
Physical Quantity

- Quantities which can be measured by an instrument and used to describe Laws of Physics are physical quantities - Physical quantity = Numerical value (N) × Unit (U)

TYPES

FUNdamental quantities do Not depend upon other quantities:

- (1) Length (2) Mass (3) Time
- (7) Luminous Intensity
- than one fundamental Physical quantities
- and acceleration are Some Derived quantities

Two supplementary S.I units are:-

(1) Radian(Plane angle)

(2) Steradian (Solid angle).

UNITS

(1) Unit is defined as the reference Standard used for measurements.

- (2) Measurements consists of a numerical value along with a relevant unit.
- (3) Example: meter, newton, joule, seconds etc.

MKS (m, kg, S)

CGS (m, gm, s)

FPS (Ft. POUND, S)

S.I Units

- The system of units accepted internationally

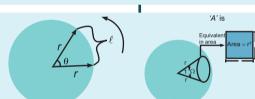
- S.I units of time is 'sec' is the example of S.I System

Units And

Measurments

ACCURACY

Standard value.


Accuracy is degree of closeness of measured value to the true value: Shows that how closely the results with the

PRECCISION

Precision is the range of variation of true value during Several observation

- (4) Temperature
- (5) Amount of Substance (6) Electric current
- Derived quantities are formed by combining more
- Area. Volume. velocity

. **Q=** . arc radius

(radius)2

(SIGNIFICANT FIGURES)

The number of digits in the measured values about the correctness are known as Significant figures.

Trailing zero digits are Significant only when they appear after decimal 4.00 - 3 Sf: 0.043010 - 5 Sf

SOME OTHER UNITS

(1) mass:- 1 quintal = 100 kg. 1 toN = 1000 kg (2) length:- 1 light year = 9.46 × 1015 m $1 au = 1.496 \times 1011 m$ (3) Temperature: 00 C = 273 K 10 F = 255.928 K

PRINCIPLE OF HOMOGENITY

Principle of homogeneity States that the dimension of each term on both Sides of dimensional equation Should be same.

Secondary or derived

dimensional Formula

Dimensional Analysis

expression for the unit of a

Physical quantity in terms of

the fundamental quantities

Dimension formula is the

Dimensional formula is

expressed in terms of

Power of M. L and T.

Primary or fundamental

Dimensional Formula

dimensional formulas:

(1) Mass = (M). (2) Length

(4) Temperature = (K) or

(Q). (5) Electric Current

Conversion of Units From

are system to another

N1 = Numerical Part of

N2 = Numerical Part of

another system

KNOW YOUR LCROS

one system

There are Seven

= (L). (3) Time = (T).

= (1). (6) LUMINOUS

(7) amount of matter

intensity = (cd).

= (mol)

fundamental

(i) Other than Fundamental formula all other are derived dimensional formula (ii) example: (1) (Speed) = (MOL1T-1). (2) (Acceleration) = (MoL1T2)

All Non - zero

4.125 - 4 Sf:

123 - 3 Sf

Leading zeroes i.e

Significant Placed

to the left of the

0.0403 - 3 Sf:

0.04030 - 4 Sf

are never

NUMber

10.9 - 3 Sf:

400.001 - 4 Sf

All zero lie in

Significant

between the non

zero digits are

Order of magnitud

e is not considered

 $38.3 \times 104 - 3 \text{ Sf}$:

Constants and pure

Significant figures:

numbers have infinite

38.30 × 10-9 - 4 Sf

digits are

Significant

$N = N \times 10x$: x = orderof magnitude.

RULE OF ROUNDING OFF

- Rules of Rounding off the

If digit > 5

digit remain same

(a) Preceding digit

remain same when

(up to 3 Significant Figures)

then. Preceding digit +1

If digit <5 then. preceding

If insignificant digit = 5:

rounded off digit is even.:

(b) Preceding digit +1 when

rounded off digit is odd

UNCERTAIN digitS

its magnitude

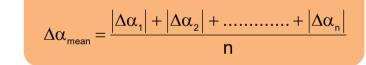
coefficient 6.022×10^{23} base

ORDER OF MAGNITUDE

It is defined as the power

of 10 which is closest to

ERRORS


The uncertainty in measurement is called errors

Error = true value measured Value

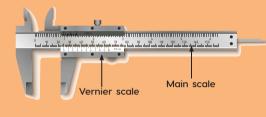
TYPES OF ERROR

Absolute Error. = true value measured value

Mean absolute errors

Relative error

 $\Delta\alpha_{\text{mean}}$


 α_{mean}

Percentage error.

is difference the measured value and the true value as a percentage of true value Percentage error

VERNIER CALLIPERS

Least Count (L.C) = 1 MSD - 1 VSD: MSD =main scale division: VSD = Verwier Scale division

Total reading = Main

Zero error = N × L.C:

N = No. of coinciding

L.C = Least count of an

+(Vernier Coincidence

Scale Reading

* least Count)

division:

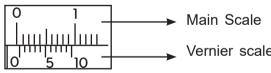
Zero error = N × L.C

Pitch =

displacement of screw

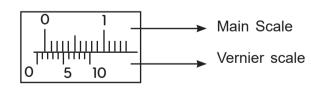
no. of rotations

L.C. =

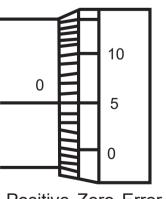

Pitch

total no. of divisions

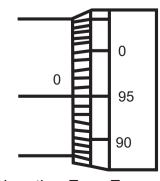
N = No. of circular Scale division that coincides with the reference line


L.C = Least Count

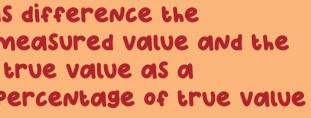
instrunment.


POSITIVE ZERO ERROR

NEGATIVE ZERO ERROR



POSITIVE ZERO ERROR



Positive Zero Error

NEGAITIVE ZERO ERROR

Negative Zero Error

 $\Delta\alpha_{\text{mean}} \times 100$

Vernier scale