PRACTICE PAPER

Y

Time allowed: 45 minutes Maximum Marks: 200

General Instructions: Same as Practice Paper-1.

Choo	se the correct option in t	he following questions.								
1.	When the distance between (a) one-half	een two charged particle (b) one-fourth	s is halved, the Coulor (c) double	nb force between them becomes (d) four times.	5					
2.	Two charges are at dista dielectric constant K is p (a) F/K	•		them is F . If a dielectric material of secomes $(d) \ K^2F$						
3.	Which physical quantity (a) Electric charge (c) Electric force	have unit newton /could	(b) Electric field							
4.	Electric field lines contracts lengthwise, It shows (a) repulsion between same charges (b) attraction between opposite charges (c) no relation between force & contraction (d) electric field lines does not move in straight path									
5.	The electric flux emerging (a) $\frac{1}{\varepsilon_0}$	ng out from 1C charge is $(b) \ 4\pi$	(c) $\frac{4\pi}{\varepsilon_0}$	(d) ε_0						
6.	A charge Q is supplied to (a) More in case of sphere (c) Same in both cases		Which of the following (b) More in case o (d) Information in	f cube						
7.	* *		nnected in parallel. If	a charge Q is given to the combination	n,					
	(a) $\frac{C_1}{C_2}$		(b) $\sqrt{\frac{C_1}{C_2}}$ (d) $\frac{C_2}{C_1}$							
	$(c) \ \sqrt{\frac{C_2}{C_1}}$		(d) $\frac{C_2}{C_1}$							
8.	Drift velocity of electron (a) a few millimeters per (c) a few kilometers per	second	he order of (b) a few meters (d) 3×10^{10} cm	-						
9.	2. Two bulbs one of 50 watts and another of 25 watts are connected in series to the mains. The ratio of the current through them is									
	(a) 1 : 1	(b) 1:2	(c) 2:2	(d) 1:4						

10. The electric current in a conductor varies with time t as $I = 2t + 3t^2$, where I is in ampere and t in seconds. Electric charge flowing through a section of the conductor during t = 2 s to t = 3 s is

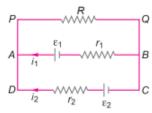
(a) 10 C

b) 24 C

(c) 33 C

(d) 44 C

 According to Joule's law, if potential difference across a conductor of material of resistivity ρ remains constant, then heat produced in the conductor is directly proportional to

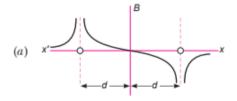

(a) $\frac{1}{\sqrt{\rho}}$

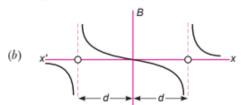
(b) p

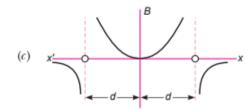
(c) p⁻¹

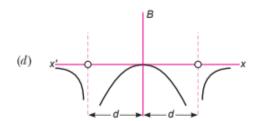
(d) ρ²

12. See the electrical circuit shown in fig. Which one of the following is the correct equation for it?


(a)
$$\varepsilon_2 - i_2 r_2 - \varepsilon_1 - i_1 r_1 = 0$$


(b)
$$-\varepsilon_2 - (i_1 + i_2) R + i_2 r_2 = 0$$


(c)
$$\varepsilon_1 - (i_1 + i_2) R + i_1 r_1 = 0$$


(d)
$$\varepsilon_1 - (i_1 + i_2) R - i_1 r_1 = 0$$

13. Two long parallel wires are at a distance 2d apart. They carry steady currents flowing out of the plane of paper as shown. The variation of the magnetic field B along the line X'X is given by

- 14. A charged particle moves through a magnetic field perpendicular to its direction. Then
 - (a) both momentum and kinetic energy of the particles are not constant
 - (b) both momentum and kinetic energy of the particles are constant
 - (c) kinetic energy changes but momentum remains constant
 - (d) momentum changes but kinetic energy remains constant
- 15. When a straight conductor is carrying an electric current
 - (a) there are circular magnetic lines of force around it.
 - (b) there are no magnetic lines of force near it.
 - (c) there are magnetic lines of force parallel to conductor along the direction of current.
 - (d) there are magnetic lines of force parallel to conductor opposite to the direction of current.
- 16. A solenoid has 1000 turns per metre length. If a current of 5 A is flowing through it, then magnetic field inside the solenoid is

(a)
$$2 \pi \times 10^{-3} \text{ T}$$

(b)
$$4 \pi \times 10^{-5} \text{ T}$$

(c)
$$2 \pi \times 10^{-5} \text{ T}$$

(d)
$$4 \pi \times 10^{-3} \text{ T}$$

17.	Given below	are two	statements	labelled	as Statement	P and	Statement	O:
	OITCH DCION	ter c tiro	Dettechicates	INSCILCT	us succincin		Dittettie	\sim .

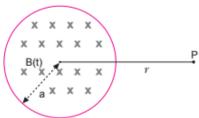
Statement P: Susceptibility is defined as the ratio of intensity of magnetisation *I* to magnetic intensity *H*.

Statement Q: Greater the value of susceptibility, smaller the value of intensity of magnetisation I.

Select the most appropriate option:

(a) P is true, but Q is false

(b) P is false, but Q is true


(c) Both P and Q are true

- (d) Both P and Q are false
- 18. Which of the following units denotes the dimensions $\frac{ML^2}{Q^2}$, where Q denotes the electric charge?
 - (a) Wb/m²
- (b) henry (H)
- (c) H/m²
- (d) weber (Wb)
- 19. Two co-axial solenoids are made by winding insulated wire over a pipe of cross-sectional area $A = 10 \text{ cm}^2$ and length l = 10 cm. If one solenoid has 300 turns and the other 400 turns, their mutual inductance is :
 - (a) $4.8 \pi \times 10^{-5} \text{ H}$

(b) $2.4 \pi \times 10^{-4} H$

(c) $2.4 \pi \times 10^{-5} \text{ H}$

- (d) $4.8 \pi \times 10^{-4} H$
- 20. A uniform but time varying magnetic field B (t) exists in a circular region of radius 'a' and is directed into the plane of paper as shown. The magnitude of the induced electric field at point P at a distance r from the centre of the circular region:

- (a) is zero
- (b) decreases as 1/r
- (c) increases as r
- (d) decreases as $1/r^2$
- 21. A 20 volt AC is applied to a circuit consisting of a resistance and a coil with negligible resistance. If the voltage across the resistance is 12 volt, the voltage across the coil is
 - (a) 16 V

(b) 10 V

(c) 8 V

(d) 6 V

22. Match the following in Column A with Column B.

	Column A	Column B					
(i)	Reactance of a series RLC-circuit at resonance	(p) Voltages across L and C are 180° out of phase					
(ii)	For a series LC-circuit	(q) Currents in L and C are 180° out of phase					
(iii)	For a parallel LC-circuit	(r) minimum					
(iv)	Reactance of a capacitor in a DC circuit	(s) infinite					

(a) (i)-(p), (ii)-(q), (iii)-(r), (iv)-(s)

(b) (i)-(r), (ii)-(s), (iii)-(p), (iv)-(q)

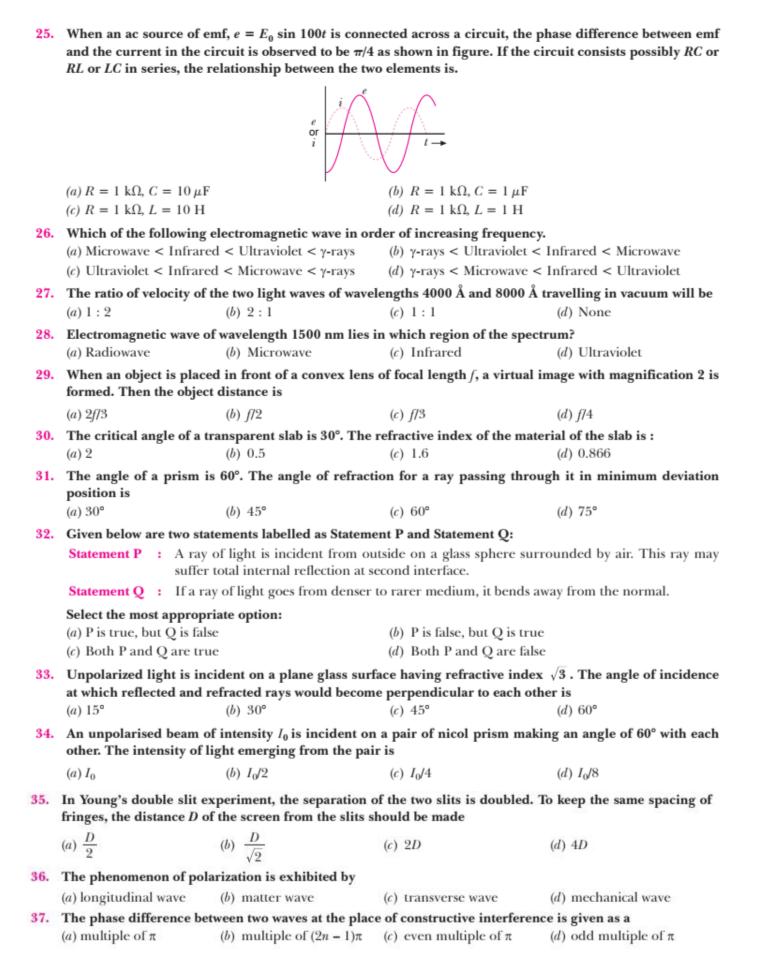
(c) (i)-(r), (ii)-(p), (iii)-(q), (iv)-(s)

- (d) (i)-(p), (ii)-(r), (iii)-(q), (iv)-(p)
- 23. Reactance of a capacitor of capacitance C for an alternating current of frequency $\frac{400}{\pi}$ Hz is 25 Ω . The value of C is
 - (a) 25 µF

(b) 50 µF

(c) 75 µF

- (d) 100 μF
- 24. In an ac circuit, voltage V and current i are given by


 $V = 100 \sin 100 t \text{ volt}$

 $i = 100 \sin (100t + \pi/3) \text{ mA}$

The power dissipated in the circuit is

- (a) 104 W
- (b) 10 W
- (c) 2.5 W

(d) 5 W

				_			
38.	The path difference be (a) multiple of λ	etween two waves at the pla (b) multiple of λ/2	ace of destructive interference (c) even multiple of $\lambda/2$	te is given by (d) odd multiple of λ /2	F		
39.			cident light has more than a	•			
	(a) frequency	(b) wavelength	(c) velocity	(d) charge	ŀ		
40.	The threshold waveler	ngth for a metal having wo	rk function ϕ_0 is λ_0 , what is t	he threshold wavelength for a			
	metal whose work fun	ction is $\frac{\Phi_0}{2}$?			١		
	(a) 4 λ_0	(b) 2 λ ₀	(c) λ ₀ /2	(d) λ ₀ /4	ľ		
41.	The electric potential	between a proton and an	electron is given by $V = V_0 1$	$og_e \frac{r}{r_0}$ where r_0 is a constant.	9		
				ntum number n is represented			
	$(a)\; r_n \propto n$	(b) $r_n \propto \frac{1}{n}$	(c) $r_n \propto n^2$	(d) $r_n \propto \frac{1}{n^2}$			
42.	The energy level diagr	ram of an element is given	below. The transition that co	rresponds to the emission of a			
	spectral line of wavele	ength 102.7 nm is			(
		A	- 0.85 eV				
		ВС	- 1.5 eV		(
			- 3.4 eV		3		
			− 13.6 eV				
	(a) A	(b) D	(c) C	(d) B			
43.	45	tron in hydrogen atom is					
	(a) $\frac{e^2}{4\pi\epsilon_0 r}$	(b) $\frac{e^2}{3\pi\epsilon_0 r}$	(c) $\frac{e^3}{8\pi\epsilon_0 r}$	(d) $\frac{e^2}{8\pi\epsilon_0 r}$			
44.			orbital radius as the ground	l state of hydrogen. Then the			
	quantum state n of Be						
	(a) n = 1	(b) $n = 2$	(c) $n = 3$	$(d) \ n = 4$			
45.			llowing statement is correct?				
	•		with that of modulating sign	al.			
		r wave is less than that of m r wave is equal to that of m					
			with the amplitude of the m	odulating signal			
46			e mass number of the atom				
10.	(a) increases by one	(b) remains the same	(c) decreases by one	(d) decreases by four			
47.	β-rays emitted by a ra		45 d 4 d 4 d 4 d 4 d 4 d 4 d 4 d 4 d 4 d				
	(a) electro-magnetic ra		(b) the electrons orbiting around the nucleus				
	(c) charged particles er	*	(d) neutral particles				
48.	The energy gap betwe	en the valence and conductor (b) semiconductor	(c) insulator	l eV. The substance is a (d) superconductor			
49.	A p-n photodiode is n	nade of a material with a b	and gap of 2.0 eV. The mini	mum frequency of the radiation			
	that can be absorbed $(a) 10 \times 10^{14} \text{ Hz}$	by the material is nearly (b) $5 \times 10^{14} \mathrm{Hz}$	(c) $1 \times 10^{14} \text{ Hz}$	(d) $20 \times 10^{14} \text{ Hz}$			
50.		m performs the logic funct		20 To			
		G ₁	G ₂				
		A ₀					

(c) NAND gate

(d) OR gate

(b) AND gate

(a) XOR gate

ANSWERS

PRACTI	CE PA	PER —	19
--------	-------	-------	----

1.	(d)	2.	(a)	3.	(b)	4.	(b)	5.	(a)	6.	(c)	7.	(a)
8.	(a)	9.	(a)	10.	(b)	11.	(c)	12.	(d)	13.	(b)	14.	(d)
15.	(a)	16.	(a)	17.	(c)	18.	(b)	19.	(d)	20.	(b)	21.	(a)
22.	(c)	23.	(b)	24.	(c)	25.	(c)	26.	(a)	27.	(c)	28.	(c)
29.	(b)	30.	(a)	31.	(a)	32.	(c)	33.	(d)	34.	(d)	35.	(c)
36.	(c)	37.	(c)	38.	(d)	39.	(a)	40.	(b)	41.	(a)	42.	(b)
43.	(d)	44.	(b)	45.	(d)	46.	(b)	47.	(c)	48.	(b)	49.	(b)

50. (b)

PRACTICE PAPER-19

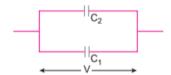
1. (d) By Coulomb's law, $F \propto \frac{1}{r^2}$

$$\therefore \quad \frac{F}{F'} = \left(\frac{d/2}{d}\right)^2 \quad \Rightarrow \quad F' = 4F$$

2. (a) In air, $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{d^2}$...(1)

> In material, $F' = \frac{1}{4\pi\epsilon_0 K} \frac{q_1 q_2}{d^2}$...(2)

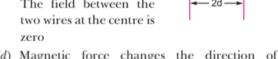
Dividing equation (1) and (2)


$$\frac{F'}{F} = \frac{1}{K} \Rightarrow F' = \frac{F}{K}$$

- **3.** (b) As $E = \frac{F}{a}$; unit = N/C
- **4.** (b) Electric field lines initiate from positive charge and terminate on negative charge, hence they got contracted length wise, this is the indication of force of attraction of force between unlike
- **5.** (a) Electric flux = $\frac{Q_{enclosed}}{\varepsilon_0}$

$$Q_{\text{enclosed}} = 1 \text{ C}$$

$$\therefore \qquad \qquad \varphi = \frac{1}{\varepsilon_0}$$


- 6. (c) In all conductors charge is same.
- 7. (a) Potential difference across $C_1 = V$ Potential difference across $C_9 = V$

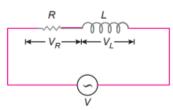
$$V = \frac{Q}{C}$$

$$\frac{Q_1}{C_1} = \frac{Q_2}{C_2} \implies \frac{Q_1}{Q_2} = \frac{C_1}{C_2}$$

- **10.** (b) $I = \frac{dq}{dt} \Rightarrow q = \int_2^3 I dt = \int_2^3 (2t + 3t^2) dt$ $= \left[\frac{2t^2}{2} + \frac{3t^3}{3} \right]_0^3 = \left[t^2 + t^3 \right]_2^3$ $= [(3)^2 + (3)^3] - [(2)^2 + (2)^3] = 24 \text{ C}$
- **11.** (c) $Q = \frac{V^2}{R}t = \frac{V^2}{(\rho l/A)}t \propto \frac{1}{\rho}$
- 12. (d) Applying Kirchhoff's law in mesh ABQPA $-\varepsilon_1 + i_1 r_1 + (i_1 + i_2) R = 0$ $\Rightarrow \quad \epsilon_1 - (i_1 + i_2) R - i_1 r_1 = 0$
- 13. (b) By Maxwell right hand rule the magnetic field to the loop of wire '1' will be downward and to the right of wire '2' it is upward $\left(B \propto \frac{1}{r}\right)$. On the right of wire '1' it is upward and on the left of wire '2' it is downward. The field between the two wires at the centre is

- 14. (d) Magnetic force changes the direction of particle, so momentum of particle changes.
- **15.** (a) According to right hand thumb rule, there are concentric circular magnetic field lines around
- **16.** (a) $B = \mu_0 nI = 4\pi \times 10^{-7} \times 5 \times 1000 = 2\pi \times 10^{-3} \text{ T}$
- 19. (d) Mutual inductance of two solenoid system,

$$\begin{split} M &= \mu_0 \bigg(\frac{N_1}{l}\bigg) N_2 A \\ &= 4\pi \times 10^{-7} \bigg(\frac{300}{0 \cdot 10}\bigg) \times 400 \times 10 \times 10^{-4} \ \mathrm{H} \end{split}$$


$$= 4.8 \pi \times 10^{-4} H$$

20. (b) If E is electric field induced at distance r, then

$$E 2\pi r = \frac{d}{dt} \{AB(t)\} = \pi a^2 \frac{dB}{dt}(t)$$

$$\Rightarrow E = \frac{a^2}{2r} \frac{dB}{dt}(t) \propto \frac{1}{r}$$

21. (a) V = Effective voltage supply = 20 V

 V_R = Effective voltage across R = 12 V V_L = Effective voltage across L

Now,
$$V = \sqrt{V_R^2 + V_L^2}$$

 $\Rightarrow 20 = \sqrt{(12)^2 + V_L^2}$
 $\Rightarrow (20)^2 = 144 + V_L^2$
 $\therefore V_L = \sqrt{400 - 144} = \sqrt{256} = 16 \text{ V}$

23. (b)
$$X_C = \frac{1}{2\pi fC} = \frac{1}{2\pi \left(\frac{400}{\pi}\right)C} \Rightarrow C = \frac{1}{2 \times 400 \times 25}$$

= 50 μ F

24. (e)
$$P_{av} = \frac{1}{2} V_0 I_0 \cos \phi$$

= $\frac{1}{2} \times 100 \times 100 \times 10^{-3} \times \cos \frac{\pi}{3} = 2.5 \text{ W}$

25. (c) In given figure current is leading applied voltage by $\frac{\pi}{4}$, so circuit may be RL or RLC circuit. Out of given circuits the possible circuit is RL circuit.

Also
$$\tan \phi = \frac{\omega L}{R}$$

 $\tan 45^\circ = \frac{100 L}{R} \implies R = 100 L$

- 26. (a) Microwave < Infrared < Ultraviolet < γ-rays
- 27. (e) In vacuum, the light waves travel with a constant velocity i.e., 3 × 10⁸ m/s, irrespective of the wavelengths and frequency. So, the ratio of the two velocities of the wavelengths is 1:1.
- (c) For infrared wavelength range is approximately 7.8 × 10⁻⁷ m to 1.1 × 10⁻³ m.
- **29.** (b) For magnification, m = +2 (Virtual image) $m = \frac{v}{u} \implies 2 = \frac{v}{u} \implies v = 2u$ Using lens formula,

$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u} \implies \frac{1}{f} = \frac{1}{2u} - \frac{1}{u}$$

$$\Rightarrow \frac{1}{f} = \frac{1-2}{2u} = \frac{-1}{2u}$$

$$u = \frac{-f}{2} \implies |u| = \frac{f}{2}$$

- 30. (a) We know that, $n = \frac{1}{\sin i_c}$ $n = \frac{1}{\sin 30^\circ} \implies n = 2$
- **31.** (a) For minimum deviation, $r = \frac{A}{2} \implies r = 30^{\circ}$
- 32. (c) They ray will suffer total internal reflection at second interface only if its angle of incidence is greater than the critical angle.
- 33. (d) By Brewster's law, $n = \tan i_p$ $\sqrt{3} = \tan i_p \implies \tan 60^\circ = \tan i_p$ $\Rightarrow i_p = 60^\circ$

34. (d)
$$I = \frac{I_0}{2}\cos^2\theta = \frac{I_0}{2}\cos^260^\circ = \frac{I_0}{2} \times \frac{1}{4} = \frac{I_0}{8}$$

- **35.** (c) Fringe width, $\beta = \frac{\lambda D}{d}$ when d is doubled D should also doubled, for same value of β .
- 37. (c) For constructive interference, $\phi = 2n\pi$; $n = 0, 1, 2, 3, \dots$
- 38. (d) For destructive interference, $x = (2n-1)\frac{\lambda}{2}; n = 1, 2, 3, \dots$
- 39. (a) The minimum required frequency to eject an electron from metal surface is called threshold frequency.
- **40.** (b) Work function, $\phi_0 = \frac{hc}{\lambda_0}$ $\frac{\phi_0}{\phi_0'} = \frac{\frac{hc}{\lambda_0}}{\frac{hc}{\lambda_0'}} \Rightarrow 2 = \frac{\lambda_0'}{\lambda_0} \Rightarrow \lambda_0' = 2\lambda_0$
- **41.** (a) Potential energy, $U = eV = eV_0 \log_e \frac{r}{r_0}$ $F_e = -\frac{dU}{dr} = -\frac{d}{dr} \left[eV_0 \log_e \frac{r}{r_0} \right] = -\frac{eV_0}{r}$ $|F_e| = \frac{eV_0}{r} \text{ (Attractive)}$ For circular orbit

$$\frac{mv^2}{r} = \frac{eV_0}{r} \qquad \dots (i)$$

$$mvr = \frac{nh}{2\pi} \qquad ...(ii)$$

Eliminating v we get

$$r_n \propto n$$

42. (*b*) As we known,

$$\Delta E = \frac{hc}{\lambda} = \frac{12.42 \times 10^{-7} \text{ eV m}}{1.027 \times 10^{-7} \text{ m}}$$

= 12.1 eV, same for transition D, $\Delta E = 12.1 \text{ eV}$

43. (d) The electrostatic attractive force between nucleus and electron is responsible for revolving electron round the nucleus with centripetal force.

Then,
$$F_e=F_e$$

$$\frac{Ze^2}{4\pi\varepsilon_0 r^2}=\frac{mv^2}{r}$$

$$mv^2=\frac{Ze^2}{4\pi\varepsilon_0 r}$$

Now, kinetic energy of electron in orbit, n = 1, Z = 1 for H-atom

$$KE = \frac{1}{2}mv^2 = \frac{1}{2} \cdot \frac{e^2}{4\pi\epsilon_0 r}$$
$$= \frac{e^2}{8\pi\epsilon_0 r}$$

44. (b) As we know, $r_n = r_0 \frac{n^2}{Z}$ For n = 1, $r_1 = r_0$ For Be³⁺ atom, $r_n = r_0$ (Given) $r_0 \frac{n^2}{Z} = r_0$ $\Rightarrow \frac{n^2}{A} = 1 \Rightarrow n = 2.$

- 46. (b) In basic β-decay, a neutron is transformed into a proton and an electron. The electron is then emitted as a β-particle which increases the atomic number by 1 and the molar mass is unchanged.
- **47.** (c) β-particles are high energy electrons which are emitted by the radioactive decay of atomic nucleus.
- **48.** (*b*) The energy gap is smaller than 3 eV but greater than 0, thus, the substance is a semiconductor.

49. (b) Here,
$$E = hv$$

So, $v = \frac{E}{h}$

$$= \frac{2 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}}$$

= $4.84 \times 10^{14} \,\mathrm{Hz} \simeq 5 \times 10^{14} \,\mathrm{Hz} \,\mathrm{(approx)}$

50. (b) Output of
$$G_1 = \overline{AB}$$

Output of $G_2 = \overline{AB} = AB$ (AND gate)

Y S I

3