To Find the Downward Force, Along an Inclined Plane, Acting on a Roller due to Gravitational Pull of the Earth and Study its Relationship with the Angle of Inclination θ by Plotting Graph Between Force and sin θ .

Aim

To find the downward force, along an inclined plane, acting on a roller due to gravitational pull of the earth and study its relationship with the angle of inclination θ by plotting graph between force and sin θ .

Apparatus

An inclined plane, A trolley or roller, pan, weight box, spring balance, spirit level, strong thread, half metre scale.

Theory

If total weight $W_1 - M_1$ g moves the body up and total weight $W_2 - M_2$ g makes the body move down, then downward force acting on the body along the inclined plane,

$$W = \frac{W_1 + W_2}{2} = \frac{(M_1 + M_2)g}{2}$$

This force must equal $mg \sin \theta$.

For same body, m = constant

Hence, $W \propto \sin \theta$.

A graph between $\sin \theta$ along X-axis and W along Y-axis must be a straight line.

Procedure

- 1. Test the pulley of the inclined plane and see that it is free from friction. Oil it, if necessary.
- 2. Keep the apparatus on table with the slot portion of the base beyond the edge of the table.
- 3. Make the base of inclined plane horizontal (test by spirit level) and make it stable (by putting paper pieces if necessary).
- 4. Bring the inclined plane to horizontal position (touching the base). The angle of inclination is now zero (as indicated by protractor).
- 5. Find the weight of the roller by a spring balance and place it on the inclined plane in the middle.
- 6. Tie one end of a thread to the roller placed on the inclined plane and pass it over the pulley.
- 7. Pass the thread through the slot in base.

- 8. Find the weight of the pan by spring balance and tie it to free end of thread, keeping the thread free from board.
- 9. Raise the inclined plane and fix it at an angle of 30°. The roller may start rolling down with acceleration.
- 10. Put weights on the pan and increase them till the roller just starts moving upward with uniform velocity only on tapping. Note the total weights in pan.
- 11. Remove some small weights from weights in the pan till the roller just starts moving downward with uniform speed only on tapping. Note the total weights in pan.
- 12. Increase the angle of inclination in steps of 5° each, making it 35°, 40°, 45°, 50°, 55° and 60° and repeat steps 10 and 11.
- 13. Record your observations in table as given below.

Observations

Least count of spring balance =g wt. Zero error of spring balance (e) =g wt. Zero correction of spring balance (c) = (- e) =g wt. Observed weight of the roller (w_0) =g wt. Corrected weight of the roller (w = mg) = ($w_0 + c$) =g wt. Observed weight of the pan (p_0) =g wt.

Corrected weight of the pan $(p) = (p_0 + c) = \dots g$ wt.

Table for angle of inclination and weights in pan

Serial No. of Obs.	Angle of inclina- tion (0)	sin O	w sin 9 = mg sin 0	Weight in pan when roller moves		Total weight when roller moves		Force acting on roller downward	E
				Upward w ₁ (g wt)	Downward w ₂ (g wt)	Upward W_1 = $w_1 + p$ (g wt)	$Downward$ W_2 $= w_2 + p$ $(g wt)$	$W = \frac{W_1 + W_2}{2}$ (g wt)	W - mg sin θ
1.	30°	0.50000							
2.	35°	0.57358							
3.	40°	0.64279					-		
4.	45°	0.70711							
5.	50°	0.76604							
6.	55°	0.81915							
7.	60°	0.86603				,			

Fig. Graph between $\sin \theta$ and W. It is a straight line.

Result

- 1. Downward force on the body of weight w = mg comes to be mg sin θ .
- 2. Graph between sin θ and W comes to be a straight line. Hence, W °c sin θ .

Precautions

- 1. Pulley should be friction less.
- 2. Base should be stable and horizontal.
- 3. Thread should not touch the board or table.
- 4. Inclined surface should be clean, dry and smooth (use glass top).
- 5. Weights in pan should be increased or decreased in small steps.

6. Weights should be noted only when the roller just starts moving up or moving down.

Sources of error

- 1. The pulley may not be friction less.
- 2. Spring balance may not be accurate.
- 3. Protractor graduations may not be correct.

Viva Voce

Question.1. What is an inclined plane ?

Answer. It is a wooden plane made smooth by putting a glass sheet over it and makes an angle with the horizontal ground.

Question.2.What is relation between downward force and angle of inclination of the plane ?

Answer. The relation is, W-mg sin θ , which is the component of the weight of the body down the inclined plane.

Question.3.What is the normal reaction on the inclined plane ?

Answer. The normal reaction is mg $\cos \theta$. There is no movement in this direction.

Question.4.Why is the glass plate fixed at the top of the inclined plane ?

Answer. To make the inclined plane smooth.

Question.5.Name the few application of an inclined plane.

Answer. Inclined plane is a simple machine which makes the work easier. The following are the applications in

- (i) Ramp of house
- (ii) Ladder

(iii) A plank put at the back of a truck or a railway wagon for loading and unloading heavy goods.