CHAPTER

2.2

THE PN JUNCTION

In this chapter, N_d and N_a denotes the net donor and acceptor concentration in the individual n and p-region.

1. An abrupt silicon in thermal equilibrium at T = 300K is doped such that $E_c - E_F = 0.21$ eV in the *n*-region and $E_F - E_v = 0.18$ eV in the *p*-region. The built-in potential barrier V_{bi} is

(A) 0.69 V	(B) 0.83 V
(C) 0.61 V	(D) 0.88 V

2. A silicon pn junction at T = 300 K has $N_d = 10^{14}$ cm⁻³ and $N_a = 10^{17}$ cm⁻³. The built-in voltage is

(A) 0.63 V	(B) 0.93 V
(C) 0.026 V	(D) 0.038 V

3. In a uniformly doped GaAs junction at T = 300 K, at zero bias, only 20% of the total space charge region is to be in the p-region. The built in potential barrier is $V_{bi} = 1.20$ V. The majority carrier concentration in n-region is

(A) $1 \times 10^{16} \text{ cm}^{-3}$	(B) $4 \times 10^{16} \text{ cm}^{-3}$
(C) $1 \times 10^{22} \text{ cm}^{-3}$	(D) $4 \times 10^{22} \text{ cm}^{-3}$

Statement for Q.4–5:

An abrupt silicon pn junction at zero bias and T = 300 K has dopant concentration of $N_a = 10^{17}$ cm⁻³ and $N_d = 5 \times 10^{15}$ cm⁻³.

4.	The	Fermi	level	on	n	-side	is
----	-----	-------	-------	----	---	-------	----

(A) 0.1 eV	(B) 0.2 eV
(C) 0.3 eV	$(D) \ 0.4 \ eV$

5.	The	Fermi	level	on	p-side	is		
(A) 0.2	eV			((B)	0.1	eV
$(\mathbf{C}$) 0.4	eV			((D)	0.3	e₩

Statement for Q.6-8:

A silicon pn junction at T = 300 K with zero applied bias has doping concentrations of $N_d = 5 \times 10^{16}$ cm⁻³ and $N_a = 5 \times 10^{15}$ cm⁻³.

6. The width of depletion region extending into the *n*-region is

(A) 4×1	10^{-6} cm	(B) 3×10^{-6} cm
(C) 4×1	10^{-5} cm	$(D)3 \times 10^{\ -5} \ cm$

7. The space charge width is

(A) 0.66 V (C) 0.03 V

(A) 32×10^{-5} cm	(B) $4.5\times10^{\ -5}\ cm$
(C) 4.5×10^{-4} cm	(D) $3.2\times10^{-4}~\text{cm}$

8. In depletion region	maximum electric field $\left E_{\max} \right $	is
(A) 1×10^4 V/cm	(B) 2×10^{4} V/cm	
(C) 3×10^4 V/cm	(D) 4×10^{4} V/cm	

9. An n - n isotype doping profile is shown in fig. P2.2.9. The built-in potential barrier is $(n_i = 1.5 \times 10^{10} \text{ cm}^{-3})$

(B) 0.06	v
(D) 0.33	V

Statement for Q.10-11:

A silicon abrupt junction has dopant concentration $N_a=2 \times 10^{16}~{\rm cm}^{-3}$ and $N_d=2 \times 10^{15}~{\rm cm}^{-3}$. The applied reverse bias voltage is $V_R = 8$ V.

10.	The maximum electric	field $ E_{\text{max}} $ in depletion region is
(A)	$15\times 10^4 \ V/cm$	$(B) \ 7 \times 10^4 \ V/cm$
(C)	$3.5 imes 10^4 \ V/cm$	(D) 5×10^4 V/cm

11. The space charge region is

(A) 2.5 μm	$(B) \ 25 \ \mu m$
(C) 50 µm	$(D) \ 100 \ \mu m$

12. A uniformly doped silicon *pn* junction has $N_a = 5 \times 10^{17} \text{ cm}^{-3}$ and $N_d = 10^{17} \text{ cm}^{-3}$. The junction has a cross-sectional area of 10^{-4} cm⁻³ and has an applied reverse-bias voltage of $V_R = 5$ V. The total junction capacitance is

(A) 10 pF	(B) 5 pF	
(C) 7 pF	(D) 3.5 pF	

Statement for Q.13-14:

An ideal one-sided silicon n^+p junction has uniform doping on both sides of the abrupt junction. The doping relation is $N_d = 50 N_a$. The built-in potential barrier is $V_{bi} = 0.75$ V. The applied reverse bias voltage is $V_R = 10$.

13. The space charge width is

(A) 1.8 μm	(B) 1.8 mm
(C) 1.8 cm	(D) 1.8 m

14. The junction capacitance is

(A) $3.8 \times 10^{-9} \text{ F/cm}^2$	(B) $9.8\times10^{-9}\ F/cm^2$
(C) $2.4 \times 10^{-9} \text{ F/cm}^2$	(D) $5.7 \times 10^{-9} \text{ F/cm}^2$

15. Two p^+n silicon junction is reverse biased at $V_R = 5$ V. The impurity doping concentration in junction A are $N_a = 10^{18} \text{ cm}^{-3}$ and $N_d = 10^{-15} \text{ cm}^{-3}$, and those in junction B are $N_a = 10^{18} \text{ cm}^{-3}$ and $N_d = 10^{16} \text{ cm}^{-3}$. The ratio of the space charge width is

(A) 4.36	(B) 9.8
(C) 19	(D) 3.13

16. The maximum electric field in reverse-biased silicon pn junction is $\left| E_{\mathrm{max}} \right| = 3 \times 10^{\ \mathrm{5}}$ V/cm. The doping concentration are $N_{d}=4\times10^{16}~{\rm cm^{-3}}$ and $N_{a}=4\times10^{17}$ cm⁻³. The magnitude of the reverse bias voltage is (A) 3.6 V (B) 9.8 V

(C) 7.2 V (D) 12.3 V

17. An abrupt silicon pn junction has an applied reverse bias voltage of $V_R = 10$ V. it has dopant concentration of $N_a = 10^{18} \text{ cm}^{-3}$ and $N_d = 10^{15} \text{ cm}^{-3}$. The pn junction area is 6×10^{-4} cm². An inductance of 2.2 mH is placed in parallel with the pn junction. The resonant frequency is

(A) 1.7 MHz	c (B)	2.6	MHz
(C) 3.6 MHz	z (D)) 4.3	MHz

18. A uniformly doped silicon p^+n junction is to be designed such that at a reverse bais voltage of $V_{R} = 10$ V the maximum electric field is limited to $E_{max} = 10^6$ V/cm. The maximum doping concentration in the *n*-region is

(A) $3.2 \times 10^{19} \text{ cm}^{-3}$	(B) $32 \times 10^{17} \text{ cm}^{-3}$
(C) $6.4 \times 10^{17} \text{ cm}^{-3}$	(D) $6.4 \times 10^{19} \text{ cm}^{-3}$

19. A diode has reverse saturation current $I_s = 10^{-10}$ A and non ideality factor $\eta = 2$. If diode voltage is 0.9 V, then diode current is

(A) 11 mA	(B) 35 mA	
(C) 83 mA	(D) 143 mA	

20. A diode has reverse saturation current $I_s = 10^{-18}$ A and nonideality factor $\eta = 1.05$. If diode has current of 70 μ A, then diode voltage is

(A) 0.63 V	(B) 0.87 V
(C) 0.54 V	(D) 0.93 V

21. An ideal *pn* junction diode is operating in the forward bais region. The change in diode voltage, that will cause a factor of 9 increase in current, is

(A) 83 mV	(B) 59 mV
(C) 43 mV	(D) 31 mV

22. An *pn* junction diode is operating in reverse bias region. The applied reverse voltage, at which the ideal reverse current reaches 90% of its reverse saturation current, is

(A) 59.6 mV	$(B) \ 2.7 \ mV$
(C) 4.8 mV	(D) 42.3 mV

23. For a silicon p^+n junction diode the doping concentrations are $N_a = 10^{18}$ cm⁻³ and $N_d = 10^{16}$ cm⁻³. The minority carrier hole diffusion coefficient is $D_p = 12$ cm²/s and the minority carrier hole life time is $\tau_{p0} = 10^{-7}$ s. The cross sectional area is $A = 10^{-4}$ cm². The reverse saturation current is

24. For an ideal silicon *pn* junction diode

$$au_{no} = au_{po} = 10^{-7} ext{ s}$$

 $D_n = 25 ext{ cm}^2/ ext{s}$,
 $D_p = 10 ext{ cm}^2/ ext{s}$

The ratio of N_a/N_d , so that 95% of the current in the depletion region is carried by electrons, is

- (A) 0.34 (B) 0.034
- $(C) \ 0.83 \qquad \qquad (D) \ 0.083$

Statement for Q.25-26:

A ideal long silicon pn junction diode is shown in fig. P2.2.25–26. The n-region is doped with 10^{16} organic atoms per cm³ and the p-region is doped with 5×10^{16} boron atoms per cm³. The minority carrier lifetimes are $D_n = 23$ cm²/s and $D_p = 8$ cm²/s. The forward-bias voltage is $V_a = 0.61$ V.

Fig. P.2.2.25-26

25. The excess hole concentration is

- (A) $6.8 \times 10^{12} e^{-246x} \text{ cm}^{-3}, x \ge 0$
- (B) $6.8 \times 10^{12} e^{-246x} \text{ cm}^{-3}, x \ge 0$
- (C) $3.8 \times 10^{14} e^{-3534x}$ cm⁻³, $x \ge 0$
- (D) $3.8 \times 10^{14} e^{+3534x}$ cm⁻³, $x \ge 0$

26. The hole diffusion current density at $x = 3 \mu m$ is

- (A) 0.6 A/cm² (B) 0.6×10^{-3} A/cm²
- (C) 0.4 A/cm² (D) 0.4×10^{-3} A/cm²

27. The doping concentrations of a silicon pn junction are $N_d = 10^{16}$ cm⁻³ and $N_a = 8 \times 10^{15}$ cm⁻³. The

cross-sectional area is 10⁻³ cm². The minority carrier lifetimes are $\tau_{n0} = 1 \,\mu s$ and $\tau_{p0} = 0.1 \,\mu s$. The minority carrier diffusion coefficients are $D_n = 35 \text{ cm}^2/\text{s}$ and $D_p = 10 \text{ cm}^2/\text{s}$. The total number of excess electron in the *p*-region, if applied forward bias is $V_a = 0.5$ V, is (A) $4 \times 10^7 \text{ cm}^{-3}$ (B) $6 \times 10^{10} \text{ cm}^{-3}$ (C) $4 \times 10^{10} \text{ cm}^{-3}$ (D) $6 \times 10^7 \text{ cm}^{-3}$

28. Two ideal pn junction have exactly the same electrical and physical parameters except for the band gap of the semiconductor materials. The first has a bandgap energy of 0.525 eV and a forward-bias current of 10 mA with $V_a = 0.255$ V. The second pn junction diode is to be designed such that the diode current $I = 10 \ \mu$ A at a forward-bias voltage of $V_a = 0.32$ V. The bandgap energy of second diode would be (A) 0.77 eV (B) 0.67 eV

(11) 0.11 CV	(D) 0.01 CV
(C) 0.57 eV	(D) 0.47 eV

29. A *pn* junction biased at $V_a = 0.72$ V has DC bias current $I_{DQ} = 2$ mA. The minority carrier lifetime is 1 µs is both the *n* and *p* regions. The diffusion capacitance is in

(A) 49.3 nF	(B) 38.7 nF
(C) 77.4 nF	(D) 98.6 nF

30. A p^+n silicon diode is forward biased at a current of 1 mA. The hole life time in the *n*-region is 0.1 µs. Neglecting the depletion capacitance the diode impedance at 1 MHz is

(A) $38.7 + j12.1 \Omega$	(B) $23.5 + j7.5 \Omega$
(C) $38.7 - j12.1 \text{ m}\Omega$	(D) $23.5 - j7.5 \Omega$

31. The slope of the diffusion capacitance verses forward-bias current of a p^+n diode is 2.5×10^{-6} F/A. The hole lifetime is

(A) 1.3×10^{-7} s (B) 1.3×10^{-4} s (C) 6.5×10^{-8} s (D) 6.5×10^{-4} s

32. A silicon pn junction with doping profile of $N_a = 10^{16}$ cm⁻³ and $N_d = 10^{15}$ cm⁻³ has a cross sectional area of 10^{-2} cm². The length of the p-region is 2 mm and length of the n-region is 1 mm. The approximately series resistance of the diode is

- $(A) \ 62 \ \Omega \qquad \qquad (B) \ 43 \ \Omega$
- $(C) \ 72 \ \Omega \qquad \qquad (D) \ 81 \ \Omega$

333. A gallium arsenide pn junction is operating in reverse-bias voltage $V_R = 5$ V. The doping profile are $N_a = N_d = 10^{16}$ cm⁻³. The minority carrier life- time are $\tau_{p0} = \tau_{n0} = \tau_0 = 10^{-8} s$. The reverse-biased generation current density is $(\varepsilon_r = 13.1, n_i = 1.8 \times 10^6)$ (A) 1.9×10^{-8} A/cm² (B) 1.9×10^{-9} A/cm² (C) 1.4×10^{-8} A/cm² (D) 1.4×10^{-9} A/cm²

34. For silicon the critical electric field at breakdown is approximately $E_{crit} = 4 \times 10^5$ V/cm. For the breakdown voltage of 25 V, the maximum n-type doping concentration in an abrupt p^+n -junction is

(A) $2 \times 10^{16} \text{ cm}^{-3}$ (B) $4 \times 10^{16} \text{ cm}^{-3}$ (C) $2 \times 10^{18} \text{ cm}^{-3}$ (D) $4 \times 10^{18} \text{ cm}^{-3}$

35. A uniformly doped silicon pn junction has dopant profile of $N_a = N_d = 5 \times 10^{16}$ cm⁻³. If the peak electric field in the junction at breakdown is $E = 4 \times 10^5$ V/cm, the breakdown voltage of this junction is

(A) 35 V	(B) 30 V
(C) 25 V	(D) 20 V

36. An abrupt silicon p^+n junction has an n-region doping concentration of $N_d = 5 \times 10^{15}$ cm⁻³. The minimum n-region width, such that avalanche breakdown occurs before the depletion region reaches an ohmic contact, is ($V_B \approx 100$ V)

(A) 5.1 μm	(B) 3.6 µm
(C) 7.3 μm	(D) $6.4 \ \mu m$

37. A silicon pn junction diode has doping profile $N_a = N_d = 5 \times 10^{19} \text{ cm}^{-3}$. The space charge width at a forward bias voltage of $V_a = 0.4 \text{ V}$ is

(A) 102 A° (B) 44 A°

(C) 153 A° (D) 62 A°

38. A GaAs pn^+ junction LED has following parameters

 $D_n = 25 \text{ cm}^2/\text{s}, D_p = 12 \text{ cm}^2/\text{s}$ $N_d = 5 \times 10^{17} \text{ cm}^{-3}, N_a = 10^{16} \text{ cm}^{-3}$ $\tau_{n0} = 10 \text{ ns}, \tau_{p0} = 10 \text{ ns}$ The injection efficiency of the LED is

(A) 0.83	(B) 0.99
(C) 0.64	(D) 0.46

39. A GaAs laser has a threshold density of 500 A/cm². The laser has dimensions of $10 \,\mu\text{m} \times 200 \,\mu\text{m}$. The active region is $d_{Las} = 100 \,\text{A}^\circ$. The electron-hole recombination time at threshold is 1.5 ns. The current density of $5J_{th}$ is injected into the laser. The optical power emitted, if emitted photons have an energy of 1.43 eV, is

(A) 143 mW	(B) 71.5 mW
------------	-------------

(C) 62.3 mW (D) 124	.6 1	nW
--------------------------	-------	------	----

$$\begin{split} &= 301 \times 10^{-5} \text{ cm}, \\ &C_{T} = \frac{eA}{W} = \frac{11.7 \times 8.85 \times 10^{-14} \times 10^{-4}}{301 \times 10^{-5}} = 35 \times 10^{-12} \text{ F} \\ &\mathbf{13.} \text{ (A) } V_{bi} = V_{t} \ln \left(\frac{N_{a}N_{d}}{n_{i}^{2}} \right) \\ &0.751 = 0.0259 \ln \left(\frac{50N_{a}^{2}}{225 \times 10^{20}} \right) \\ &N_{a} = 4.2 \times 10^{15} \text{ cm}^{-3}, N_{d} = 2.1 \times 10^{17} \text{ cm}^{-3} \\ &W = \left\{ \frac{2\varepsilon_{s}(V_{bi} + V_{R})}{e} \left[\frac{1}{N_{a}} + \frac{1}{N_{a}} \right] \right\}^{\frac{1}{2}}, \\ &N_{d} >> N_{a} \implies W \approx \left[\frac{2 \ e(V_{bi} + V_{R})}{e} \left(\frac{1}{N_{a}} \right) \right]^{\frac{1}{2}} \\ &= \left[\frac{2 \times (11.7 \times 8.85 \times 10^{-4})(10.752)}{1.6 \times 10^{-19} \times 42 \times 10^{15}} \right]^{\frac{1}{2}} \\ &= 1.8 \ \mu\text{m} \\ &\mathbf{14.} \text{ (D) } C' = \left[\frac{ee \ N_{a}N_{d}}{2(V_{bi} + V_{R})(N_{a} + N_{d})} \right]^{\frac{1}{2}} \\ &= \left[\frac{16 \times 10^{-19} \times 11.7 \times 8.85 \times 10^{-4} \times 42 \times 10^{15}}{2(10 + 0.754)} \right]^{\frac{1}{2}} \\ &= \left[\frac{16 \times 10^{-19} \times 11.7 \times 8.85 \times 10^{-4} \times 42 \times 10^{15}}{2(10 + 0.754)} \right]^{\frac{1}{2}} \\ &= 5.7 \times 10^{-9} \ \text{F/cm}^{2} \\ &\mathbf{15.} \text{ (D) } W = \left\{ \frac{2\varepsilon_{s}(V_{bi} + V_{R})}{e} \left(\frac{1}{N_{a}} + \frac{1}{N_{a}} \right) \right\}^{\frac{1}{2}} \\ &\frac{W_{A}}{W_{B}} = \left[\frac{(V_{bia} + V_{R})}{(V_{bib} + R)} \frac{(N_{aA} + N_{dA})}{(N_{aB} + N_{dB})} \frac{N_{aB}N_{dB}}{N_{aA}N_{BB}} \right]^{\frac{1}{2}} \\ &V_{biA} = 0.0259 \ln \left(\frac{10^{18} \times 10^{15}}{225 \times 10^{20}} \right) = 0.754 \ V \\ &V_{biB} = 0.0259 \ln \left(\frac{10^{18} \times 10^{16}}{10^{15}} \right) \left(\frac{10^{16}}{10^{15}} \right) \right]^{\frac{1}{2}} = 3.13 \\ &\mathbf{16.} \text{ (C) } V_{bi} = V_{t} \ln \left(\frac{N_{a}N_{d}}{R_{a}^{2}} \right) \end{aligned}$$

$$\begin{split} &= 0.0259 \ln \left(\frac{4 \times 10^{16} \times 4 \times 10^{17}}{2.25 \times 10^{20}} \right) = 0.826 \text{ V} \\ &\left| E_{max} \right| = \left[\frac{2e(V_{bi} + V_R)}{\epsilon} \frac{N_a N_d}{(N_a + N_d)} \right]^{\frac{1}{2}} \\ &V_{bi} + V_R = \frac{eE_{max}^2}{2e} \left(\frac{1}{N_a} + \frac{1}{N_d} \right) \\ &= \frac{(117 \times 8.85 \times 10^{-14})(3 \times 10^5)^2}{2 \times 1.6 \times 10^{-19}} \left(\frac{1}{4 \times 10^{16}} + \frac{1}{4 \times 10^{17}} \right) \text{ V} \\ &= 8.008 \text{ V} \\ &V_R = 8.008 - 0.826 = 7.18 \text{ V} \\ &\mathbf{17. (B) } V_{bi} = V_l \ln \left(\frac{N_a N_d}{n_i^2} \right) \\ &= 0.0259 \ln \left(\frac{10^{18} \times 10^{16}}{2.25 \times 10^{20}} \right) = 0.754 \text{ V} \\ &C' = \left[\frac{eeN_a N_d}{2(V_l + V_R)(N_a + N_d)} \right]^{\frac{1}{2}} \\ &For \ N_a >> N_d \ , \ C' = \left[\frac{eeN_d}{2(V_{bi} + V_R)} \right]^{\frac{1}{2}} \\ &= \left[\frac{1.6 \times 10^{-19} \times 11.7 \times 8.85 \times 10^{-4} \times 10^{15}}{2(10 + 0.754)} \right]^{\frac{1}{2}} \\ &= 2.77 \times 10^{-9} \text{ F/cm}^2 \\ &C = AC' = 6 \times 10^{-4} \times 2.77 \times 10^{-9} = 1.66 \times 10^{-12} \text{ F} \\ &f_o = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{2.2 \times 10^{-3} \times 1.66 \times 10^{-12}}} = 2.6 \text{ MHz}. \\ &\mathbf{18. (B) } \left| E_{max} \right| = \frac{eN_a x_a}{e} \\ &For \ a \ p^+ \ n \ \text{junction}, \ x_a \approx \left[\frac{2e(V_{bi} + V_R)}{eN_d} \right]^{\frac{1}{2}} \\ &So \ that \ \left| E_{max} \right| = \left[\frac{2 \ eN_d}{e_s} (V_{bi} + V_R) \right]^{\frac{1}{2}} \\ &Assuming \ V_{bi} << V_R \ , \\ &N_d = \frac{eE_{max}^2}{2eN_R} = \frac{(11.7 \times 8.85 \times 10^{-14})(10^{6})^2}{2(1.6 \times 10^{-14})(10)} \\ &= 3.24 \times 10^{17} \text{ cm}^{-3} \\ &\mathbf{19. (B) } \ I_D = I_s \left(e^{\frac{V_D}{V_V}} - 1 \right) \implies V_D = \eta V_t \ln \left(1 + \frac{I_D}{I_s} \right) \\ \end{aligned}$$

$$=(105)(0.0259)\ln\left(1+\frac{70\times10^{-6}}{10^{-18}}\right)=0.87 \text{ V}$$
21. (B) $I_d \approx I_s e^{\left(-\frac{V}{V_t}\right)}$, $I_{\frac{d_1}{I_{d2}}} = \frac{e^{-\frac{V_t}{V_t}}}{e^{-\frac{V_s}{V_t}}} = e^{-\frac{(V_t - V_s)}{V_t}}$
 $V_1 - V_2 = V_t \ln\left(\frac{I_{\frac{d_2}{J_{d1}}}}{I_{d1}}\right)=0.0259 \ln 10 = 59.6 \text{ mV}$
22. (A) $I = I_s \left(e^{\frac{V}{V_t}}-1\right) \Rightarrow V = V_t \ln\left(\frac{I}{I_s}+1\right)$
 $\frac{I}{I_s} = -0.90 \text{ (-ive due to reverse current)}$
 $V = 0.0259 \ln (1 - 0.9) = -59.6 \text{ mV}$
23. (B) $I_s = Aen_t^2 \frac{1}{N_d} \sqrt{\frac{D}{\tau_{po}}}$
 $= \frac{(10^{-4})(1.6\times10^{-19})(1.5\times10^{-10})^2}{10^{16}} \sqrt{\frac{12}{10^{-7}}} = 3.94 \times 10^{-15} \text{ A}$
24. (D) $\frac{J_n}{J_n + J_p} = 0.95$, $J_n = en_t^2 \frac{1}{N_d} \sqrt{\frac{D_n}{\tau_{po}}}$, $J_p = en_t^2 \frac{1}{N_d} \sqrt{\frac{D_p}{\tau_{po}}}$
 $= \frac{\sqrt{D_n}}{\sqrt{D_n} + \frac{N_a}{N_d} \sqrt{D_p}} = 0.95$, $\frac{5}{5 + \frac{N_a}{N_d} \sqrt{10}} = 0.95$
 $\Rightarrow \frac{N_a}{N_d} = 0.083$
25. (C) $\delta p_n = p_n - p_{n,0} = p_{n,0} \left[e^{\left(\frac{\delta V_s}{\hbar t}\right)} - 1\right] \left[e^{\left(-\frac{x}{L_p}\right)}\right]$
 $p_{n,0} = \frac{n_t^2}{N_d} = \frac{(1.5\times10^{10})^2}{10^{16}} = 2.25 \times 10^4 \text{ cm}^{-3}$

26. (A) $J_p = -eD_p \frac{\partial (\delta p_n)}{\partial x} = eD_p (3.8 \times 10^{14})(3534)e^{-3534x}$ $x = 3 \,\mu\text{m} = 3 \times 10^{-4} \text{ cm}$ $J_p = (1.6 \times 10^{-19})(18)(3.8 \times 10^{14})(3534)e^{-(3534)(3 \times 10^{-4})}$ $= 0.6 \text{ A/cm}^2$

27. (A)
$$N_{p} = AL_{n}n_{p0}\left[e^{\left(\frac{V_{x}}{kT}\right)}-1\right]$$

 $n_{p0} = \frac{n_{l}^{2}}{N_{a}} = \frac{(1.5 \times 10^{10})^{2}}{8 \times 10^{15}} = 2.8 \times 10^{4} \text{ cm}^{-3}$
 $L_{n} = \sqrt{D_{n}} \tau_{n0} = \sqrt{35 \times 10^{-6}} = 5.9 \times 10^{-3} \text{ Cm}$
 $N_{p} = 10^{-3} \times 5.9 \times 10^{-3} \times 2.8 \times 10^{4} \left[e^{\left(\frac{0.5}{0.0259}\right)}-1\right]$
 $= 4 \times 10^{7} \text{ cm}^{-3}$
28. (A) $I \propto n_{i}^{2} e^{\left(\frac{V_{x}}{V_{i}}\right)} \propto e^{\left(\frac{-E_{x}}{V_{i}}\right)} e^{\left(\frac{V_{a}}{V_{i}}\right)}$
 $\Rightarrow I \propto e^{\left(\frac{V_{a}-E_{x}}{V_{i}}\right)}$
 $\frac{I_{1}}{2} = \frac{e^{\left(\frac{V_{a}-E_{x}}{V_{i}}\right)}}{e^{\left(\frac{V_{a}-E_{x}}{V_{i}}\right)}} = e^{\frac{1}{V_{i}}(V_{a1}-V_{a2}-E_{x1}+E_{x2})}$
 $\frac{10 \times 10^{-3}}{10 \times 10^{-6}} = e^{\frac{(0.255-0.32-0.525+E_{x2})}{(0.0259)}}$
 $10^{3} = e^{\left(\frac{E_{x2}-0.59}{0.0259}\right)}$
 $E_{g2} = 0.59 + 0.0259 \ln 10^{3} = 0.769 \text{ EV}$
29. (B) $C_{d} = \left(\frac{I_{p0}\tau_{p0}+I_{n0}\tau_{n0}}{2V_{t}}\right)$
 $\tau_{n0} = \tau_{p0} = 10^{-6} \text{ s}, \qquad I_{p0}+I_{n0} = I_{dQ} = 2 \text{ mA}$
 $C_{d} = \frac{2 \times 10^{-3} \times 10^{-6}}{2(0.0259)} = 3.86 \times 10^{-8} \text{ F}$
30. (D) $g_{d} = \frac{I_{dQ}}{V_{t}} = \frac{10^{-3} \times 10^{-7}}{2 \times (0.0259)} = 1.93 \times 10^{-9} \text{ F}$
 $Z = \frac{1}{Y} = \frac{1}{g_{d}} + j\omega C_{d}} = 235 - j75 \Omega$
31. (A) For a $p^{+}n$ diode $I_{p0} >> I_{n0}$

$$\begin{split} C_d = & \left(\frac{1}{2V_t}\right) (I_{po} \tau_{po}), \qquad \frac{\tau_{p0}}{2V_t} = 2.5 \times 10^{-6} \\ \Rightarrow & \tau_{p0} = 2 \times 0.0259 \times 2.5 \times 10^{-6} = 1.3 \times 10^{-7} s \end{split}$$

32. (C)
$$R_p = \frac{\rho_p L}{A} = \frac{L}{A(e\mu_p N_a)}$$

= $\frac{0.2}{(10^{-2})(1.6 \times 10^{-19})(480)(10^{-16})} = 26 \ \Omega$

$$\begin{split} R_{n} &= \frac{\rho_{n}L}{A} = \frac{L}{Ae(\mu_{n}N_{d})} \\ &= \frac{0.10}{(10^{-3})(1.6 \times 10^{-19})(1350)(10^{15})} = 46.3 \,\Omega \\ R &= R_{p} + R_{n} = 72.3 \,\Omega \\ \mathbf{33.} (B) \ V_{bi} &= V_{t} \ln\left(\frac{N_{a}N_{d}}{n_{i}^{2}}\right) \\ &= 2(0.0259) \ln\left(\frac{10^{16}}{1.8 \times 10^{6}}\right) = 1.16 \ \mathrm{V} \\ W &= \left\{\frac{2\varepsilon_{s}(V_{bi} + V_{R})}{e}\left[\frac{1}{N_{a}} + \frac{1}{N_{a}}\right]\right\}^{\frac{1}{2}} \\ &= \left[\frac{2 \times (13.1 \times 8.85 \times 10^{-14})(6.16)}{1.6 \times 10^{-19}} \left(\frac{2}{10^{16}}\right)\right]^{\frac{1}{2}} = 1.34 \times 10^{-4} \ \mathrm{cm} \\ J_{gen} &= \frac{en_{i}W}{2\tau_{o}} \\ &= \frac{16 \times 10^{-19} \times 1.8 \times 10^{6} \times 1.34 \times 10^{-4}}{2 \times 10^{-8}} = 1.93 \times 10^{-9} \ \mathrm{A/cm^{2}} \\ \mathbf{34.} \ (A) \ V_{B} &= \frac{\varepsilon E_{cil}^{2}}{2eN_{B}} \\ 25 &= \frac{(11.7 \times 8.85 \times 10^{-4})(4 \times 10^{5})^{2}}{2 \times 16 \times 10^{-19} \times N_{B}} \\ N_{B} &= N_{d} = 2 \times 10^{16} \ \mathrm{cm^{-3}} \\ \mathbf{35.} \ (D) \ E_{max} &= \frac{eN_{d}x_{n}}{\varepsilon} \implies x_{n} = \frac{\varepsilon E_{max}}{eN_{d}} \\ &= \frac{(117 \times 8.85 \times 10^{-14})(4 \times 10^{5})}{(16 \times 10^{-19})(5 \times 10^{16})} = 5.18 \times 10^{-5} \ \mathrm{cm} \\ V_{bi} &= V_{i} \ln\left(\frac{N_{a}N_{d}}{n_{i}^{2}}\right) = 2(0.0259) \ln\left(\frac{5 \times 10^{6}}{15 \times 10^{10}}\right) = 0.778 \ \mathrm{V} \\ x_{n} &= \left\{\frac{2\varepsilon_{v}V_{bi}}{e}\left(\frac{N_{a}}{N_{d}}\left(\frac{1}{N_{a} + N_{d}}\right)\right\}^{\frac{1}{2}} \\ &= (5.18 \times 10^{-5})^{2} = \left[\frac{2(117 \times 8.85 \times 10^{-4})(V_{bi} + V_{R})}{(16 \times 10^{-19})(2 \times 5 \times 10^{6})}\right] \\ \Rightarrow \ V_{bi} + V_{R} = 20.7, \qquad V_{R} = 19.9 \ \mathrm{V}, \qquad V_{R} = V_{B} \end{split}$$

36. (A) For a p^+n diode, Neglecting V_i compared to V_B ,

$$x_n \approx \left[\frac{2\varepsilon V_B}{eN_d}\right]^{\frac{1}{2}} = \left[\frac{2(11.7 \times 8.85 \times 10^{-14})(100)}{(1.6 \times 10^{-19})(5 \times 10^{15})}\right]^{\frac{1}{2}} = 5.1 \ \mu \text{m}$$

37. (D) $V_{bi} = V_t \ln\left(\frac{N_a N_d}{n_i^2}\right)$

$$= 2(0.0259) \ln\left(\frac{5 \times 10^{19}}{1.5 \times 10^{10}}\right) = 1.14 \text{ V}$$

$$W = \left\{\frac{2\varepsilon_s(V_{bi} + V_R)}{e} \left[\frac{1}{N_a} + \frac{1}{N_a}\right]\right\}^{\frac{1}{2}}$$

$$= \left[\frac{2 \times (11.7 \times 8.85 \times 10^{-14})(1.14 - 0.4)}{1.6 \times 10^{-14}} \left(\frac{2}{5 \times 10^{19}}\right)\right]^{\frac{1}{2}}$$

$$= 6.19 \times 10^{-7} \text{ cm} = 62 \text{ A}^{\circ}$$
38. (B) $L_n = \sqrt{D_n \tau_{n0}}$, $L_p = \sqrt{D_p \tau_{p0}}$

$$\begin{split} \eta_{inj} &= \frac{\frac{D_n n_{p0}}{L_n}}{\frac{D_n n_{p0}}{L_n} + \frac{D_p p_{n0}}{L_p}} = \frac{n_{p0} \sqrt{\frac{D_n}{\tau_{n0}}}}{n_{p0} \sqrt{\frac{D_n}{\tau_{n0}}} + p_{n0} \sqrt{\frac{D_p}{\tau_{p0}}}} \\ n_{p0} &= \frac{n_i^2}{N_a} = \frac{(1.8 \times 10^6)^2}{10^{16}} = 324 \times 10^{-4} \text{ cm}^{-3} \\ p_{n0} &= \frac{n_i^2}{N_d} = \frac{(1.8 \times 10^6)^2}{5 \times 10^{17}} = 6.48 \times 10^6 \text{ cm}^{-3} \\ \sqrt{\frac{D_n}{\tau_{n0}}} &= \sqrt{\frac{25}{10 \times 10^{-9}}} = 5 \times 10^4, \\ \sqrt{\frac{D_p}{\tau_{p0}}} &= \sqrt{\frac{12}{10 \times 10^{-9}}} = 35 \times 10^4 \\ \eta_{inj} &= \frac{(5 \times 10^4)(3.24 \times 10^{-4})}{(5 \times 10^4)(3.24 \times 10^{-4}) + (35 \times 10^4)(6.48 \times 10^{-6})} \\ &= 0.986 \end{split}$$

39. (B) The areal density at threshold is
$$n_{2D} = \frac{J_{th}\tau_r}{e} = \frac{(500)(1.5 \times 10^{-9})}{1.6 \times 10^{-19}} = 4.69 \times 10^{12} \text{ cm}^{-3}$$

The carrier density is

$$n_{th} = \frac{n_{2D}}{d_{Las}} = \frac{4.69 \times 10^{12}}{10^{-6}} = 4.69 \times 10^{18} \text{ cm}^{-3}$$

Once the threshold is reached, the carrier density does not change. When $J > J_{th}$ the electron hole recombination is

$$\tau_r(J) = \frac{J_{th}}{J} \tau_r(J_{th}) = \frac{1.5 \times 10^{-9}}{5} = 3 \times 10^{-10} \text{ s}$$

The optical power produced is $p = \frac{JA}{e}h\omega$

$$=\frac{(5\times500)(2\times10^{-5})(1.43\times1.6\times10^{-19})}{1.6\times10^{-19}}=71.5\ MW$$
