[CLASS- $10^{ m th}$ REVISION OF CH:-2 (POLYNOMIALS)]

Objective Questions

-: Multiple Choice Questions :-

- 1.) A polynomial of degree 0 (zero) is called?
 - (a) A linear polynomial

(b) Quadratic polynomial

(c) Cubic polynomial

(d) Constant polynomial

Ans. (d) Constant polynomial.

Hint :-[A polynomial p(x) of degree 0 (zero) is called a Constant polynomial and p(x) is of form kx^0 .]

for example :- $p(x) = 10 = 10x^0$ is a constant polynomial.

- 2.) A polynomial of degree 1 (one) is called?
 - (a) A linear polynomial

(b) Quadratic polynomial

(c) Cubic polynomial

(d) Constant polynomial

Ans. (a) A linear polynomial.

Hint :-[A polynomial p(x) of degree 1 (one) is called a linear polynomial and p(x) is of form ax + b, where a, b are real numbers and $a \neq 0$.]

for example :- p(x) = 2x - 3, $\sqrt{3}x + 5$, $y + \sqrt{2}$, $x - \frac{2}{11}$ etc.

- 3.) A polynomial of degree 2 (two) is called?
 - (a) A linear polynomial

(b) Quadratic polynomial

(c) Cubic polynomial

(d) None of these

Ans. (b) Quadratic polynomial.

Hint :-[A polynomial p(x) of degree 2 (two) is called a quadratic polynomial and more generally any quadratic polynomial in p(x) is of form $ax^2 + bx + c$, where a, b, c are real numbers and $a \neq 0$.]

for example :-
$$p(x) = 3x^2 + 2x - 3$$
, $y^2 + 5$, $y + \sqrt{2}$, $2 - x^2 + \sqrt{3}x$, $4z^2 + \frac{1}{7}$ etc.

4.) A polyn	omial of degree 3 (three) is ca	lled?	
(a) A	linear polynomial	(b) Quadr	atic polynomial
(c) Cu	ıbic polynomial	(d) None	of these.
Ans. (c) Cu	ıbic polynomial.		
Hint :	-[A polynomial $p(x)$ of degree	3 (three) is called	a cubic polynomial
	and most general any cubic p	olynomial in $p(x)$	is of form
	$ax^3 + bx^2 + cx + d$, where	a,b,c,d are real r	numbers and $a \neq 0$.]
	for example :- $p(x) = x^3 - 8$	$3,4x^3+3x^2+2x^3+3x^2+2x^3+2x^3+2x^2+2x^3+2x^2+2x^3+2x^2+2x^3+2x^2+2x^3+2x^2+2x^3+2x^2+2x^3+2x^2+2x^3+2x^2+2x^3+2x^2+2x^2$	x-1, etc.]
5.) What is	the number of zeroes of a zer	o polynomial ?	
(a) 1	(b) 2	(c) 0	(d) Infinite
Ans. (d) In	finite		
[Hint]	:- Zeroes of a polynomial can	be defined as the	points where the
	polynomial becomes zero o	n the whole. A po	lynomial having value
	zero is called zero polynomi	al of the form $p(z)$	(x) = 0 . Any value of x
	can be a zero of a polynomi	al. The number of	zeroes of a zero
	polynomial = (Infinite) for e	example :- $p(x) =$	0]
6.) A non-z	ero constant polynomial has	zeroe	 S.
(a) No	o (b) 2	(c) 3	(d) 1
Ans. (a) No	0		
7.) How ma	any zeroes are there in a linear	polynomial?	
(a) 1	(b) 2	(c) 0	(d) Infinite
Ans. (a) 1			
8.) What is	the number of zeroes of a qua	adratic polynomia	1?
(a) 1	(b) 2	(c) 3	(d) More than 2
Ans. (b) 2			
9.) What is	the maximum number of zero	es of a quadratic	polynomial ?
(a) 1	(b) 2	(c) 3	(d) More than 2
Ans. (b) 2			
[Hint]	:- (There are at most 2 zeroes	of a quadratic po	lynomial.)
10.) A quad	dratic polynomial has	real zeroes.	
(a) 2	(b) At least 2	(c) 3	(d) At most 2
Ans. (d) At	t most 2		
_			

		eroes of a polynomia	$ax^2 + bx + c$
where $a \neq 0$ is :		() =	(1) 50
• •	(b) 2	(c) 3	(d) More than 2
Ans. (b) 2			
		es of a quadratic poly	
		omial $p(x) = x^2 - 2$	
(a) 1	(b) 2	(c) 3	(d) More than 2
Ans. (b) 2			
13.) What is the num			
(a) 1	(b) 2	(c) 3	(d) More than 2
Ans. (c) 3			
14.) How many zeroe		I of degree ${}'m{n}'$ can ha	
(a) n	(b) n^2	(c) $n^2 - 1$	(d) n^2+1
Ans. (a) <i>n</i>			
15.) In the polynomia	al of $p(x) = 10$ wh	at is the degree of po	olynomial ?
(a) 1	(b) 2	(c) 3	(d) 0
Ans. (d) 0 (Zero)			
16.) In the polynomia	al of $p(x) = 4x + 2$	2, what is the degree	of polynomial?
(a) 1	(b) 2	(c) 3	(d) 0
Ans. (a) 1 (One)			
L7.) What is the degr	ee (Power/expone	ent) of polynomial 2y	$y^2 - 3y + 4$?
(a) 1	(b) 2	(c) 3	(d) 0
Ans. (b) 2 (Two)			
18.) What is the degr	ee of Polynomial p	$p(x) = 2x^3 - 3x^2 + $	4?
(a) 1	(b) 2	(c) 3	(d) 0
Ans. (c) 3 (Three)			
19.) If $lpha$ and $oldsymbol{eta}$ are th	e zeroes of the qua	adratic polynomial a .	$x^2 + bx + c$, then
$\alpha + \beta = ?$			
(a) $\frac{-b}{a}$	(b) $\frac{b}{a}$	$(c) \frac{c}{}$	$(a) \frac{a}{a}$
$\frac{a}{a}$	$\frac{a}{a}$	(c) $\frac{c}{a}$	(d) $\frac{a}{b}$
Ans. (a) $\frac{-b}{a}$			
a			

20.) If $lpha$ and	β are the zeroes of t	he quadratic polynor	mial $3x^2$ –	5x + 2, then

(a)
$$\frac{-2}{3}$$

 $\alpha + \beta = ?$

(b)
$$\frac{5}{3}$$

(c)
$$\frac{-5}{3}$$

(d)
$$\frac{2}{3}$$

Ans. (b)
$$\frac{5}{3}$$

Hint :- We have, quadratic polynomial $3x^2 - 5x + 2$, Here, a = 3, b = -5

$$\therefore \alpha + \beta = \frac{-b}{a} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2} = \frac{-(-5)}{3} = \frac{5}{3}$$

21.) Sum of the zeroes of the quadratic polynomial is:

(a)
$$\frac{-b}{a}$$

(b)
$$\frac{b}{a}$$

(c)
$$\frac{c}{a}$$
 (d) $\frac{a}{b}$

(d)
$$\frac{a}{b}$$

Ans. (a) $\frac{-b}{a}$

22.) Sum of the zeroes of the quadratic polynomial is :

(a)
$$\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

(b)
$$\frac{-(Constant term)}{Coefficient of x^2}$$

(c)
$$\frac{\text{(Coefficient of } x)}{\text{Coefficient of } x^2}$$

(d)
$$\frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Ans. (a)
$$\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

23.) Sum of the zeroes of the quadratic polynomial $2x^2 - 8x + 6$ is :

Hint :- We have, quadratic polynomial $2x^2 - 8x + 6$. Here, a = 2, b = -8

∴ Sum of the zeroes =
$$\frac{-b}{a} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2} = \frac{-(-8)}{2} = \frac{8}{2} = 4$$

24.) Sum of the zeroes of the quadratic polynomial $2x^2 + 6$ is :

Hint :- We have, quadratic polynomial $2x^2 + 6 = 2x^2 + 0x + 6$ Here, a=2, b=0

: Sum of the zeroes
$$=\frac{-b}{a}=\frac{-(\text{Coefficient of }x)}{\text{Coefficient of }x^2}=\frac{-(0)}{2}=0$$

25.) If α and β are	the zeroes of the qua	adratic polynomial a	$ax^2 + bx + c$, then
$\alpha \beta = ?$			
(a) $\frac{-b}{a}$	(b) $\frac{b}{a}$	(c) $\frac{c}{a}$	(d) $\frac{a}{b}$

Ans. (c)
$$\frac{c}{a}$$

26.) If lpha and eta are the zeroes of the quadratic polynomial $3x^2-5x+2$, then

$$\alpha\beta = ?$$

(a)
$$\frac{-2}{3}$$

(b)
$$\frac{5}{3}$$

(c)
$$\frac{-5}{3}$$
 (d) $\frac{2}{3}$

(d)
$$\frac{2}{3}$$

Ans. (d) $\frac{2}{3}$

Hint :- We have, quadratic polynomial $3x^2 - 5x + 2$,

Here,
$$a = 3$$
, $b = -5$, $c = 2$

$$\therefore \alpha\beta = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2} = \frac{2}{3}$$

27.) Product of the zeroes of the quadratic polynomial is:

(a)
$$\frac{-b}{a}$$

(b)
$$\frac{b}{a}$$

(c)
$$\frac{c}{a}$$
 (d) $\frac{a}{b}$

(d)
$$\frac{a}{b}$$

Ans. (c)
$$\frac{c}{a}$$

28.) Product of the zeroes of the quadratic polynomial is:

(a)
$$\frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$$

(b)
$$\frac{-(Constant term)}{Coefficient of x^2}$$

(c)
$$\frac{\text{(Coefficient of } x)}{\text{Coefficient of } x^2}$$

(d)
$$\frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

Ans. (d) $\frac{\text{Constant term}}{\text{Coefficient of } x^2}$

29.) Product of the zeroes of the quadratic polynomial $x^2 + 7x + 10$ is :

Ans. (a) 10

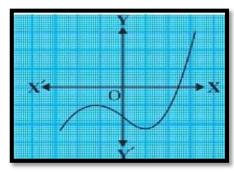
Hint :- We have, quadratic polynomial $x^2 + 7x + 10$

Here,
$$a = 1$$
, $b = 7$, $c = 10$

∴ Product of the zeroes =
$$\frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2} = \frac{10}{1} = 10$$

- 30.) Product of the zeroes of the quadratic polynomial $3x^2 2x 1$ is :
 - (a) $\frac{-2}{3}$
- (b) $\frac{1}{2}$

- (c) $\frac{2}{3}$ (d) $\frac{-1}{3}$


Ans. (d) $\frac{-1}{2}$

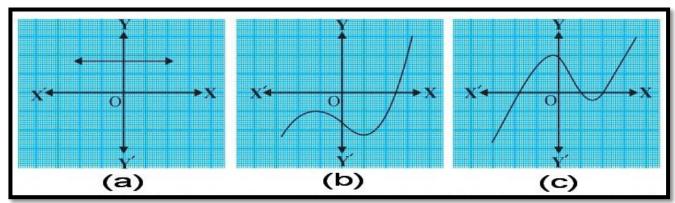
Hint :- We have, quadratic polynomial $3x^2 - 2x - 1$

Here,
$$a = 3$$
, $b = -2$, $c = -1$

$$\therefore$$
 Product of the zeroes $=\frac{c}{a}=\frac{\text{Constant term}}{\text{Coefficient of }x^2}=\frac{-1}{3}$

31.) The graph of y = p(x) is given in fig. below, for some polynomial p(x). The number of zeroes of the polynomial p(x) is

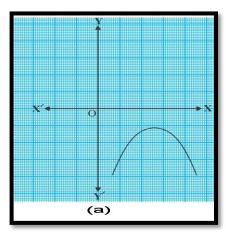
(a) 1

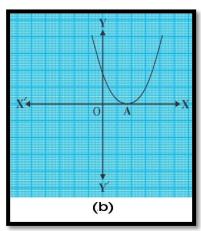

(b) 2

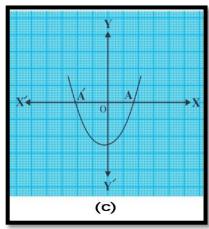
- (c) 3
- (d) 0

Ans. (a) 1

Hint :- [The graph of y = p(x) Intersects the x - axis at 1 point. So, the number of zeroes for the given graph is 1.]

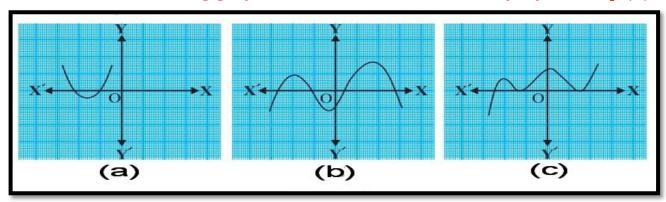

32.) The graph of y = p(x) is given in fig. below, for some polynomial p(x). Which of the following graph shows one zero of the polynomial p(x)




Ans. (b) shows one zero.

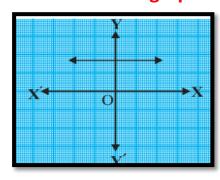
Hint :- [The graph of (b) showing y = p(x) Intersects the x - axis at 1 point only. So, the number of zeroes for the given graph is 1.]

33.) Which of the following graph shows two distinct zeroes of a quadratic Polynomial ?



Ans. (c)

Hint :- [The graph of (c) showing y = p(x) Intersects the x - axis at 2 points. So, the number of zeroes for the given graph is 2.]

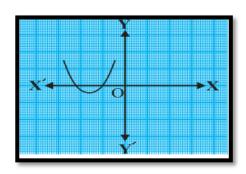

34.) The graph of y = p(x) is given in fig. below, for some polynomial p(x). Which of the following graph shows three zeroes of the polynomial p(x)

Ans. (c)

Hint :- [The graph of (c) showing y = p(x) Intersects the x - axis at 3 points. So, the number of zeroes for the given graph is 3.]

35.) Find the number of zeroes from the graph of the polynomial p(x).

(a) 1


(b) 2

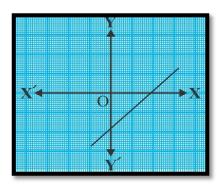
(c) 3

(d) 0

Ans. (d) 0

36.) Find the number of zeroes from the graph of the polynomial p(x).

(a) 1


(b) 2

- (c) 3
- (d) 0

Ans. (b) 2

Hint :- [The graph of y = p(x) Intersects the x - axis at 2 point. So, the number of zeroes for the given graph is 2.]

37.) The graph of y = p(x) is given in fig. below, for some polynomial p(x). The number of zeroes of the polynomial p(x) is (IMPORTANT)

(a) 1

(b) 2

- (c) 3
- (d) 0

Ans. (a) 1

38.) Which of the following is a Polynomial

(a)
$$2y^2 - 3y + 4$$

(b)
$$2x^2 + \sqrt{x} + 4$$

(c)
$$4x^3 + 3x^{-2} + 2x - \frac{3}{\sqrt{5}}$$

(d)
$$x^2 + \frac{2}{x} + 4$$

Ans. (a) $2y^2 - 3y + 4$

39.) Which of the following is not a Polynomial

(a)
$$2x^2 + 3x + 4$$

(b)
$$2x^2 + \sqrt{5}x + 4$$

(c)
$$4x^3 + 3x^2 + 2x - \frac{3}{\sqrt{5}}$$

(d)
$$x^2 + \frac{2}{x} + 4$$

Ans. (d) $x^2 + \frac{2}{x} + 4$

Hint :- We have, $x^2 + \frac{2}{x} + 4 = x^2 + 2x^{-1} + 4$

Here power of x is -1 in the middle term. Therefore It is not a polynomial.

0.) If $lpha$ and $oldsymbol{eta}$ are the zeroes of the quadratic polynomial $p(x)$ then $p(x)$ is ?	
(a) $x^2 - (\alpha + \beta)x - \alpha \cdot \beta$	
(b) $x^2 - (\alpha + \beta)x + \alpha \cdot \beta$	
(c) $x^2 - (\alpha - \beta)x + \alpha \cdot \beta$	

(d)
$$x^2 + (\alpha + \beta)x + \alpha \cdot \beta$$

Ans. (b) $x^2 - (\alpha + \beta)x + \alpha \cdot \beta$

41.) If lpha and eta are the zeroes of the quadratic polynomial then the polynomial

$$x^2 - (\dots \dots)x + (\dots \dots)$$
 is ?

(a)
$$(\alpha + \beta)$$
, $(\alpha \cdot \beta)$

(b)
$$(\alpha - \beta)$$
, $(\alpha \cdot \beta)$

(c)
$$(\alpha - \beta)$$
, $(\alpha + \beta)$

(d) None of these

Ans. (a)
$$(\alpha + \beta)$$
, $(\alpha \cdot \beta)$

42.) The sum and the product of the zeroes of the quadratic polynomial

$$ax^2 + bx + c$$
 are:

(a)
$$\frac{b}{a}$$
, $\frac{c}{a}$

(b)
$$\frac{-b}{a}$$
, $\frac{c}{a}$

(c)
$$\frac{c}{a}$$
, $\frac{a}{b}$

(a)
$$\frac{b}{a}$$
, $\frac{c}{a}$ (b) $\frac{-b}{a}$, $\frac{c}{a}$ (c) $\frac{c}{a}$, $\frac{a}{b}$ (d) $\frac{a}{b}$, $\frac{-b}{a}$

Ans. (b)
$$\frac{-b}{a}$$
, $\frac{c}{a}$

43.) If $p(x) = ax^2 + bx + c$ is a quadratic polynomial then what is the

relationship of $\frac{c}{a}$ with the zeroes of p(x) ?

- (a) Sum of zeroes
- (b) Product of zeroes
- (c) Subtraction of zeroes
- (d) None of these

Ans. (b) Product of zeroes

44.) If $p(x) = ax^2 + bx + c$ is a quadratic polynomial then what is the

relationship of $\frac{-b}{a}$ with the zeroes of p(x)?

- (a) Sum of zeroes
- (b) Product of zeroes
- (c) Subtraction of zeroes
- (d) None of these

Ans. (a) Sum of zeroes

45.) What is the nu	imber of zeroes o	f a given polynomia	$I(x+\sqrt{3})(x-\sqrt{3})=is:$
(a) 1	(b) 2	(c) 3	(d) More than 2
Ans. (b) 2			
46.) How many nur	mber of zeroes wi	II be there for the	polynomial
p(x) = (x - 2)	$(2)^2 + 16$?		
(a) 0	(b) 2	(c) 3	(d) More than 2
Ans. (a) 0			
(Hint) :- The gi	ven polynomial $oldsymbol{p}$	$(x) = (x-2)^2 + $	16
	p	(x) = 0	
	For zeroes, put p	(x) = 0	
	$(x-2)^2 +$		
	(x -	$(2)^2 = -16$	
		root of negative nu	
Hence, The give	en polynomial $p()$	$(x) = (x-2)^2 + 1$	6 has no zeroes.
47.) The sum and p	roduct of the qua	ndratic polynomial	$x^2 + px + q$ are 4 and – 3
respectively. F	ind the value of p	and q .	
(a) 4 and 3	(b) 4 and $-$	3 (c) -4 and	-3 (d) -4 and 3
Ans. (c) -4 and $-$	3		
		$\overline{8}$ and $-\sqrt{3}$ what a	e their product ?
	oolynomial are $\sqrt{3}$	and $-\sqrt{3}$ what and (c) -3	
48.) If the zeros a p	oolynomial are $\sqrt{3}$		
48.) If the zeros a p (a) 0 Ans. (c) -3	oolynomial are $\sqrt{3}$ (b) 3		(d) 0
48.) If the zeros a p (a) 0 Ans. (c) -3	oolynomial are $\sqrt{3}$ (b) 3	(c) -3	(d) 0 at are their sum ?
48.) If the zeros a p (a) 0 Ans. (c) -3 49.) If the zeroes of	oolynomial are $\sqrt{3}$ (b) 3	(c) -3 e $\sqrt{5}$ and $-\sqrt{5}$ wha	(d) 0 at are their sum ?
48.) If the zeros a p (a) 0 Ans. (c) -3 49.) If the zeroes of (a) 0 Ans. (a) 0	oolynomial are $\sqrt{3}$ (b) 3 f a polynomial are (b) 5	(c) -3 e $\sqrt{5}$ and $-\sqrt{5}$ wha	(d) 0 at are their sum ? (d) 5, -5
48.) If the zeros a p (a) 0 Ans. (c) -3 49.) If the zeroes of (a) 0 Ans. (a) 0 50.) The zeroes of the control of the con	f a polynomial are $\sqrt{3}$ (b) 3 f a polynomial are (b) 5	(c) -3 e $\sqrt{5}$ and $-\sqrt{5}$ what (c) -5	(d) 0 at are their sum? (d) 5, -5 10 are ?
48.) If the zeros a p (a) 0 Ans. (c) -3 49.) If the zeroes of (a) 0 Ans. (a) 0 50.) The zeroes of t (a) Both posit	f a polynomial are $\sqrt{3}$ (b) 3 f a polynomial are (b) 5	(c) -3 $\sqrt{5}$ and $-\sqrt{5}$ what (c) -5 ynomial $x^2 + 7x + 7$ gative (c) One pos	(d) 0 at are their sum? (d) 5, -5 10 are ?
48.) If the zeros a p (a) 0 Ans. (c) -3 49.) If the zeroes of (a) 0 Ans. (a) 0 50.) The zeroes of t (a) Both posit	the quadratic polycive (b) Both negratude, but op	(c) -3 $\sqrt{5}$ and $-\sqrt{5}$ what (c) -5 ynomial $x^2 + 7x + 7$ gative (c) One pos	(d) 0 at are their sum? (d) 5, -5 10 are ?
48.) If the zeros a p (a) 0 Ans. (c) -3 49.) If the zeroes of (a) 0 Ans. (a) 0 50.) The zeroes of t (a) Both posit (d) Equal in m Ans. (b) Both negations	f a polynomial are $\sqrt{3}$ (b) 3 f a polynomial are (b) 5 the quadratic polynomial are (b) Both negritude, but op	(c) -3 $\sqrt{5}$ and $-\sqrt{5}$ what (c) -5 ynomial $x^2 + 7x + 7$ gative (c) One pos	(d) 0 at are their sum? (d) 5, -5 10 are? Sitive one negative
48.) If the zeros a p (a) 0 Ans. (c) -3 49.) If the zeroes of (a) 0 Ans. (a) 0 50.) The zeroes of t (a) Both posit (d) Equal in m Ans. (b) Both negations	colynomial are $\sqrt{3}$ (b) 3 If a polynomial are (b) 5 The quadratic polynomial are (b) Both negative (b) Both negative (b) But op tive $x + 10 = 0 = >$	(c) -3 e $\sqrt{5}$ and $-\sqrt{5}$ what (c) -5 /nomial $x^2 + 7x + 6$ gative (c) One posposite in signs	(d) 0 at are their sum? (d) 5, -5 10 are? sitive one negative 10 = 0
48.) If the zeros a p (a) 0 Ans. (c) -3 49.) If the zeroes of (a) 0 Ans. (a) 0 50.) The zeroes of t (a) Both posit (d) Equal in m Ans. (b) Both negations	f a polynomial are $\sqrt{3}$ (b) 3 f a polynomial are (b) 5 the quadratic polynomial are (b) Both negative (b) Both negative $x + 10 = 0 = > $ $= > $	(c) -3 e $\sqrt{5}$ and $-\sqrt{5}$ what (c) -5 ynomial $x^2 + 7x + 6$ gative (c) One posite in signs $x^2 + (5x + 2x) + 6$	(d) 0 at are their sum? (d) $5, -5$ 10 are? Sitive one negative $10 = 0$ $0 = 0$

51.)	Which of the following	z is a zero	of the p	olvnomial	<i>x</i> ⁵ -	$-x^{3}$	+2x	– 2
,		5 10 a ECI O	OI CITE P	, o , , , , o , , , , a ,				-

(b)
$$-2$$

(c)
$$-1$$
 (d) 2

Ans. (a) 1

52.) What is the zero of a linear polynomial p(x) = ax + b is :

(a)
$$\frac{-b}{a}$$

(b)
$$\frac{b}{a}$$

(c)
$$\frac{c}{a}$$
 (d) $\frac{a}{b}$

(d)
$$\frac{a}{h}$$

Ans. (a)
$$\frac{-b}{a}$$

Hint :- We have
$$p(x) = ax + b = 0$$

$$ax = -b$$
$$x = \frac{-b}{a}$$

$x = \frac{-b}{a}$ 53.) What is the zero of a linear polynomial p(x) = 2x + 3 is :

(a)
$$\frac{-3}{2}$$

(b)
$$\frac{3}{2}$$

(c)
$$\frac{2}{3}$$

(c)
$$\frac{2}{3}$$
 (d) $\frac{-3}{2}$

Ans. (a)
$$\frac{-3}{2}$$

Hint :- We have
$$p(x) = 2x + 3 = 0$$

$$2x = -3 = x = \frac{-3}{2}$$

54.) The zero of a quadratic polynomial $p(x) = x^2 - 3$ are and and

(a)
$$-3, 3$$

(b)
$$\sqrt{3}$$
, $-\sqrt{3}$

(c) 3, 3 (d)
$$\sqrt{3}$$
, $\sqrt{3}$

Ans. (c)
$$\sqrt{3}$$
, $-\sqrt{3}$

Hint
$$=> x^2 - 3 = 0$$

=> $(x + \sqrt{3})(x - \sqrt{3}) = 0$ => $-\sqrt{3}$, $\sqrt{3}$

(OR) =>
$$x^2 - 3 = 0$$

=> $x^2 = 3$
=> $x = \pm \sqrt{3}$

55.) The zero of a quadratic polynomial $p(x)=t^2$ – 15 are and and

(a)
$$-15, 15$$

(a)
$$-15, 15$$
 (b) $\sqrt{15}$, $-\sqrt{15}$ (c) $15, 15$ (d) $\sqrt{15}$, 15

(d)
$$\sqrt{15}$$
, 15

Ans. (b)
$$\sqrt{15}$$
, $-\sqrt{15}$

Hint =>
$$t^2$$
 - 15 = 0
=> t^2 = 15
=> $t = \pm \sqrt{15}$

56)	The zero o	of a quadratic	nolynomial n	$\mathbf{r}(\mathbf{r})$	$=4x^2$	25 are	and .
JO.,	The zero (Ji a quauratic	polynomiai <i>p</i>	/(X)) — 4x —	45 are	allu

(a) 2, -5 (b)
$$-\frac{5}{2}$$

(b)
$$-\frac{5}{2}$$

(c)
$$\frac{5}{2}$$

(d)
$$\pm \frac{5}{2}$$

Ans. (d)
$$\pm \frac{5}{2}$$

Hint =>
$$4x^2 - 25 = 0$$

=> $4x^2$ = 25
=> $x^2 = \frac{25}{4}$

$$=>$$
 $x=\pm\sqrt{\frac{25}{4}}$

$$x = \pm \sqrt{\frac{25}{4}} \qquad => \qquad x = \pm \frac{5}{2}$$

57.) What is the zero of a $p(x) = 4u^2 + 8u$ is :

(b)
$$0 \text{ and } -2$$

(b) 0 and
$$-2$$
 (c) -4 and -2 (d) -4 and 2

(d)
$$-4$$
 and 2

Ans. (b)
$$0$$
 and -2

Hint :- We have
$$p(x) = 4u^2 + 8u = 0$$

 $4u(u+2) = 0$

$$4u = 0$$
 or $(u + 2) = 0$

$$u=rac{0}{4}$$
 or $u=-2$

$$u = 0$$
 or $u = -2$

58.) The zero of a quadratic polynomial $p(x) = x^2 - 2x - 8$ are and ·

(a)
$$(2, -4)$$

(b)
$$(-4, -2)$$

(c)
$$(4, 2)$$

(c)
$$(4,2)$$
 (d) $(4,-2)$

Ans. (d)
$$(4, -2)$$

Hint:
$$x^2 - 2x - 8 = 0$$
 => $x^2 - (4x - 2x) - 8 = 0$
=> $x^2 - 4x + 2x - 8 = 0$
=> $x(x - 4) + 2(x - 4) = 0$
=> $(x - 4)(x + 2) = 0$ => $x = 4$ or -2

59.) The zero of a quadratic polynomial $3x^2 - x - 4$ are :

(a)
$$\left(\frac{-4}{3}, 1\right)$$

(b)
$$(1, \frac{4}{3})$$

(c)
$$\left(-1, \frac{4}{3}\right)$$

(a)
$$\left(\frac{-4}{3}, 1\right)$$
 (b) $\left(1, \frac{4}{3}\right)$ (c) $\left(-1, \frac{4}{3}\right)$ (d) $\left(-1, \frac{-4}{3}\right)$

Ans. (c)
$$\left(-1, \frac{4}{3}\right)$$

Hint:
$$3x^2 - x - 4 = 0$$
 => $3x^2 - (4x - 3x) - 4 = 0$
=> $3x^2 - 4x + 3x - 4 = 0$
=> $x(3x - 4) + 1(3x - 4) = 0$
=> $(x + 1)(3x - 4) = 0$ => $x = \frac{4}{3}$ or -1

- 60.) The zero of a quadratic polynomial $p(x) = 6x^2 3 7x$ are
 - (a) $\left(\frac{-2}{3}, \frac{-3}{2}\right)$ (b) $\left(\frac{3}{2}, \frac{-1}{3}\right)$ (c) $\left(\frac{-3}{2}, \frac{1}{3}\right)$ (d) $\left(-3, \frac{3}{2}\right)$

Ans. (b) $(\frac{3}{2}, \frac{-1}{2})$

Hint:
$$6x^2 - 3 - 7x = 0$$
 (OR) $6x^2 - 7x - 3 = 0$
 $= > 6x^2 + 2x - 9x - 3 = 0$
 $= > 2x(3x + 1) - 3(3x + 1) = 0$
 $= > (2x - 3)(3x + 1) = 0 = > x = \frac{3}{2}$ or $\frac{-1}{3}$

- 61.) Find a quadratic polynomial, if the sum and product of whose zeroes are 4 and 1 respectively.
 - (a) $x^2 4x + 1$

(b) $x^2 + 4x + 1$

(c) $x^2 + 4x - 1$

(d) $x^2 - 4x - 1$

Ans. (a) $x^2 - 4x + 1$

Hint :- Sum of zeroes (s) = 4

Product of zeroes (p) = 1

Quadratic polynomial = $x^2 - sx + p$ $= x^2 - 4x + 1$

- 62.) Find a quadratic polynomial, if the sum and product of whose zeroes are -3 and 2 respectively.
 - (a) $x^2 3x + 2$

(b) $x^2 + 3x + 2$

(c) $x^2 + 3x - 2$

(d) $x^2 - 3x - 2$

Ans. (b) $x^2 + 3x + 2$

Hint :- Sum of zeroes (s) = -3

Product of zeroes (p) = 2

Quadratic polynomial = $x^2 - sx + p$ $= x^2 - (-3)x + 2$ $= x^2 + 3x + 2$

63.) Find a quadratic polynomial, if the sum and product of whose zeroes are $\sqrt{2}$ and $\frac{1}{3}$ respectively.

(a)
$$3x^2 - \sqrt{2}x + 3$$

(b)
$$3x^2 - 3\sqrt{2}x + 1$$

(c)
$$3x^2 + 3\sqrt{2}x - 1$$

(d)
$$3x^2 - 3\sqrt{2}x - 1$$

Ans. (b)
$$3x^2 - 3\sqrt{2}x + 1$$

Hint :- Sum of zeroes
$$(s) = \sqrt{2}$$

Product of zeroes
$$(p) = \frac{1}{3}$$

Quadratic polynomial =
$$x^2 - sx + p$$

$$= x^{2} - (\sqrt{2})x + \frac{1}{3}$$
$$= x^{2} - \sqrt{2}x + \frac{1}{3}$$

$$=3x^2-3\sqrt{2}x+1$$

64.) Find a quadratic polynomial, if the sum and product of whose zeroes are 0 and $\sqrt{5}$ respectively.

(a)
$$x^2 - \sqrt{5}x + 5$$

(b)
$$x^2 + 5$$

(c)
$$x^2 - \sqrt{5}x + \sqrt{5}$$

(d)
$$x^2 - 3x - 2$$

Ans. (b)
$$x^2 + 5$$

Hint :- Sum of zeroes
$$(s) = 0$$

Product of zeroes
$$(p) = \sqrt{5}$$

Quadratic polynomial =
$$x^2 - sx + p$$

= $x^2 - 0x + 5$

$$= x^2 + 5$$

65.) Find a quadratic polynomial, if the sum and product of whose zeroes are

$$\left(-\frac{1}{4} \ and \ \frac{1}{4}\right)$$
 respectively .

(a)
$$4x^2 - x + 1$$

(b)
$$4x^2 + x + 1$$

(c)
$$4x^2 + x - 1$$

(d)
$$4x^2 - x - 1$$

Ans. (b)
$$4x^2 + x + 1$$

Hint :- [Sum of zeroes
$$(s) = \frac{-1}{4}$$

Product of zeroes
$$(p) = \frac{1}{4}$$

Quadratic polynomial =
$$x^2 - sx + p$$

$$= x^{2} - \left(-\frac{1}{4}\right)x + \frac{1}{4}$$

$$= x^{2} + \frac{1}{4}x + \frac{1}{4}$$

$$= x^{2} + \frac{x}{4} + \frac{1}{4}$$

$$= \frac{4x^{2} + x + 1}{4} = 4x^{2} + x + 1$$

66.) Find a quadratic polynomial, whose zeroes are -3 and 2 respectively.

(a)
$$x^2 - x + 6$$

(b)
$$x^2 + x + 6$$

(c)
$$x^2 + x - 6$$

(d)
$$x^2 - x - 6$$

Ans. (c)
$$x^2 + x - 6$$

[Hint] :- Zeroes of a polynomial are -3 and 2 respectively.

Sum of zeroes
$$(s) = (\alpha + \beta) = -3 + 2 = -1$$

Product of zeroes
$$(p) = (\alpha \times \beta) = -3 \times 2 = -6$$

Quadratic polynomial =
$$x^2 - sx + p$$

$$= x^2 - (-1)x + (-6)$$
$$= x^2 + x - 6$$

67.) A quadratic polynomial, whose zeroes are -2 and -5 respectively.

(a)
$$x^2 - 7x + 10$$

(b)
$$x^2 + 7x + 10$$

(c)
$$x^2 + 7x - 10$$

(d)
$$x^2 - 7x - 10$$

Ans. (b)
$$x^2 + 7x + 10$$

[Hint] :- Zeroes of a polynomial are -2 and -5 respectively.

Sum of zeroes
$$(s)=(\alpha+\beta)=-2+(-5)=-2-5=-7$$

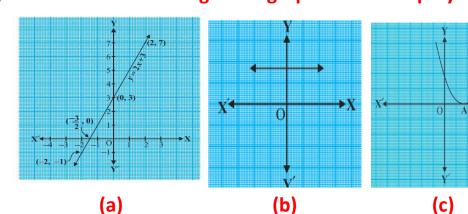
Product of zeroes $(p)=(\alpha\times\beta)=-2\times-5=10$

Quadratic polynomial =
$$x^2 - sx + p$$

= $x^2 - (-7)x + 10$
= $x^2 + 7x + 10$

68.) Graph of a linear polynomial p(x) = ax + b is :

- (a) Parallel
- (b) Curve
- (c) Straight line (d) Intersects


Ans. (c) Straight line.

69.) What is the graph of a linear polynomial y = 2x + 3 is :

- (a) Parallel
- (b) Curve
- (c) Straight line
- (d) Intersects

Ans. (c) Straight line.

70.) Which of the following is the graph of a linear polynomial?

Ans. (a) Graph of a linear polynomial is a Straight line.

Hint :- [For a linear polynomial p(x) = ax + b, $a \neq 0$, the graph of y = 2x + 3, is a Straight line Which Intersects the x - axis at 1 (One) point.]

71.) For a linear polynomial ax + b, $a \ne 0$, the graph of y = ax + b, is a Straight line Which Intersects the x - axis at :

(a)
$$\left(\frac{-b}{a}, -1\right)$$

(b)
$$\left(\frac{b}{a}, 0\right)$$

(c)
$$\left(\frac{-b}{a}, \mathbf{0}\right)$$

(a) $\left(\frac{-b}{a}, -1\right)$ (b) $\left(\frac{b}{a}, 0\right)$ (c) $\left(\frac{-b}{a}, 0\right)$ (d) None of these

(d)

Ans. (c) $\left(\frac{-b}{a}, 0\right)$

Hint :- We have p(x) = ax + b = 0

$$ax = -b$$

$$x = \frac{-b}{a}$$

72.) Graph of 2x + 3 intersects the x - axis at :

(a)
$$\left(\frac{-2}{3}, -1\right)$$
 (b) $\left(\frac{2}{3}, 1\right)$ (c) $\left(\frac{-3}{2}, 0\right)$ (d) $\left(\frac{3}{2}, 0\right)$

(b)
$$\left(\frac{2}{3}, \mathbf{1}\right)$$

(c)
$$\left(\frac{-3}{2}, 0\right)$$

(d)
$$\left(\frac{3}{2}, \mathbf{0}\right)$$

Ans. (c) $(\frac{-3}{2}, 0)$

Hint :- We have p(x) = 2x + 3 = 0

$$2x = -3$$

$$x=\frac{-3}{2}$$

73.) Graph of p(x) = 3x - 2 is a Straight line which intersects the x - axis at :

(a)
$$\left(\frac{-2}{3}, -1\right)$$
 (b) $\left(\frac{2}{3}, 0\right)$ (c) $\left(\frac{-3}{2}, 0\right)$ (d) $\left(\frac{3}{2}, 0\right)$

(b)
$$\left(\frac{2}{3}, \mathbf{0}\right)$$

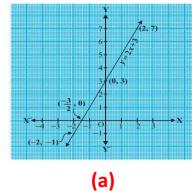
(c)
$$\left(\frac{-3}{2}, 0\right)$$

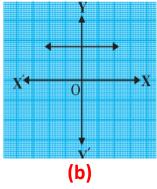
(d)
$$\left(\frac{3}{2}, \mathbf{0}\right)$$

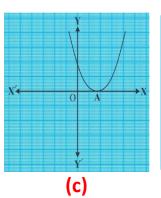
Ans. (b) $\left(\frac{2}{3}, 0\right)$

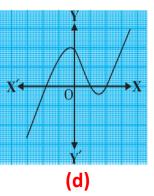
- 74.) What is the graph of a quadratic polynomial is:
 - (a) Parabolas
- (b) Curve
- (c) Straight line (d) Intersects

- Ans. (a) Parabolas.
- 75.) What is the graph of $p(x) = ax^2 + bx + c$, $a \ne 0$ is :
 - (a) Parabolas
- (b) Curve
- (c) Straight line
- (d) Intersects


- Ans. (a) Parabolas.
- 76.) What is the graph of $p(x) = x^2 3x 4$ is :
 - (a) Parabolas
- (b) Curve
- (c) Straight line (d) Intersects


- Ans. (a) Parabolas.
- 77.) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabolas (open **Upwards like** ∪ **if**:
- (a) a > 0 (b) a < 0 (c) a = 0 (d) $a \neq 0$

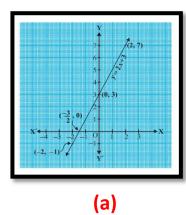

- Ans. (a) a > 0
- 78.) Graph of a corresponding equation $y = ax^2 + bx + c$ has shape open upwards parabolas like ∪ curve if :
 - (a) a > 0

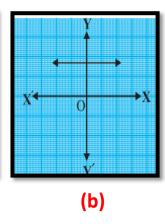

- (b) a < 0 (c) a = 0 (d) $a \neq 0$
- Ans. (a) a > 0
- 79.) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabolas (open **Downwards like** ∩ **if** :
 - (a) a > 0

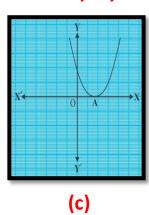
- (b) a < 0 (c) a = 0 (d) $a \neq 0$
- Ans. (b) a < 0
- 80.) Which of the following is the graph of a quadratic polynomial?

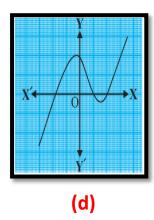
- Ans. (c) Because this graph has a shape open upwards parabolas like.
 - Hint :- [For a quadratic polynomial the graph of $ax^2 + bx + c$, $a \ne 0$, has two shapes either open upwards like ∪ or open downwards like ∩ are called parabolas.]

(a)
$$a > 0$$

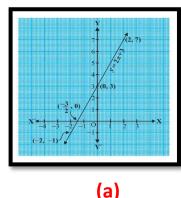

(b)
$$a < 0$$

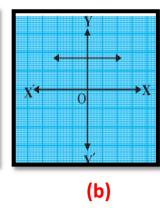

(b)
$$a < 0$$
 (c) $a = 0$ (d) $a \neq 0$

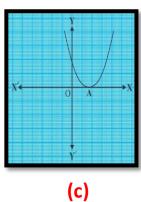

(d)
$$a \neq 0$$

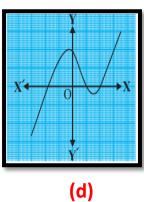

Ans. (b) a < 0

82.) Which of the following is the graph of a constant polynomial?

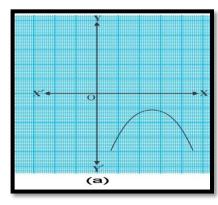


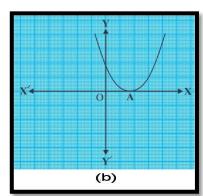


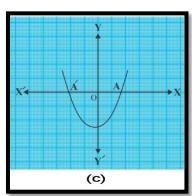



Ans. (b)

83.) Which of the following is the graph of a cubic polynomial?

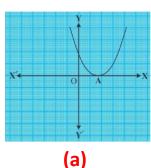


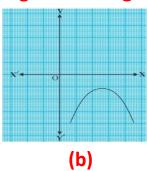


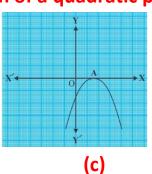


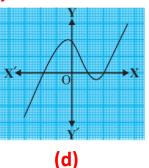
Ans. (d)

84.) Which of the following graph shows two distinct zeroes of a quadratic polynomial?






Ans. (c)


Hint :- [The graph of (c) showing y = p(x) Intersects the x - axis at 2 points. So, the number of zeroes for the given graph is 2.]

85.) Which of the following is not the graph of a quadratic polynomial?

Ans. (d)

Hint :- [For a quadratic polynomial the graph of $ax^2 + bx + c$, $a \ne 0$, has two shapes either open upwards like \cup or open downwards like \cap are called parabolas.]

86.) Which one of the following is a Polynomial

(a)
$$\frac{1}{2x^2+3x+4}$$

(b)
$$\frac{1}{3x+4}$$

(c)
$$4x^3 + 3x^2 + 2x - \frac{3}{\sqrt{5}}$$

(d)
$$\sqrt{y}+4$$

Ans. (c) $4x^3 + 3x^2 + 2x - \frac{3}{\sqrt{5}}$

87.) If α , β are the zeroes of the $p(x) = x^2 - 4x + 5$ then find $\frac{1}{\alpha} + \frac{1}{\beta}$

(a)
$$\frac{-4}{5}$$

(b)
$$\frac{4}{5}$$

(c)
$$\frac{5}{4}$$

(a)
$$\frac{-4}{5}$$
 (b) $\frac{4}{5}$ (c) $\frac{5}{4}$ (d) $\frac{-5}{4}$

Ans. (a) $\frac{-3}{2} = \frac{-4}{5}$

(b)
$$\frac{4}{5}$$

Hint :- We have α , β are the zeroes of the $p(x) = x^2 - 4x + 5$

$$\alpha + \beta = \frac{-b}{a} = \frac{-(-4)}{1} = 4$$

$$\alpha\beta = \frac{c}{a} = \frac{5}{1} = 5$$

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{4}{5}$$

88.) If one of the zero of a quadratic polynomial $ax^2 + bx + c$ is zero then the other zero is:

(a)
$$\frac{-b}{a}$$

(b)
$$\frac{b}{a}$$

(c)
$$\frac{c}{a}$$
 (d) $\frac{a}{b}$

(d)
$$\frac{a}{b}$$

Ans. (a) $\frac{-b}{}$

Hint :- [We have, one of the zero of a quadratic polynomial is zero] If α and β are three zeroes of the quadratic polynomial

$$ax^2 + bx + c$$
, then

$$\alpha + \beta = \frac{-b}{a}$$

$$0+\beta = \frac{-b}{a} = > \alpha = \frac{-b}{a}$$

89.) If the sum of the zeros of the quadratic polynomial $p(x) = kx^2 - 6x + 1$ is 3, then the value of k is :

(a) 6

(b) 2

- (c) -2
- (d) 3

Ans. (b) 2

Hint :- [We have, given quadratic polynomial be $p(x) = kx^2 - 6x + 1$

∴ Sum of zeroes
$$(\alpha + \beta) = \frac{-b}{a}$$

3 = $\frac{-(-6)}{k}$

$$3k = 6$$
 => $k = \frac{6}{3}$ => $\frac{6^2}{3_1} = 2$

90.) If x-3 is a factor of quadratic polynomial $p(x)=x^2+kx-12$ then the value of k is:

(a) 1

(b) 2

- (c) 4
- (d) -4

Ans. (a) 1

Hint: We have If x-3 is a factor of quadratic polynomial p(x).

$$x^2 + kx - 12$$

91.) If -2 is a zero of quadratic polynomial $p(x) = x^2 - 2x - 4k$ then the value of *k* is :

(a) 1

(b) 2

- (c) 4 (d) -4

Ans. (b) 2

[Hint] :- We have, $p(x) = x^2 - 2x - 4k$

since -2 is a zero of p(x)

$$\therefore p(-2) = 0$$

$$(-2)^2 - 2(-2) - 4k = 0$$

$$4+4-4k=0$$
 => $8-4k=0$
 $-4k=-8$
 $k=\frac{-8}{-4}=2$

92.) If k is a zero of p(x) = 4x + 8, then p(k) = 0 find value of p(x) at = k.

(d)
$$-2$$

Ans. (d) -2

[Hint] :- We have k is a zero of p(x) = 4x + 8

 ${m k}$ is said to be a zero of a polynomial ${m p}({m x})$, if ${m p}({m k})={m 0}$

$$4k + 8 = 0$$
,

i.e.,
$$4k = -8$$

$$k = \frac{-8}{4}$$
, $k = \frac{-8^2}{4_1} = -2$

93.) If 3 is a zero of quadratic polynomial $x^2 + kx - 12$ then the value of k is :

(d)
$$-4$$

Ans. (a) 1

[Hint] :- We have 3 is a zero of quadratic polynomial $x^2 + kx - 12$

3 is said to be a zero of a polynomial if $x^2 + kx - 12 = 0$

$$(3)^{2} + k(3) - 12 = 0$$

$$9 + 3k - 12 = 0$$

$$3k = 12 - 9$$

$$3k = 3$$

$$k = \frac{3}{3} = 1$$

94.) If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then we can find Polynomials q(x) and r(x) such that $p(x) = g(x) \times q(x) + r(x)$

(a)
$$r(x) = 0$$

- (b) Degree of r(x) < Degree of g(x)
- (c) Both (a) and (b) in the above
- (d) None of these

Ans. (c) Both (a) and (b) in the above

95.) Which of the following relation is always satisfied when we divide a number
or polynomial by another number or polynomial?

(a) Dividend = Quotient × Remainder + Divisor

(b) Dividend = Remainder × Divisor + Quotient

(c) Divisor = Dividend \times Quotient + Remainder

(d) Dividend = Divisor × Quotient + Remainder

Ans. (d) Dividend = Divisor \times Quotient + Remainder

96.) Find Sum and product of the zeroes of the quadratic polynomial

 $p(x) = x^2 - 2x - 8$ is:

(a) (2, 8)

(b) (2,-8) (c) (-2,-8) (d) (-2,8)

Ans. (b) (2, -8)

(Hint) :- We have quadratic polynomial $p(x) = x^2 - 2x - 8$

Here, a = 1, b = -2, c = -8

 \therefore Sum of the zeroes $=\frac{-b}{a}=\frac{-(-2)}{1}=2$

Product of the zeroes $=\frac{c}{a}=\frac{-8}{1}=-8$

97.) Find Sum and product of the zeroes of the quadratic polynomial

 $p(x) = x^2 + 7x + 10$ is :

(a) (7, 10)

(b) (7,-10) (c) (-7,-10) (d) (-7,10)

Ans. (d) (-7, 10)

(Hint) :- We have quadratic polynomial $p(x) = x^2 + 7x + 10$

Here, a = 1, b = 7, c = 10

∴ Sum of the zeroes $=\frac{-b}{a}=\frac{-7}{1}=-7$

Product of the zeroes $=\frac{c}{a}=\frac{10}{1}=10$

98.) If p(x) and g(x) are any two polynomials with $g(x) \neq 0$, then we can

Find Polynomials q(x) and r(x) such that $p(x) = q(x) \times q(x) + r(x)$

(a) Degree of r(x) =Degree of g(x)

(b) Degree of r(x) < Degree of g(x)

(c) Degree of r(x) > Degree of g(x)

(d) None of these

Ans. (b) Degree of r(x) < Degree of g(x)

```
99.) Dividend = (....) \times (....) + (....)
     (a) Divisor × Remainder + Quotient
     (b) Divisor × Quotient + Remainder
     (c) Quotient × Remainder + Divisor
     (d) None of these
Ans. (b) Divisor \times Quotient + Remainder
100.) If a polynomial p(x) is divided by g(x), then we obtained g(x) as quotient
     and the r(x) as remainder, division algorithm is :
    (a) r(x) = p(x) \times q(x) + q(x)
    (b) q(x) = p(x) \times q(x) + r(x)
    (c) p(x) = q(x) \times q(x) + r(x)
    (d) q(x) = p(x) \times q(x) + r(x)
Ans. (c) p(x) = g(x) \times q(x) + r(x)
101.) Which of the following relation is always satisfied when we divide a
     Number or polynomial by another number or polynomial?
     (a) Dividend = Quotient × Remainder + Divisor
     (b) Dividend = Remainder \times Divisor + Quotient
     (c) Divisor = Dividend \times Quotient + Remainder
     (d) Dividend = Divisor × Quotient + Remainder
Ans. (d) Dividend = Divisor \times Quotient + Remainder
102.) The sum and product of the quadratic polynomial x^2 + px + q are
     4 and -3 respectively. Find the value of p and q.
     (a) 4 and 3
                       (b) 4 and -3 (c) -4 and -3 (d) -4 and 3
Ans. (c) -4 and -3
103.) What is the degree of a Polynomial p(x) = ax^3 + bx + c?
     (a) 1
                        (b) 2
                                               (c) 3
                                                             (d) 0
Ans. (b) 3 (Three)
104.) Which of the following is true about division algorithm formula?
     (a) Dividend = Quotient × Remainder + Divisor
     (b) Dividend = Remainder \times Divisor + Quotient
     (c) Dividend = Divisor \times Quotient + Remainder
     (d) Divisor = Dividend × Quotient + Remainder
Ans. (c) Dividend = Divisor \times Quotient + Remainder
```

105.) If $(x) = ax^2 + bx + c$, then $\frac{c}{a}$ is equal to :

- (a) Sum of zeroes
- (b) Product of zeroes
- (c) Subtraction of zeroes
- (d) 0

Ans. (b) Product of zeroes

106.) If $(x) = ax^2 + bx + c$, then $\frac{-b}{a}$ is equal to :

- (a) Sum of zeroes
- (b) Product of zeroes
- (c) 1
- (d) 0

Ans. (a) Sum of zeroes

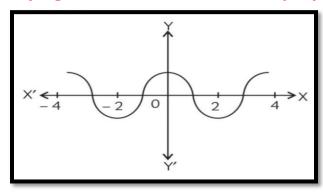
107.) What is the zero of a polynomial $p(x) = 2x^2 - 8$ is :

- (a) 0 and 2
- (b) 0 and -2 (c) -4 and 4 (d) -2 and 2

Ans. (b) 0 and -2

Hint :- We have $p(x) = 2x^2 - 8 = 0$

$$2x^2 = 8$$


$$x^2 = \frac{8}{2} = \frac{8^4}{21} = 4$$

$$x^2 = 4$$

$$x = \pm \sqrt{4}$$

$$x = \pm 2$$
 or -2 and 2

108.) The graph of y = p(x) is given below. for some polynomial p(x). Find the number of zeroes lying between -2 to 2 of the polynomial p(x) is

(a) 1

(b) 2

- (c) 3
- (d) 0

Ans. (b) 2

	Hint :- [Because bet	ween -2 to 2, curve of	ut the $x - a$	xis at 2 point. So, the
	number of zo	eroes lying between —	2 to 2 of the	polynomial $p(x)$ is 2]
109.	•	of a Polynomial $p(x)$	$=ax^2+bx$	+ c?
	•	(b) 2	(c) 3	(d) 0
	(b) 2 (Two)			
110.	·	of a Polynomial $p(x)$		
	(a) 1	(b) 2	(c) 3	(d) 0
	(c) 3 (Three)			
111.) A Polynomial $p(x)$	$a = ax^2 + bx + c$ is call	lled a <u></u>	polynomial?
	(a) Linear	(b) Quadratic	(c) Cubic	(d) None of these
Ans.	(b) Quadratic.			
		of degree 2 (Two) is ca		
		$x^2 + bx + c$ is (Two) so		
112.) A Polynomial $p(x)$	$=ax^3+bx^2+cx+$	\cdot d is called a	<u></u>
	polynomial?			
	(a) Linear	(b) Quadratic	(c) Cubic	(d) Quartic
Ans.	(c) Cubic.			
		of degree 3 (Three) is		
	degree of a	$x^3 + bx^2 + cx + d \text{ is } ($	Three) ∴ cor	rect answer is (c).
113.) A Polynomial $p(x)$	ax + b is called a	<u></u> pol	ynomial?
	(a) Linear	(b) Quadratic	(c) Cubic	(d) None of these
Ans.	(a) Linear			
	(Hint) :- Polynomial	of degree 1 (One) is ca	illed a linear	polynomial?
		of the quadratic polyno	omial $p(x) =$	$=6x^2-3-7x$ is:
	(a) $\frac{-7}{6}$ (b) $\frac{7}{6}$	(b) $\frac{7}{6}$	(c) $\frac{1}{2}$	(d) $\frac{-1}{2}$
	7	6	. 7 2	2
Ans.	(b) $\frac{7}{6}$			
	Hint :- We have, qu	adratic polynomial $oldsymbol{p}(oldsymbol{z})$	$x)=6x^2-3$	3-7x
	More genera	ally any quadratic polyi	nomial in $oldsymbol{p}(x)$	x) is of form
	$ax^2 + bx +$	c, where a , b , c are real	al numbers a	and $a \neq 0$.
	∴ quadratic pol	ynomial $p(x) = 6x^2$ –	-7x - 3	
		-7 , $c=-3$, Sum of th		$\frac{-b}{a} = \frac{-(-7)}{6} = \frac{7}{6}$
				u U

115.) Degree of a li	near polynomial is?			
(a) 1	(b) 2	(c) 3	(d) 0	
Ans. (a) 1	• •	.,	• •	
116.) What is the d	egree of a quadratic	polynomial is ?		
(a) 1	(b) 2	(c) 3	(d) 0	
Ans. (b) 2				
117.) What is the n	umber of zeroes of a	given polynomial	(x+4)(x-2) = is:	
(a) 4,2	(b) $4, -2$	(c) $-4, -2$	(d) $-4, 2$	
Ans. (d) $-4, 2$				
118.) Which of the	following is a Polyno	mial ?		
(a) $2x^2 + \sqrt{5}$	x + 4	(b) $2x^2 + \sqrt{x} + 4$		
(c) $4x^2 + 3x^{-2} + 2x$		(d) $x^2 + 2x + 5^{\frac{3}{2}}$		
Ans. (a) $2x^2 + \sqrt{5}x^2$	x + 4			
119.) Which of the	following are zero of	a quadratic polyn	omial $p(x) = x^2 - 4$:	
	(b) $\sqrt{2}$, $-\sqrt{2}$			
Ans. (a) $-2, 2$				
120.) The zero of a	quadratic polynomia	$p(x) = x^2 - 9$ as	re ?	
(a) $-3,3$	(b) $\sqrt{3}$, $-\sqrt{3}$	(c) 3,3	(d) None of these	
Ans. (a) $-3, 3$				
$Hint => x^2 -$	9 = 0			
$=> x^2$	= 9			
=>	$x = \pm \sqrt{9}$			
=>	$x = \pm 3$			
=> <i>x</i> =	= -3,3			
121.) Which of the	following is a linear F	Polynomial ?		

(a)
$$ax^2 + bx + c$$

(b)
$$ax + b$$

(c)
$$ax^3 + bx^2 + cx + d$$

(d) None of these

Ans. (b) ax + b

122.) Polynomial of degree is called a linear polynomial?

(d) 0 (Zero)

Ans. (a) 1 (One)

123.) Polynomial of d	egreei	s called a quadratic	polynomial ?
	(b) 2 (Two)		
Ans. (b) 2 (Two)			
124.) Polynomial of d	egree <u></u> i	s called a cubic poly	nomial ?
(a) 1 (One)	(b) 2 (Two)	(c) 3 (Three)	(d) 0 (Zero)
Ans. (c) 3 (Three)			
125.) Polynomial of d	egree <u></u> i	s called a constant	polynomial ?
(a) 1 (One)	(b) 2 (Two)	(c) 3 (Three)	(d) 0 (Zero)
Ans. (d) 0 (Zero)			
126.) Quadratic polyr	nomial has	zeroes.	
(a) 1	(b) 2	(c) 3	(d) More than 2
Ans. (b) 2			
127.) Quadratic polyr	omial has	real zeroes.	
(a) 2	(b) At least 2	(c) 3	(d) At most 2
Ans. (d) At most 2			
128.) Quadratic polyr	omial has	maximum num	ber of zeroes.
(a) 2	(b) At least 2	(c) 3	(d) More than 2
Ans. (b) 2			
[Hint] :- (There	are at most 2 zeroes	s of a quadratic pol	ynomial.)
129.) Sum of the zero	es of the quadratic	polynomial $p(x) =$	$x^2 - 2x - 8$ is:
(a) 1	(b) 2	(c) 3	(d) 4
Ans. (b) 2 (Hint) :- He	ere, $a = 1$, $b = -2$	∴ Sum of the zeroe	$s = \frac{-b}{a} = \frac{-(-2)}{1} = 2$