Exercise 10.6

Q1E

Given ellipse with eccentricity $\frac{1}{2}$, directrix x = 4

$$\Rightarrow e = \frac{1}{2}, d = 4$$

we know
$$r = \frac{ed}{1 \pm e \cos \theta}$$

$$\Rightarrow r = \frac{\frac{1}{2}(4)}{1 \pm \frac{1}{2}\cos\theta}$$
$$= \frac{2}{1 \pm \frac{1}{2}\cos\theta}$$

$$= \frac{4}{2 \pm \cos \theta}$$

Q2E

Given parabola with directrix x = -3

$$\Rightarrow e = 1, d = -3$$

we know
$$r = \frac{ed}{1 \pm e \cos \theta}$$

$$\Rightarrow r = \frac{-3}{1 \pm \cos \theta}$$

Q3E

Consider the hyperbola with eccentricity 1.5 and directrix y=2

That is
$$e = 1.5, d = 2$$

Always, a polar equation of conic with eccentricity e and the directrix y = d is

$$r = \frac{ed}{1 + e\sin\theta}$$

Therefore, the require conic (Hyperbola) is

$$r = \frac{(1.5)2}{1 + (1.5)\sin\theta}$$

$$r = \frac{3}{1 + \frac{3}{2}\sin\theta}$$

$$r = \frac{6}{2 + 2\sin\theta}$$

Q4E

Given hyperbola with eccentricity 3 and directrix x = 3 $\Rightarrow e = 3, d = 3$

we know
$$r = \frac{ed}{1 \pm e \cos \theta}$$

$$\Rightarrow r = \frac{(3)3}{1 \pm (3) \cos \theta}$$

$$= \frac{9}{1 \pm 3 \cos \theta}$$

Q5E

Vertex of the parabola is given as $(4, 3\pi/2)$

Since the focus is at origin (0, 0) so the vertex is 4 units below the focus. Therefore the directrix will be 8 units below the focus so we have d = 8. Since the eccentricity of the parabola is e = 1.

Therefore the polar equation of the parabola is given as

$$r = \frac{ed}{1 - e \sin \theta}$$
Then
$$r = \frac{8}{1 - \sin \theta}$$
 is the equation of given conic

Q6E

Vertex of an ellipse is given as $(1, \pi/2)$, and eccentricity e = 0.8Since the focus is at the origin so the vertex is 1 unit above the focus

For an ellipse we have
$$e = \frac{1}{d-1}$$
 $\Rightarrow 0.8 = \frac{1}{d-1}$ $\Rightarrow 0.8d = 1.8$ $\Rightarrow d = 2.25$

So the equation of an ellipse is
$$r = \frac{ed}{1 + e \sin \theta}$$

$$= \frac{0.8(2.25)}{1 + 0.8 \sin \theta}$$

$$= \frac{1.8}{1 + 0.8 \sin \theta} \times \frac{5}{5}$$

$$\Rightarrow r = \frac{9}{5 + 4 \sin \theta}$$

Q7E

We have the eccentricity $e = \frac{1}{2}$,

And directrix $r = 4 \sec \theta$

$$\Rightarrow r = \frac{4}{\cos \theta}$$

$$\Rightarrow r \cos \theta = 4$$

$$\Rightarrow x = 4$$

Since the directrix is right to the focus that is at the origin Then polar equation of the ellipse with d=4 is

$$r = \frac{ed}{1 + e\cos\theta}$$

$$= \frac{(1/2)(4)}{1 + (1/2)\cos\theta}$$

$$= \frac{4}{2\left(\frac{2 + \cos\theta}{2}\right)}$$

$$\Rightarrow r = \frac{4}{2 + \cos\theta}$$

Q8E

We have the eccentricity e = 3. and directrix is $r = -6\csc\theta$

$$\Rightarrow r = \frac{-6}{\sin \theta}$$
 [\csc \theta = 1/\sin \theta\]
$$\Rightarrow r \sin \theta = -6$$

$$\Rightarrow y = -6$$

Since the directrix is below the focus that is at the origin Then polar equation of the hyperbola with d = 6 is

$$r = \frac{ed}{1 - e\sin\theta}$$

$$= \frac{3(6)}{1 - 3\sin\theta}$$
Or
$$r = \frac{18}{1 - 3\sin\theta}$$

Consider the polar equation

$$r = \frac{4}{5 - 4\sin\theta}$$

divide numerator and denominator by 5, write the equation as

$$r = \frac{\left(\frac{4}{5}\right)}{1 - \left(\frac{4}{5}\right)\sin\theta}$$

A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 Or $r = \frac{ed}{1 \pm e \sin \theta}$

Represents a conic section with eccentricity e.

The conic is an ellipse if e < 1, a parabola if e = 1, or a hyperbola if e > 1.

Compare this equation with $r = \frac{\left(\frac{4}{5}\right)}{1 - \left(\frac{4}{5}\right)\sin\theta}$

$$e = \frac{4}{5}$$
, $ed = \frac{4}{5}$

(a)

Therefore, the eccentricity $e = \frac{4}{5}$.

(b)

the eccentricity

$$e = \frac{4}{5}$$
$$= 0.8 < 1$$

Therefore, the conic is an ellipse

Need to find the equation of the directrix

Take
$$ed = \frac{4}{5}$$

$$\left(\frac{4}{5}\right)d = \frac{4}{5}$$
 substitute $e = \frac{4}{5}$

d=1 Multiply on both sides by $\frac{5}{4}$

Recollect the polar equation $r = \frac{ed}{1 - e \sin \theta}$ form then the directrix is chosen to be parallel to

the polar axis as y = -d.

Substitute d = 1 in y = -d, get

$$y = -1$$

Therefore, the equation of the directrix y = -1.

(d)

Sketch the conic

Created with a trial version of Advanced Grapher - http://www.alentum.com/agrapher/

Q10E

Theorem: A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e. the conic is an ellipse if e < 1, a parabola if e = 1, or a hyperbola if e > 1.

Consider the polar equation,

$$r = \frac{12}{3 - 10\cos\theta}$$

Dividing the numerator and denominator by 3, write the equation as

$$r = \frac{12}{3 - 10\cos\theta}$$

$$= \frac{12/3}{(3/3) - (10/3)\cos\theta}$$

$$= \frac{4}{1 - (10/3)\cos\theta}$$

(a) To find the eccentricity:

If
$$r = \frac{4}{1 - (10/3)\cos\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\cos\theta}$, then $e = \frac{10}{3}$.

So, the eccentricity is 10/3.

(b) To identify the conic:

Since
$$e\left(=\frac{10}{3}\right) > 1$$
, so given conic is a Hyperbola.

(c) To find an equation of the directrix:

If
$$r = \frac{4}{1 - (10/3)\cos\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\cos\theta}$, then $ed = 4$.

Since e = 10/3, to get

$$d = \frac{4}{e}$$

$$= \frac{4}{(10/3)}$$

$$= 4 \times \frac{3}{10}$$

$$= \frac{6}{5}$$

Since in the denominator of the given equation of the conic, the sign of coefficient of $\cos heta$ is negative

So an equation of the directrix is x = -d that is

$$x = -6/5$$

When $\theta = \pi/2$:

$$r = \frac{12}{3 - 10\cos(\pi/2)}$$
$$= \frac{12}{3 - 0}$$
$$= 4$$

When $\theta = 3\pi/2$:

$$r = \frac{12}{3 - 10\cos(3\pi/2)}$$
$$= \frac{12}{3 + 0}$$
$$= 4$$

So, the vertices have polar coordinates are $(4, \pi/2), (4, 3\pi/2)$.

When $\theta = 0$

$$r = \frac{12}{3 - 10\cos 0}$$
$$= \frac{12}{3 - 10}$$
$$= -\frac{12}{7}$$

When $\theta = \pi$:

$$r = \frac{12}{3 - 10\cos\pi}$$
$$= \frac{12}{3 + 10}$$
$$= \frac{12}{13}$$

So, the x- intercepts are $\left(-\frac{12}{7},0\right), \left(\frac{12}{13},\pi\right)$.

Note that $r \to \pm \infty$ when $1 - (10/3)\cos\theta \to 0^+$ or 0^-

And $1-(10/3)\cos\theta=0$ when $\cos\theta=3/10$

Thus the asymptotes are parallel to the rays $\theta = \cos^{-1}(3/10)$.

(d)

Sketch of the graph of the hyperbola $r = \frac{12}{3 - 10\cos\theta}$ as shown below:

Q11E

$$r = \frac{2}{3 + 3\sin\theta}$$
$$= \frac{2/3}{1 + \sin\theta}$$
$$\Rightarrow e = 1, ed = \frac{2}{3}$$
$$\Rightarrow e = 1, d = \frac{2}{3}$$

The conic is a parabola.

Graph

Q12E

Theorem: A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e, the conic is an ellipse if e < 1, a parabola if e = 1, or a hyperbola if e > 1.

Consider the polar equation,

$$r = \frac{3}{2 + 2\cos\theta}$$

Dividing the numerator and denominator by 2, write the equation as

$$r = \frac{3}{2 + 2\cos\theta}$$

$$= \frac{3/2}{(2/2) + (2/2)\cos\theta}$$

$$= \frac{3/2}{1 + \cos\theta}$$

(a) To find the eccentricity:

If
$$r = \frac{3/2}{1 + \cos \theta}$$
 comparing with $r = \frac{ed}{1 \pm e \cos \theta}$, then $e = 1$.

So, the eccentricity is $\boxed{1}$.

(b) To identify the conic:

Since e = 1, so given conic is a Parabola

(c) To find an equation of the directrix:

If
$$r = \frac{3/2}{1 + \cos \theta}$$
 comparing with $r = \frac{ed}{1 \pm e \cos \theta}$, then $ed = \frac{3}{2}$.

Since e=1, to get

$$d = \frac{3/2}{e}$$
$$= \frac{3/2}{1}$$
$$= \frac{3}{2}$$

Since in the denominator of the given equation of the conic, the sign of coefficient of $\cos heta$ is positive

So an equation of the directrix is x = d that is

$$x = \frac{3}{2}$$

When $\theta = 0$:

$$r = \frac{3}{2 + 2\cos\theta}$$
$$= \frac{3}{2 + 2\cos\theta}$$
$$= \frac{3}{4}$$

When $\theta = \pi/2$:

$$r = \frac{3}{2 + 2\cos\theta}$$
$$= \frac{3}{2 + 2\cos(\pi/2)}$$
$$= \frac{3}{2}$$

So, the vertices have polar coordinates are $(0,3/4),(3/2,\pi/2)$.

Sketch of the graph of the parabola $r = \frac{3}{2 + 2\cos\theta}$ as shown below:

Q13E

Given equation is
$$r = \frac{9}{6 + 2\cos\theta}$$

Dividing the numerator and denominator by 6

$$\Rightarrow r = \frac{9/6}{1 + \frac{1}{3}\cos\theta} \Rightarrow r = \frac{3/2}{1 + \frac{1}{3}\cos\theta}$$

Comparing with $r = \frac{ed}{1 \pm e \cos \theta}$

(A) We have
$$e = 1/3$$

(B) Since
$$e = 1/3 < 1$$
 , so given conic is an ellipse

$$ed = 3/2$$
 $\Rightarrow d = 3/(2e)$
 $\Rightarrow d = \frac{2}{2/3} \Rightarrow d = 9/2$

Since in the denominator of the given equation of the conic, the sign of coefficient of $\cos \theta$ is positive.

So equation of the directrix is x = 9/2

Fig.1

Q14E

Theorem: A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e, the conic is an ellipse if e < 1, a parabola if e = 1, or a hyperbola if e > 1.

Consider the polar equation,

$$r = \frac{8}{4 + 5\sin\theta}$$

Dividing the numerator and denominator by 4, write the equation as

$$r = \frac{8}{4 + 5\sin\theta}$$

$$= \frac{8/4}{(4/4) + (5/4)\sin\theta}$$

$$= \frac{2}{1 + (5/4)\sin\theta}$$

(a) To find the eccentricity:

If
$$r = \frac{2}{1 + (5/4)\sin\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\sin\theta}$, then $e = \frac{5}{4}$.

So, the eccentricity is $\boxed{5/4}$.

(b) To identify the conic:

Since
$$e\left(=\frac{5}{4}\right) > 1$$
, so given conic is a Hyperbola.

(c) To find an equation of the directrix:

If
$$r = \frac{2}{1 + (5/4)\sin\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\sin\theta}$, then $ed = 2$.

Since e = 5/4, to get

$$d = \frac{2}{e}$$

$$= \frac{2}{(5/4)}$$

$$= 2 \times \frac{4}{5}$$

$$= \frac{8}{5}$$

Since in the denominator of the given equation of the conic, the sign of coefficient of $\sin\theta$ is positive

So an equation of the directrix is y = d that is

$$y = 8/5$$

When $\theta = \pi/2$

$$r = \frac{8}{4 + 5\sin(\pi/2)}$$
$$= \frac{8}{4 + 5}$$
$$= \frac{8}{9}$$

When $\theta = 3\pi/2$:

$$r = \frac{8}{4 + 5\sin(3\pi/2)}$$
$$= \frac{8}{4 - 5}$$
$$= -8$$

So, the vertices have polar coordinates are $\left(\frac{8}{9}, \frac{\pi}{2}\right), \left(-8, \frac{3\pi}{2}\right)$.

When $\theta = 0$:

$$r = \frac{8}{4 + 5\sin 0}$$
$$= \frac{8}{4}$$
$$= 2$$

When $\theta = \pi$:

$$r = \frac{8}{4 + 5\sin \pi}$$
$$= \frac{8}{4}$$
$$= 2$$

So, the x- intercepts are $(2,0),(2,\pi)$.

Note that $r \to \pm \infty$ when $1 + (5/4) \sin \theta \to 0^+$ or 0^-

And $1+(5/4)\sin\theta=0$ when $\sin\theta=-5/4$

Thus the asymptotes are parallel to the rays $\theta = \pi - \sin^{-1}(5/4)$.

(d)

Sketch of the graph of the hyperbola $r = \frac{8}{4 + 5\sin\theta}$ as shown below:

Q15E

Given equation is
$$r = \frac{3}{4 - 8\cos\theta}$$

Dividing the numerator and denominator by 4

$$\Rightarrow r = \frac{3/4}{1 - 2\cos\theta}$$

Comparing with
$$r = \frac{ed}{1 \pm e \cos \theta}$$

- (A) We have e = 2
 - (B) Since e = 2 > 1 , so given conic is a hyperbola

(C) We have
$$ed = 3/4$$
 $\Rightarrow d = 3/(4e)$
 $\Rightarrow d = 3/8$

Since in the denominator of the given equation of the conic, the sign of coefficient of $\cos\theta$ is negative

So equation of directrix is x = -3/8

(D) Now we sketch the conic

Q16E

Theorem: A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e, the conic is an ellipse if e < 1, a parabola if e = 1, or a hyperbola if e > 1.

Consider the polar equation,

$$r = \frac{10}{5 - 6\sin\theta}$$

Dividing the numerator and denominator by 5, write the equation as

$$r = \frac{10}{5 - 6\sin\theta}$$

$$= \frac{10/5}{(5/5) - (6/5)\sin\theta}$$

$$= \frac{2}{1 - (6/5)\sin\theta}$$

(a) To find the eccentricity:

If
$$r = \frac{2}{1 - \left(6/5\right)\sin\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\sin\theta}$, then $e = \frac{6}{5}$.

So, the eccentricity is 6/5

(b) To identify the conic:

Since $e\left(=\frac{6}{5}\right) > 1$, so given conic is a Hyperbola

(c) To find an equation of the directrix:

If
$$r = \frac{2}{1 - (6/5)\sin\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\sin\theta}$, then $ed = 2$.

Since e = 5/4, to get

$$d = \frac{2}{e}$$

$$= \frac{2}{(6/5)}$$

$$= 2 \times \frac{5}{6}$$

$$= \frac{5}{3}$$

Since in the denominator of the given equation of the conic, the sign of coefficient of $\sin heta$ is negative

So an equation of the directrix is y = -d that is

$$y = -5/3$$

When $\theta = \pi/2$:

$$r = \frac{10}{5 - 6\sin(\pi/2)}$$
$$= \frac{10}{5 - 6}$$
$$= -10$$

When $\theta = 3\pi/2$:

$$r = \frac{10}{5 - 6\sin(3\pi/2)}$$
$$= \frac{10}{5 + 6}$$
$$= \frac{10}{11}$$

So, the vertices have polar coordinates are $\left(-10, \frac{\pi}{2}\right), \left(\frac{10}{11}, \frac{3\pi}{2}\right)$.

When
$$\theta = 0$$
:

$$r = \frac{10}{5 - 6\sin 0}$$
$$= \frac{10}{5}$$
$$= 2$$

When $\theta = \pi$

$$r = \frac{10}{5 - 6\sin \pi}$$
$$= \frac{10}{5}$$
$$= 2$$

So, the x- intercepts are $(2,0),(2,\pi)$.

Note that $r \to \pm \infty$ when $1 - (6/5) \sin \theta \to 0^+$ or 0^-

And $1-(6/5)\sin\theta=0$ when $\sin\theta=5/6$

Thus the asymptotes are parallel to the rays $\theta = \sin^{-1}(5/6)$.

(d)

Sketch of the graph of the hyperbola $r = \frac{10}{5 - 6\sin\theta}$ as shown below:

Consider the polar equation,

$$r = \frac{1}{1 - 2\sin\theta}$$

Theorem: A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e. the conic is an ellipse if e < 1, a parabola if e = 1, or a hyperbola if e > 1.

(a)

To find the eccentricity:

If
$$r = \frac{1}{1 - 2\sin\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\sin\theta}$, then $e = 2$.

So, the eccentricity is $\boxed{2}$.

Since e(=2)>1, so given conic is a hyperbola.

To find an equation of the directrix:

If
$$r = \frac{1}{1 - 2\sin\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\sin\theta}$, then $ed = 1$.

Since e=2, to get

$$d = \frac{1}{e}$$
$$= \frac{1}{2}$$

Since in the denominator of the given equation of the conic, the sign of coefficient of $\sin heta$ is negative

So an equation of the directrix is y = -d that is

$$y = -1/2$$

When $\theta = \pi/2$

$$r = \frac{1}{1 - 2\sin(\pi/2)}$$
$$= -1$$

When $\theta = 3\pi/2$

$$r = \frac{1}{1 - 2\sin\left(3\pi/2\right)}$$
$$= \frac{1}{3}$$

So, the vertices have polar coordinates are $\left(-1,\frac{\pi}{2}\right),\left(\frac{1}{3},\frac{3\pi}{2}\right)$.

When $\theta = 0$:

$$r = \frac{1}{1 - 2\sin 0}$$
$$= 1$$

When $\theta = \pi$:

$$r = \frac{1}{1 - 2\sin\pi}$$
$$= 1$$

So, the x- intercepts are $(1,0),(1,\pi)$

Note that $r \to \pm \infty$ when $1 - 2\sin\theta \to 0^+$ or 0^-

And $1-2\sin\theta=0$ when $\sin\theta=1/2$

Thus the asymptotes are parallel to the rays $\theta = \pi/6$ and $\theta = 5\pi/6$.

Sketch of the graph of the hyperbola $r = \frac{1}{1 - 2\sin\theta}$ as shown below:

(b)

Since this conic is rotated counterclockwise about the origin through an angle $\frac{3\pi}{4}$, the equation of the rotated hyperbola by replacing θ with $\theta - \frac{3\pi}{4}$ in the equation given in

$$r = \frac{1}{1 - 2\sin\theta}$$

So, the new equation is

$$r = \frac{1}{1 - 2\sin\left(\theta - \frac{3\pi}{4}\right)}$$

Sketch of the graph of the hyperbola $r = \frac{1}{1 - 2\sin\left(\theta - \frac{3\pi}{4}\right)}$ as shown below:

Q18E

Theorem: A polar equation of the form

$$r = \frac{ed}{1 \pm e \cos \theta}$$
 or $r = \frac{ed}{1 \pm e \sin \theta}$

represents a conic section with eccentricity e. the conic is an ellipse if e < 1, a parabola if e = 1, or a hyperbola if e > 1.

Consider the polar equation,

$$r = \frac{4}{5 + 6\cos\theta}$$

Dividing the numerator and denominator by 5, write the equation as

$$r = \frac{4}{5 + 6\cos\theta} = \frac{4/5}{(5/5) + (6/5)\cos\theta} = \frac{4/5}{1 + (6/5)\cos\theta}$$

If
$$r = \frac{4/5}{1 + (6/5)\cos\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\cos\theta}$, then $e = \frac{6}{5}$.

So, the eccentricity is $\frac{6}{5}$.

Since e(=6/5) > 1, so given conic is a hyperbola.

To find an equation of the directrix:

If
$$r = \frac{4/5}{1 + (6/5)\cos\theta}$$
 comparing with $r = \frac{ed}{1 \pm e\cos\theta}$, then $ed = \frac{4}{5}$.

Since
$$e = \frac{6}{5}$$
, to get

$$d = \frac{4/5}{e}$$
$$= \frac{4/5}{6/5}$$
$$= \frac{4}{6}$$
$$= \frac{2}{2}$$

Since in the denominator of the given equation of the conic, the sign of coefficient of $\cos heta$ is positive

So an equation of the directrix is x = d that is

$$x = \frac{2}{3}$$

When $\theta = \pi/2$

$$r = \frac{4}{5 + 6\cos\left(\pi/2\right)}$$
$$= \frac{4}{5}$$

When $\theta = 3\pi/2$:

$$r = \frac{4}{5 + 6\cos(3\pi/2)}$$
$$= \frac{4}{5}$$

So, the vertices have polar coordinates are

$$\left(\frac{4}{5},\frac{\pi}{2}\right),\left(\frac{4}{5},\frac{3\pi}{2}\right)$$

When $\theta = 0$:

$$r = \frac{4}{5 + 6\cos 0}$$
$$= \frac{4}{5 + 6}$$
$$= \frac{4}{11}$$

When $\theta = \pi$:

$$r = \frac{4}{5 + 6\cos\pi}$$
$$= \frac{4}{5 - 6}$$
$$= -4$$

So, the x- intercepts are

$$\left(\frac{4}{11},0\right),\left(-4,\pi\right)$$

Note that $r \to \pm \infty$ when $1 + (6/5)\cos\theta \to 0^+$ or 0^-

And
$$1+(6/5)\cos\theta=0$$
 when $\cos\theta=-5/6$

Thus the asymptotes are parallel to the rays $\theta = \cos^{-1}(-5/6)$.

Sketch of the graph of the hyperbola $r = \frac{4}{5 + 6\cos\theta}$ as shown below:

Since this conic is rotated counterclockwise about the origin through an angle $\frac{\pi}{3}$, the equation of the rotated hyperbola by replacing θ with $\theta - \frac{\pi}{3}$ in the equation given in

$$r = \frac{4}{5 + 6\cos\theta}$$

So, the new equation is

$$r = \frac{4}{5 + 6\cos\left(\theta - \frac{\pi}{3}\right)}$$

Sketch of the graph of the hyperbola $r = \frac{4}{5 + 6\cos\left(\theta - \frac{\pi}{3}\right)}$ as shown below:

Given equation is
$$r = \frac{e}{(1 - e \cos \theta)}$$

We sketch the conic with e = 0.4, 0.6, 0.8 and 1.0 on a common screen.

We see that ellipse is nearly circular when e is close to 0 and becomes more elongated as e reaches close to 1 but less than 1 and for e = 1, the curve becomes a parabola.

Q20E

(A) Given equation is
$$r = \frac{ed}{(1 + e \sin \theta)}$$

We sketch the conics for e = 1 and d = 0.2, 0.4, 0.6, 0.8, 1.0 Respectively on the common screen

We see that as d increases the opening of the parabola increases.

(B) Now we sketch the conics for d = 1 and e = 0.2, 0.4, 0.6, 0.8, 1.

We see that as $e \to o^+$, the curve becomes more circular and as $e \to 1^-$ the curve becomes more elongated and at e = 1 curve becomes a parabola.

Q21E

In figure there is a conic with eccentricity e, directrix x=-d and focus at the origin. Let P be any point on the conic then ratio of distance of P from the directrix to the distance of P from the focus will be constant

$$\frac{|PF|}{|Pl|} = e$$

$$\begin{bmatrix}
\operatorname{In} \triangle PQF \\
\angle PFQ = \pi - \theta \\
\operatorname{then} |QF| = r \cos(\pi - \theta)
\end{bmatrix}$$

$$\Rightarrow |PF| = e |Pl|$$

We have
$$|PF| = r$$

And $|PI| = d - r \cos(\pi - \theta)$ $[|QF| = r \cos(\pi - \theta)]$
Then

$$\Rightarrow r = e \left[d - r \cos(\pi - \theta) \right]$$

$$= ed + er \cos \theta$$

$$\Rightarrow r \left(1 - e \cos \theta \right) = ed$$

$$\Rightarrow r = \frac{ed}{1 - e \cos \theta}$$

This is the equation of conic.

Q22E

In figure there is a conic with eccentricity e, directrix y = d and focus at the origin Let P be any point on the conic such that |PF| = r

Then
$$\frac{|PF|}{|Pl|} = e$$

 $\Rightarrow r = e|Pl|$ (1)

In triangle PFQ,
$$\angle PFQ = \theta \\ |PF| = r$$
 Then $|PQ| = r \sin \theta$ And so $|Pl| = d - r \sin \theta$

Then from (1) we have
$$r = e \left(d - r \sin \theta \right)$$
$$\Rightarrow r \left(1 + e \sin \theta \right) = ed$$
$$\Rightarrow r = \frac{ed}{\left(1 + e \sin \theta \right)}$$

This is the equation of conic.

Q23E

In figure there is a conic with eccentricity e, directrix y = -d and focus at the origin.

Let P be any point on the conic and |PF| = r

Then In triangle PFQ,
$$\begin{aligned} |PQ| &= r \sin \left(2\pi - \theta \right) \\ |PI| &= d - r \sin \left(2\pi - \theta \right) \\ &= d + r \sin \theta \end{aligned}$$
 Since $\left(\sin \left(2\pi - \theta \right) = - \sin \theta \right)$

We have
$$\frac{|PF|}{|PI|} = e$$

$$\Rightarrow r = e |PI|$$

$$= e (d + r \sin \theta)$$

$$\Rightarrow r (1 - e \sin \theta) = ed.$$

$$\Rightarrow r = \frac{ed}{(1 - e \sin \theta)}$$

This is the equation of conic.

Q24E

Given equations of parabolas are
$$r = c/(1+\cos\theta)$$
(1)
And $r = d/(1-\cos\theta)$ (2)

First we find the slope of the tangents to both the curves

For the first curve $r = c/(1 + \cos\theta)$

$$\Rightarrow \frac{dr}{d\theta} = \frac{-c\sin\theta}{\left(1 + \cos\theta\right)^2}$$

Then slope of the tangent to the curve $r = c/(1+\cos\theta)$ at any point is.

Let
$$(m_1) = \frac{dy}{dx} = \frac{\frac{dr}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{d\theta} \cos \theta - r \sin \theta}$$

$$= \frac{-\frac{c \sin \theta}{(1 + \cos \theta)^2} \sin \theta + \frac{c}{(1 + \cos \theta)} \cos \theta}{-\frac{c \sin \theta \cos \theta}{(1 + \cos \theta)^2} - \frac{c \sin \theta}{(1 + \cos \theta)}}$$

$$= \frac{-c \sin^2 \theta + c \cos \theta (1 + \cos \theta)}{-c \sin \theta \cos \theta - c \sin \theta (1 + \cos \theta)}$$

$$= \frac{\cos^2 \theta - \sin^2 \theta + \cos \theta}{-2 \sin \theta \cos \theta - \sin \theta} = \frac{\cos 2\theta + \cos \theta}{-(\sin 2\theta + \sin \theta)}$$

$$\Rightarrow m_1 = \frac{\cos 2\theta + \cos \theta}{-(\sin 2\theta - \sin \theta)} \qquad ---(3)$$

Now the second curve is
$$r = \frac{d}{1 - \cos \theta}$$

$$\Rightarrow \frac{dr}{d\theta} = \frac{d \sin \theta}{(1 - \cos \theta)^2}$$

Then slope of the tangent to the curve at any point is

$$(Let) \quad m_2 = \frac{dy}{dx} = \frac{\frac{dr}{d\theta} \sin \theta + r \cos \theta}{\frac{dr}{(1 - \cos \theta)^2} + \frac{d \cos \theta}{(1 - \cos \theta)}}$$

$$= \frac{\frac{d \sin^2 \theta}{(1 - \cos \theta)^2} + \frac{d \cos \theta}{(1 - \cos \theta)}}{\frac{d \sin \theta}{(1 - \cos \theta)^2} \cos \theta - \frac{d}{(1 - \cos \theta)} \sin \theta}$$

$$= \frac{d \sin^2 \theta + d \cos \theta (1 - \cos \theta)}{d \sin \theta \cos \theta - d \sin \theta (1 - \cos \theta)}$$

$$= \frac{d \left(\sin^2 \theta - \cos^2 \theta + \cos \theta\right)}{d \sin \theta (\cos \theta - 1 + \cos \theta)}$$

$$= \frac{\cos \theta - \cos 2\theta}{2 \sin \theta \cos \theta - \sin \theta}$$

$$\Rightarrow m_2 = \frac{\cos \theta - \cos 2\theta}{\sin 2\theta - \sin \theta} \qquad ---(4)$$

Both the curves will intersect at right angle when $m_1m_2=-1$ So from (3) and (4) we have

From (3) and (4) we have
$$m_1 m_2 = \frac{\cos 2\theta + \cos \theta}{-(\sin 2\theta + \sin \theta)} \cdot \frac{\cos \theta - \cos 2\theta}{(\sin 2\theta - \sin \theta)}$$

$$= \frac{\cos^2 2\theta - \cos^2 \theta}{\sin^2 2\theta - \sin^2 \theta}$$

$$= \frac{(1 - \sin^2 2\theta) - (1 - \sin^2 \theta)}{\sin^2 2\theta - \sin^2 \theta}$$

$$= \frac{1 - \sin^2 2\theta - 1 + \sin^2 \theta}{(\sin^2 2\theta - \sin^2 \theta)}$$

$$= \frac{-(\sin^2 2\theta - \sin^2 \theta)}{(\sin^2 2\theta - \sin^2 \theta)}$$

$$\Rightarrow \boxed{m_1 m_2 = -1}$$

Thus both the curves intersect at right angle.

Q25E

Recollect the polar equation of an ellipse with focus at the origin, semimajor axis a, eccentricity e, and directrix x = d can be written in the form

$$r = \frac{a(1-e^2)}{1+e\cos\theta}$$

The orbit of Mars around the sun is an ellipse with eccentricity e=0.093 and semimajor axis $a=2.28\times10^8$ km.

Find the polar equation for the orbit.

$$r = \frac{a(1 - e^2)}{1 + e \cos \theta}$$

$$= \frac{(2.28 \times 10^8) [1 - (0.093)^2]}{1 + 0.093 \cos \theta}$$

$$= \frac{(2.28 \times 10^8) (0.991351)}{1 + 0.093 \cos \theta}$$

$$= \frac{2.26028028 \times 10^8}{1 + 0.093 \cos \theta}$$

$$= \frac{2.26 \times 10^8}{1 + 0.093 \cos \theta}$$
 Approximately

So, the polar equation for the orbit is

$$r = \frac{2.26 \times 10^8}{1 + 0.093 \cos \theta}$$

Q26E

Recollect the polar equation of an ellipse with focus at the origin, semimajor axis a, eccentricity e, and directrix x = d can be written in the form

$$r = \frac{a(1 - e^2)}{1 + e\cos\theta}$$

The orbit of Jupiter around the sun is an ellipse with eccentricity e=0.048 and the length of major axis is 1.56×10^9 km.

The length of the major axis is
$$a = \frac{1.56 \times 10^9}{2}$$
 Divide by 2 So the length of semimajor axis is
$$a = \frac{1.56 \times 10^9}{2}$$
 Divide by 2 So the length of semimajor axis is

Find the polar equation for the orbit.

$$r = \frac{a(1 - e^2)}{1 + e \cos \theta}$$

$$= \frac{(0.78 \times 10^9) [1 - (0.048)^2]}{1 + 0.048 \cos \theta}$$

$$= \frac{(0.78 \times 10^9) (0.997696)}{1 + 0.048 \cos \theta}$$

$$= \frac{0.77820288 \times 10^9}{1 + 0.048 \cos \theta}$$

$$= \frac{7.78 \times 10^8}{1 + 0.048 \cos \theta}$$
 Approximately

So, the polar equation for the orbit is

$$r = \frac{7.78 \times 10^8}{1 + 0.048 \cos \theta}$$

Q27E

Given the length of major axis =
$$2a = 36.18 AU$$

 $\Rightarrow a = 18.09 AU$

And
$$e = 0.97$$

Equation of orbit is
$$r = \frac{a(1-e^2)}{1-e\cos\theta}$$

$$\Rightarrow r = \frac{18.09\left[1-(0.97)^2\right]}{1-(0.97)\cos\theta}$$

$$r \approx \frac{1.07}{1-0.97\cos\theta}$$

Maximum distance from the comet to the Sun

$$= a(1+e)$$

$$= (18.09)(1+0.97)$$

$$= 18.09 \times 1.97$$

$$= 35.64 AU.$$

Given
$$e = 0.9951$$

Length of major axis $2a = 356.5 \text{ AU}$
 $\Rightarrow a = 178.25 \text{ AU}$
Equation of the orbit is $r = \frac{a(1-e^2)}{1-e\cos\theta}$

$$\Rightarrow r = \frac{(178.25)(1-(0.9951)^2)}{1-(0.9951).\cos\theta}$$

$$\Rightarrow r \approx \frac{1.7426}{1-(0.9951)\cos\theta}$$

Maximum distance form comet to Sun = a(1-e)

$$=(178.25)(1-0.9951)$$

 $\approx 0.873 \text{ AU}$

Q29E

Given
$$e = 0.206$$

And maximum distance from the Sun = $4.6 \times 10^7 km$ =Perihelion distance from planet to Sun = a (1-e)

$$\Rightarrow a(1-e) = 4.6 \times 10^{7}$$

$$\Rightarrow a(1-0.206) = 4.6 \times 10^{7}$$

$$\Rightarrow a = \frac{4.6 \times 10^{7}}{0.794}$$

So maximum distance from the sun = a (1+e)

$$= \frac{4.6 \times 10^7}{0.794} (1 + 0.206)$$

$$\approx 7.0 \times 10^7 km$$

Q30E

Given that

Perihelion distance from the Planet to Sun =
$$4.43 \times 10^9$$
 km
 $\Rightarrow a (1-e) = 4.43 \times 10^9$
 $\Rightarrow a - ae = 4.43 \times 10^9$ --- (1)

Aphelion distance from the Planet to $Sun = 7.37 \times 10^9 \text{km}$

$$\Rightarrow a(1+e) = 7.37 \times 10^9 \text{ km}$$

$$\Rightarrow a + ae = 7.37 \times 10^9 \text{ km} \qquad ---(2)$$

Adding equation (1) and (2), we have
$$2a = 11.8 \times 10^9 \text{ km}$$

$$\Rightarrow a = 5.90 \times 10^9 \text{ km}$$
Putting this value in (1)
$$a(1-e) = 4.43 \times 10^9$$

$$5.9 \times 10^9 (1-e) = 4.43 \times 10^9$$

$$\Rightarrow 1-e = \frac{4.43}{5.9}$$

$$\Rightarrow e = 1 - \frac{4.43}{5.9}$$
Eccentricity $\Rightarrow e \approx 0.249$

Q31E

We have
$$e = 0.206$$

And $a(1-e) = 4.6 \times 10^7$
 $\Rightarrow a(1-0.206) = 4.6 \times 10^7$
 $\Rightarrow a = \frac{4.6 \times 10^7}{0.794}$

Equation of the orbit is
$$r = \frac{a\left(1-e^2\right)}{1-e\cos\theta}$$
 Then
$$\frac{dr}{d\theta} = \frac{-a\left(1-e^2\right)e\sin\theta}{\left(1-e\cos\theta\right)^2}$$

$$\Rightarrow r^2 + \left(\frac{dr}{d\theta}\right)^2 = \frac{a^2\left(1-e^2\right)^2}{\left(1-e\cos\theta\right)^2} + \frac{a^2\left(1-e\right)^2e^2\sin^2\theta}{\left(1-e\cos\theta\right)^4}$$

$$= \frac{a^2\left(1-e^2\right)^2}{\left(1-e\cos\theta\right)^4} \left(1+e^2\cos^2\theta - 2e\cos\theta + e^2\sin^2\theta\right)$$

$$= \frac{a^2\left(1-e^2\right)^2}{\left(1-e\cos\theta\right)^4} \left(1-2e\cos\theta + e^2\right) \qquad \left[\sin^2\theta + \cos^2\theta = 1\right]$$

So length of the orbit is
$$L = \int_0^{2\pi} \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2 d\theta}$$

$$\Rightarrow L = \int_0^{2\pi} a \left(1 - e^2\right) \sqrt{\frac{\left(1 - 2e\cos\theta + e^2\right)}{\left(1 - e\cos\theta\right)^4}} d\theta$$

$$\Rightarrow L = a \left(1 - e^2\right) \int_0^{2\pi} \frac{\sqrt{\left(1 - 2e\cos\theta + e^2\right)}}{\left(1 - e\cos\theta\right)^2} d\theta$$

$$\Rightarrow L = a \left(1 - e^2\right) \int_0^{2\pi} \frac{\sqrt{\left(1 - 2e\cos\theta + e^2\right)}}{\left(1 - e\cos\theta\right)^2} d\theta$$

$$\Rightarrow L = a \left(1 - e^2\right) \int_0^{2\pi} \frac{\sqrt{\left(1 - 2e\cos\theta + e^2\right)}}{\left(1 - e\cos\theta\right)^2} d\theta$$

$$\Rightarrow L \approx 4.4 \times 10^7 \left(1 - \left(0.206\right)^2\right) \int_0^{2\pi} \frac{\sqrt{1 - 2 \times 0.206\cos\theta + \left(0.206\right)^2}}{\left(1 - 0.206\cos\theta\right)^2} d\theta$$

$$\Rightarrow L \approx 4.28 \times 10^7 \int_0^{2\pi} \frac{\sqrt{1.04 - 0.412\cos\theta}}{\left(1 - 0.206\cos\theta\right)^2} d\theta$$

Let
$$F(\theta) = \frac{\sqrt{1.04 - 0.412\cos\theta}}{(1 - 0.206\cos\theta)^2}$$

For evaluating the length of orbit we use Simpson's rule with n = 20.

Then
$$\Delta \theta = \frac{2\pi}{20} = \frac{\pi}{10} \Rightarrow \frac{\Delta \theta}{3} = \frac{\pi}{30}$$

Subintervals are $[0, \pi/10]$, $[\pi/10, \pi/5]$, $[\pi/5, 3\pi/10]$,..., $[19\pi/10, 2\pi]$

Then by Simpson's rule the length of the curve is

$$L \approx 4.28 \times 10^{7} \frac{\pi}{30} \left[f(0) + 4f\left(\frac{\pi}{10}\right) + 2f\left(\frac{\pi}{5}\right) + 4f\left(\frac{3\pi}{10}\right) + \dots + 2f\left(\frac{18\pi}{10}\right) + 4f\left(\frac{19\pi}{10}\right) + f(2\pi) \right]$$

$$\Rightarrow L \approx 3.6 \times 10^{8} \text{ km}$$