow (x\hat{i} + y\hat{j} + z\hat{k}) = (2 - \lambda)\hat{i} + (2\lambda - 1)\hat{j} + (4 - 6\lambda)\hat{k}$$

$$\Leftrightarrow x = 2 - \lambda, y = 2\lambda - 1 \text{ and } z = 4 - 6\lambda$$

$$\Leftrightarrow \frac{x-2}{-1} = \frac{y+1}{2} = \frac{z-4}{-6} = \lambda$$

Hence,  $\frac{x-2}{-1} = \frac{y+1}{2} = \frac{z-4}{-6}$  are the Cartesian equations of the given line.

$$29. \int_{1}^{5} |x - 11 + 1x - 21 + 1x - 4| dx$$

$$= \int_{1}^{2} (5 - x) dx + \int_{1}^{4} (x + 1) dx + \int_{1}^{5} (3x - 7) dx$$

$$= \left[ 5x - \frac{x^{2}}{2} \right]_{1}^{2} + \left[ \frac{x^{2}}{2} + x \right]_{2}^{4} + \left[ \frac{3x^{2}}{2} - 7x \right]_{4}^{5}$$

$$= \frac{7}{2} + 8 + \frac{13}{2} = 18$$

OR

Using additivity property of integration, we can write integral as,

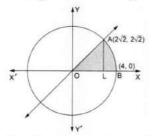
$$\int_{1}^{4} f(x)dx = \int_{1}^{4} f(x)dx + \int_{2}^{4} f(x)dx$$

$$\Rightarrow \int_{1}^{4} f(x) dx = \int_{1}^{2} (2x + 8) dx + \int_{2}^{4} 6x dx$$
 [Using the definition of f(x)]

$$\Rightarrow \int_{1}^{4} f(x) dx = \left[ x^{2} + 8x \right]_{1}^{2} + \left[ 3x^{2} \right]_{2}^{4}$$
$$= \left[ (4+16) - (1+8) \right] + \left[ 48 - 12 \right] = 47$$

30. The given circle is 
$$x^2 + y^2 = 16$$
 ...(i)

The given line is y = x ...(ii)



Putting y = x from (ii) into (i), we get

$$2x^2 = 16 \iff x^2 = 8 \iff x = 2\sqrt{2}$$
 [ : x is +ve in the first quad.}

Thus, the point of intersection of (i) and (ii) in the first quadrant is  $A(2\sqrt{2}, 2\sqrt{2})$ 

Draw AL perpendicular on the x-axis

Therefore required area of region = (area of region OLA) + area of region(LBAL).

$$= \int_{0}^{2\sqrt{2}} x dx + \int_{2\sqrt{2}}^{4} \sqrt{16 - x^{2}} dx$$

$$= \left[\frac{x^2}{2}\right]_0^{2\sqrt{2}} + \left[\frac{x\sqrt{16-x^2}}{2} + \frac{16}{2}\sin^{-1}\frac{x}{4}\right]_{2\sqrt{2}}^4$$

$$= \frac{1}{2}\left[(2\sqrt{2})^2 - 0\right] + \left[\left(0 + 8\sin^{-1}1\right) - \left(4 + 8\sin^{-1}\frac{1}{\sqrt{2}}\right)\right]$$

$$= \left[4 + \left(8 \times \frac{\pi}{2}\right) - 4 - \left(8 \times \frac{\pi}{4}\right)\right] = (2\pi) \text{ sq units.}$$

31. We have

$$y\sqrt{x^2+1} = \log\left(\sqrt{x^2+1} - x\right)$$

Differentiating both sides, we get y.  $\frac{1}{2\sqrt{x^2+1}}(2x) + \sqrt{x^2+1} \cdot \frac{dy}{dx}$ 

$$= \frac{1}{\sqrt{x^2 + 1} - x} \left[ \frac{1(2x)}{2\sqrt{x^2 + 1}} - 1 \right]$$

$$\Rightarrow \frac{xy}{\sqrt{x^2+1}} + \sqrt{x^2+1} \cdot \frac{dy}{dx} = \frac{1}{\sqrt{x^2+1}-x} \left[ \frac{x-\sqrt{x^2+1}}{\sqrt{x^2+1}} \right]$$

$$\Rightarrow \frac{xy + \left(x^2 + 1\right)}{\sqrt{x^2 + 1}} \frac{dy}{dx} = \frac{-\left(\sqrt{x^2 + 1} - x\right)}{\left(\sqrt{x^2 + 1} - x\right)\sqrt{x^2 + 1}}$$

$$\Rightarrow xy + \left(x^2 + 1\right)\frac{dy}{dx} = -1$$

$$\Rightarrow \left(x^2 + 1\right) \frac{dy}{dx} + xy + 1 = 0$$

Section D

32. We have, 
$$A = \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$$
,  $B = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ 

$$\therefore BA = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix} = 6I$$

$$\therefore B^{-1} = \frac{A}{6} = \frac{1}{6} A = \frac{1}{6} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix}$$

Also, x - y = 3, 2x + 3y + 4z = 17 and y + 2z = 7

$$\Rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix}$$

$$= \frac{1}{6} \begin{bmatrix} 2 & 2 & -4 \\ -4 & 2 & -4 \\ 2 & -1 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 17 \\ 7 \end{bmatrix} \text{ [using Eq. (i)]}$$

$$= \frac{1}{6} \begin{bmatrix} 6+34-28\\ -12+34-28\\ 6-17+35 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 12\\ -6\\ 24 \end{bmatrix} = \begin{bmatrix} 2\\ -1\\ 4 \end{bmatrix}$$

: 
$$x = 2$$
,  $y = -1$  and  $z = 4$ 

OR

Let the three numbers be x,y and z. Then,

$$x + y + z = 6$$

$$y + 3z = 11$$

$$x + z = 2y$$

This system can be written as AX = B whose

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & -2 & 1 \end{bmatrix} X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} B = \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$

$$|A| = 9 \neq 0$$
  
 $A_{11} = 7, A_{12} = 3, A_{13} = -1$   
 $A_{21} = -3, A_{22} = 0, A_{23} = 3$   
 $A_{31} = 2, A_{32} = -3, A_{33} = 1$ 

$$adjA = \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{|A|} adjA = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix}$$

$$X = A^{-1}B$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$x=1, y=2, z=3$$

$$OA = 1\hat{i} - 2\hat{j} - 8\hat{k}$$

$$OB = 5\hat{i} - 0\hat{j} - 2\hat{k}$$

$$OC = 11\hat{i} + 3\hat{j} + 7\hat{k}$$

$$AB = OB - OA$$

$$=4\hat{i}+2\hat{j}+6\hat{k}$$

$$\rightarrow$$
  $\rightarrow$   $\rightarrow$ 

$$BC = OC - OB$$

$$= (6\hat{i} + 3\hat{j} + 9\hat{k})$$

$$= 3(2\hat{i} + \hat{j} + 3\hat{k})$$

$$= \frac{3}{2}(4\hat{i} + 2\hat{j} + 6\hat{k})$$

$$\xrightarrow{BC} = \frac{3}{2}AB$$

Thus  $BC \mid AB$  and one point B is common therefore A, B, C are collinear and B divides AC in 2:3.

34. For all  $x_1 x_2 \in A$ 

if  $f(x_1) = f(x_2)$  implies  $x_1 = x_2$  then f is one one

Now 
$$f(x_1) = f(x_2)$$

$$\frac{x_1 - 2}{x_1 - 3} = \frac{x_2 - 2}{x_2 - 3}$$

Cross multiplying and solving, we get

$$x_1 = x_2$$

f is one - one

$$y = \frac{(x-2)}{(x-3)}$$

$$(x-3)y=x-2$$

$$xy - 3y = x - 2$$

$$xy - x = 3y - 2$$

$$x = \frac{(3y-2)}{(y-1)}$$

$$f\left(\frac{3y-2}{y-1}\right) = y$$

Hence f is onto.

OR

i. x is greater than y, x, y  $\in$  N

For xRx x > x is not true for any  $x \in N$ .

Therefore, R is not reflexive.

Let 
$$(x, y) \in R \Rightarrow xRy$$

but y > x is not true for any  $x, y \in N$ 

Thus, R is not symmetric.

Let xRy and yRz

$$x > y$$
 and  $y > z \implies x > z$ 

$$\Rightarrow xRz$$

So, R is transitive.

ii. 
$$x + y = 10, x, y \in N$$

$$R = \{(x,y) : x+y = 10, x,y \in R\}$$

$$R = \{(1, 9), (2, 8), (3, 7), (4, 6), (5, 5), (6, 4), (7, 3), (8, 2), (9, 1)\}\ (1, 1) \notin R$$

So, R is not reflexive.

$$(x, y) \in R \Rightarrow (y, x) \in R$$

Therefore, R is symmetric.

$$(1,9) \in R, (9,1) \in R \Rightarrow (1,1) \notin R$$

Hence, R is not transitive.

## iii. Given xy, is square of an integer x, $y \in N$

$$\Rightarrow$$
 R = {(x, y) : xy is a square of an integer x, y  $\in$  N}

$$(x, x) \in R, \forall x \in N$$

As 
$$x^2$$
 is square of an integer for any  $x \in N$ 

Hence, R is reflexive.

If 
$$(x, y) \in R \Rightarrow (y, x) \in R$$

Therefore, R is symmetric.

If 
$$(x, y) \in R(y, z) \in R$$

So, xy is square of an integer and yz is square of an integer.

Let 
$$xy = m^2$$
 and  $yz = n^2$  for some m,  $n \in Z$   
 $x = \frac{m^2}{y}$  and  $z = \frac{x^2}{y}$ 

$$x = \frac{m^2}{y}$$
 and  $z = \frac{x^2}{y}$ 

$$y y$$

$$xz = \frac{m^2 n^2}{m^2}$$
 Which is square

 $xz = \frac{m^2n^2}{v^2}$ , Which is square of an integer.

So, R is transitive.

iv. 
$$x + 4y = 10, x, y \in N$$

$$R = \{(x, y) : x + 4y = 10, x, y \in N\}$$

$$R\{(2, 2), (6, 1)\}$$

$$(1, 1), (3, 3) \dots \notin R$$

Thus, R is not reflexive.

$$(6,1) \in R \text{ but } (1,6) \notin R$$

Hence, R is not symmetric.

$$(x, y) \in R \Rightarrow x + 4y = 10 \text{ but } (y, z) \in R$$

$$y + 4z = 10 \implies (x, z) \in R$$

So, R is transitive.

35. Let, 
$$I = \int \frac{\sin x \cos x}{\cos^2 x - \cos x - 2} dx$$

Put, 
$$t = \cos x$$

$$dt = -\sin x dx$$

$$I = \int \frac{(-dt)t}{t^2 - t - 2} = \int \frac{tdt}{(t+1)(t-2)}$$

Using partial fractions,

$$\frac{-t}{(t+1)(t-2)} = \frac{A}{t+1} + \frac{B}{t-2} \dots (1)$$

A(t-2) + B(t + 1) = -t  
Now put, t - 2 = 0  
Therefore, t = 2  
A(0) + B(2 + 1) = -2  

$$B = \frac{-2}{3}$$
  
Now put t + 1 = 0  
Therefore, t = -1

$$A(-1-2) + B(0) = 1$$

$$A=\frac{-1}{3}$$

Now From equation (1) we get,

$$\frac{-t}{(t+1)(t-2)} = \frac{-1}{3} \times \frac{1}{t+1} - \frac{2}{3} \times \frac{1}{t-2}$$

$$\int \frac{-t}{(t+1)(t-2)} dt = \frac{-1}{3} \int \frac{1}{t+1} - \frac{2}{3} \int \frac{1}{t-2}$$
So,

$$I = \int \frac{\sin x \cos x}{\cos^2 x - \cos x - 2} dx = \frac{-1}{3} \log|\cos x + 1| - \frac{2}{3} \log|\cos x - 2| + c$$

#### Section E

## 36. Read the text carefully and answer the questions:

An Apache helicopter of the enemy is flying along the curve given by  $y = x^2 + 7$ . A soldier, placed at (3, 7) want to shoot down the helicopter when it is nearest to him.



(i) 
$$P(x_1, y_1)$$
 is on the curve  $y = x^2 + 7 \implies y_1 = x_1^2 + 7$ 

Distance from  $p(x_1, x_1^2 + 7)$  and (3, 7)

$$D = \sqrt{(x_1 - 3)^2 + (x_1^2 + 7 - 7)^2}$$

$$\Rightarrow \sqrt{(x_1 - 3)^2 + (x_1^2)^2}$$

$$\Rightarrow D = \sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$$

(ii) 
$$D = \sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$$
  
 $D' = x_1^4 + x_1^2 - 6x_1 + 9$   

$$\frac{dD'}{dx} = 4x_1^3 + 2x_1 - 6 = 0$$

$$\frac{dD'}{dx} = 2x_1^3 + x_1 - 3 = 0$$

$$\Rightarrow (x_1 - 1)(2x_1^2 + 2x_1 + 3) = 0$$

$$x_1 = 1 \text{ and } 2x_1^2 + 2x_1 + 3 = 0 \text{ gives no real roots}$$

 $x_1 = 1$  and  $2x_1^2 + 2x_1 + 3 = 0$  gives no real roots

The critical point is (1, 8).

(iii) 
$$\frac{dD'}{dx} = 4x_1^3 + 2x_1 - 6$$
  
 $\frac{d^2D'}{dx^2} = 12x_1^2 + 2$   
 $\frac{d^2D'}{dx^2} \bigg]_{x_1 = 1} = 12 + 2 = 14 > 0$ 

Hence distance is minimum at (1, 8).

OR

$$D = \sqrt{x_1^4 + x_1^2 - 6x_1 + 9}$$

$$D = \sqrt{1 + 1 - 6 + 9} = \sqrt{5} \text{ units}$$

# 37. Read the text carefully and answer the questions:

Consider 2 families A and B. Suppose there are 4 men, 4 women and 4 children in family A and 2 men, 2 women and 2 children in family B. The recommended daily amount of calories is 2400 for a man, 1900 for a woman, 1800 for children and 45 grams of proteins for a man, 55 grams for a woman and 33 grams for children.



(i) Let F be the matrix representing the number of family members and R be the matrix representing the requirement of calories and proteins for each person. Then Men Women Children

$$F = \begin{cases} Family A \\ Family B \end{cases} \begin{bmatrix} 4 & 4 & 4 \\ 2 & 2 & 2 \end{bmatrix}$$

Calories Proteins

$$\begin{array}{c} Man \\ R = woman \\ Children \end{array} \begin{bmatrix} 2400 & 45 \\ 1900 & 55 \\ 1800 & 33 \\ \end{bmatrix}$$

(ii) The requirement of calories and proteins for each of the two families is given by the product matrix FR.

$$FR = \begin{bmatrix} 4 & 4 & 4 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2400 & 45 \\ 1900 & 55 \\ 1800 & 33 \end{bmatrix}$$

$$= \begin{bmatrix} 4(2400 + 1900 + 1800) & 4(45 + 55 + 33) \\ 2(2400 + 1900 + 1800) & 2(45 + 55 + 33) \end{bmatrix}$$

Calories Proteins

$$FR = \begin{bmatrix} 24400 & 532 \\ 12200 & 266 \end{bmatrix} Family A$$
Family B

(iii) 
$$R' = \begin{bmatrix} 2400 - 2400 \times 5\% & 45 + 45 \times 5\% \\ 1900 - 1900 \times 5\% & 55 + 55 \times 5\% \\ 1800 - 1800 \times 5\% & 33 + 33 \times 5\% \end{bmatrix}$$

$$\Rightarrow R' = \begin{bmatrix} 2400 - 120 & 45 + 2.25 \\ 1900 - 95 & 55 + 2.75 \\ 1800 - 90 & 33 + 1.65 \end{bmatrix}$$

Calories Proteins

$$Man$$
 2280 45.25   
 $\Rightarrow$  R' = Woman [ 1805 55.75 ]   
 $Children$  [ 1710 34.65 ]

OR

Since, 
$$AB = B$$
 ...(i) and  $BA = A$  ..(ii)  

$$A^2 + B^2 = A \cdot A + B \cdot B$$

$$= A(BA) + B(AB) [using (i) and (ii)]$$

## 38. Read the text carefully and answer the questions:

Akash and Prakash appeared for first round of an interview for two vacancies. The probability of Nisha's selection is  $\frac{1}{3}$  and that of Ayushi's selection is  $\frac{1}{2}$ .



(i) 
$$P(A) = \frac{1}{3}, P(A') = 1 - \frac{1}{3} = \frac{2}{3}$$

$$P(B) = \frac{1}{2}, P(b') = 1 - \frac{1}{3} = \frac{1}{2}$$

P(Both are selected) = 
$$P(A \cap B) = P(A) \cdot P(B) = \frac{1}{3} \cdot \frac{1}{2}$$

P(Both are selected) = 
$$\frac{1}{6}$$

(ii) 
$$P(A) = \frac{1}{3}, P(A') = 1 - \frac{1}{3} = \frac{2}{3}$$

$$P(B) = \frac{1}{2}, P(b') = 1 - \frac{1}{3} = \frac{1}{2}$$

P(none of them selected) = 
$$P(A' \cap B') = P(A') \cdot P(B') = \frac{2}{3} \cdot \frac{1}{2}$$

P(Both are selected) = 
$$\frac{1}{3}$$