CBSE Test Paper-04

Class - 12 Chemistry (The p - Block Elements)

- 1. Which of the following hydrides is the most acidic?
 - a. H₂S
 - b. H₂Se
 - c. H₂Te
 - d. H₂O
- 2. Which among the following forms basic oxide?
 - a. Nitrogen
 - b. Antimony
 - c. Phosphorous
 - d. Bismuth
- 3. Of the following hydrides which is the strongest reducing agent?
 - a. PH₃
 - b. AsH₃
 - c. BiH₃
 - d. NH₃
- 4. Fluorine reacts with H₂S to produce
 - a. SF₆ and HF
 - b. SF₄ and HF
 - c. SF_6 , S and HF
 - d. SF_2 and HF_4
- 5. Bleaching powder is treated with CO_2
 - a. It absorbs the gas
 - b. CaO is formed
 - c. CaCl₂ is formed
 - d. $CaCO_3$ and Cl_2 is formed
- 6. Balance the following equation: $XeF_6 + H_2O
 ightarrow XeO_2F_2 + HF$.

- 7. Which is the strongest oxidizing agent among ClO_4^- , $\ BrO_4^-$ and IO_4^- ? Given Reduction potentials E° for ClO_4^- , BrO_4^- and IO_4^- are 1.19, 1.74 and 1.65 V respectively.
- 8. Give he disproportionation reaction of H_3PO_3 .
- 9. Halogens have maximum negative electron gain enthalpy in the respective periods of the periodic table. Why?
- 10. Complete the following reactions:

i.
$$C_2H_4+O_2
ightarrow$$

ii.
$$4Al+3O_2
ightarrow$$

- 11. What happens when sulphur dioxide is passed through an aqueous solution of Fe (III) salt?
- 12. Draw the structure of XeF₄.
- 13. Draw the structure of H_3PO_2 .
- 14. Why is $K_{a2} \le K_{a1}$ for H_2SO_4 in water?
- 15. How would you account for the following:
 - i. NH_3 is a stronger base than PH_3
 - ii. Sulphur has a greater tendency for catenation than oxygen.
 - iii. $\,F_2$ is a stronger oxidizing agent than \rm Cl_2

CBSE Test Paper-04

Class - 12 Chemistry (The p - Block Elements) Solutions

1. c. H₂Te

Explanation: H_2 Te. Acidic strength increases from H_2 O to H_2 Te. This is because the dissociation energies decreases as bond length of M-H increases from oxygen and tellurium.

2. d. Bismuth

Explanation: As we move down the group in periodic table, metallic character increases so Bi is a metal thus its oxide is basic.

3. c. BiH₃

Explanation: The reducing character of the hydrides of Group 15 elements increases from NH_3 to BiH_3 (Bismuthine) because the reducing character depends upon the stability of the hydride. The greater the unstability of hydride, the greater is its reducing character. Since the BiH_3 is least stable (because the size of a central atom is greatest & therefore its tendency to form stable covalent bond with small hydrogen atom decreases, as a result, the bond strength decreases) in this series, BiH_3 is a strongest reducing agent.

4. a. SF_6 and HF

Explanation: $4F_2 + \ H_2S
ightarrow SF_6 + \ 2HF$

5. d. $CaCO_3$ and Cl_2 is formed

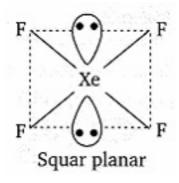
Explanation: $CaCO_3$ and Cl_2 is produced when Bleaching powder is treated with CO_2 .

$$Ca(OCl)_2 \ + \ CO_2
ightarrow CaCO_3 \ + \ Cl_2 \uparrow$$

- 6. Balanced equation: $XeF_6 + H_2O
 ightarrow XeO_2F_2 + 4HF$
- 7. Higher the value of reduction potentials, stronger is the oxidising behaviour. Therefore, BrO_4^- is the strongest oxidizing agent.

8. H_3PO_3 on heating undergoes self-oxidation-reduction

$$4H_3\overset{+3}{P}O_3 o P\overset{-3}{H_3} + 3H_3\overset{+5}{P}O_4 \ phosphorons \ acid \ acid$$


9. Halogens have the smallest size in their respective periods and therefore high effective nuclear charge. As a consequence, they readily accept one electron to an acquine noble gas electronic configuration.

10. i.
$$C_2H_4 + 3O_2 o 2CO_2 + 2H_2O_2$$
 $Ethane Oxygen Carbondioxide Water$
ii. $4Al + 3O_2 o 2Al_2O_3$
Aluminium $Oxygen Alumina$

11. It reduces Fe (III)salt to Fe (II) salt.

$$2\mathrm{Fe^{3^+}}$$
 + $\mathrm{SO_2}$ + $2\mathrm{H_2O} \rightarrow 2\mathrm{Fe^{2^+}}$ + $SO_4^{2^-}$ + $4\mathrm{H^+}$

12. The square planar structure of XeF_4 is shown below:

13. The phosphorus acid is a dibasic acid having an oxidation state of P = +3 as shown below;

$$H \xrightarrow{\begin{array}{c} O \\ \parallel \\ P \\ \end{array}} OH$$

14.
$$H_2SO_{4(aq)} + H_2O_{(l)} \rightarrow H_3O_{(aq)}^+ + HSO_{4(aq)}^-; \ K_{a_1} > 10$$
 $HSO_4^- + H_2O \rightarrow H_3O^+ + SO_4^{2-}, \ K_{a_2} = 1.2 \times 10^2$
It can be noticed that $K_{a_1} >> K_{a_2}$.

This is because a neutral ${\rm H_2SO_4}$ has a much higher tendency to lose a proton than the negatively charged HSO_4^- . Thus, the former is a much stronger acid than the latter.

15. i. Due to the presence of lone pair of electrons on the centre atom both NH_3 and PH_3 are Lewis Bases. When NH_3 or PH_3 accepts a proton, an additional N - H or P - H bond is formed.

$$H_3N + H^+ \rightarrow NH_4^+, H_3P + H^+ \rightarrow PH_4^+$$

Due to smaller size of N than P, N - H bond thus formed is much stronger than P - H bond. As a result NH_3 has more tendency than PH_3 to accept a proton. Therefore, NH_3 is a stronger base than PH_3 .

- ii. The property of catenation depends upon the strength of the element element bond. Since sulphur S S bond strength is much more than O O bond strength. So sulphur has greater tendency for catenation than oxygen.
- iii. Since F_2 has smaller size than Cl_2 and there is absence of d-orbital in fluorine, that's why F_2 is stronger oxidizing agent than Cl_2 .