semiconductor Materials

Conductivity of metal

$$\sigma = \frac{ne^2\tau}{m}$$

Where,

n = density of conductor electron

 τ = Relaxation time

Conductivity of Semiconductor

The current flowing through a pure semiconductor is carried by two kinds of carriers, ie. electrons and holes.

Conductivity of a intrinsic semiconductor

$$\sigma = \frac{n_e e^2 \tau_e}{m_e} + \frac{n_n e^2 \tau_h}{m_h}$$

Where, τ_e , τ_h = Relaxation times for electrons and holes respectively.

m_e, m_h = Effective mass of electrons and holes respectively.

 n_e , n_n = Number of conduction electrons and holes respectively.

· Current density

where, $V_d = Drift velocity$

Mobility

Mobility of electron

$$\mu_e = \frac{e\tau_e}{m_e}$$

Mobility of Hole

$$\mu_h = \frac{e \tau_h}{m_h}$$

Concentration of holes in the n-type semiconductor

$$n_{hn} = \frac{n_I^2}{N_D}$$

Where,

 $n_i = intrinsic concentration$

 $N_n = concentration of donor atom$

Concentration of holes in the p-type semiconductor

$$n_{ep} = \frac{n_i^2}{N_A}$$

Where,

N_A = Concentration of acceptor atom

Hall Effect

If a specimen (metal or semiconductor) carrying a current-l is placed in a transverse magnetic field B, an electric field E is induced in the direction perpendicular to both I and B. This phenomenon, known as Hall effect, is used to determine whether a semiconductor is n-or p-type and to find the carrier concentration. Also, by simultaneously measuring the conductivity s, the mobility μ can be calculated.

Hall Voltage

$$V_H = \frac{B1}{\rho w}$$

where,

w = Width of the specimen

 $\rho =$ the charge density

Hall Angle

$$\tan \theta_{H} = \frac{E_{V}}{E_{v}}$$

Hall Coefficient

$$R_{H} = \frac{E}{BJ} = \frac{1}{en_{h}} = \frac{-1}{en_{e}}$$

Where,

E = Applied electric field

B = Applied magnetic field

J = Current density in the

If the conductivity is measured together with the Hall coefficient, the mobility can be determined from

$$\mu = \sigma R_H$$

Remember:

- For n-type semiconductor Hall voltage (V_H) and Hall coefficient (R_H) is negative.
- For p-type semiconductor Hall voltage (V_H) and Hall coefficient (R_H) is positive.
- Hall voltage is large for semiconductor than metal, since V_H ∝ R_H i.e.

$$V_{H} \propto \frac{1}{\sigma}$$
.

Einstein Relation (Electrical Mobility Equation)

$$D_{h} = \left(\frac{kT}{e}\right)\mu_{h}, \quad D_{e} = \left(\frac{kT}{e}\right)\mu_{e}$$

where D_h , D_e = Diffusion constant for holes and electron respectively

$$\frac{D_h}{\mu_h} = \frac{D_e}{\mu_e} = \frac{kT}{e}$$