7

Small Signal Analysis of FET

Multiple Choice Questions

Q.1 The value of V_{GS} and V_{G} for the circuit shown in figure is

- (a) -2 V, -2 V
- (b) 2 V, -2 V
- (c) 2 V, -2 V
- (d) -2 V, 2 V

Common Data Questions (2 to 4):

Given: $r_d = 20 \text{ k}\Omega$, $I_{DSS} = 10 \text{ mA}$, $V_p = -8 \text{ V}$

- Q.2 Z_i and Z_o of the circuit are respectively
 - (a) $2 M\Omega$ and $2 k\Omega$
 - (b) infinity and $2 M\Omega$
 - (c) $2 M\Omega$ and $20/11 k\Omega$
 - (d) infinity and 20/11 k Ω
- Q.3 I_D and V_{DS} under DC conditions are respectively
 - (a) 5.625 mA and 8.75 V
 - (b) 1.875 mA and 5 V
 - (c) 4.5 mA and 11 V
 - (d) 6.25 mA and 7.5 V
- Q.4 Tranconductance in milli siemens (ms) and voltage gain of the amplifier are respectively
 - (a) 1.875 ms and 3.41
 - (b) 1.875 ms and -3.41
 - (c) 3.3 ms and -6
 - (d) 3.3 ms and 6
- Q.5 For the circuit shown below if $g_m = 3 \times 10^{-3}$ and $R_s = 3000 \Omega$, then what is the value of R_o ?

- (a) 3000Ω
- (b) $1000/3 \Omega$
- (c) 300Ω
- (d) 100Ω

[ESE-2006 (EE)]

Q.6 Given $g_m = 2$ mA/V; $r_d \rightarrow \infty$. The voltage gain

$$|A_v| = \left| \frac{V_o}{V_S} \right|$$
 is given by

- (c) 10
- (d) $\frac{10}{3}$
- Q.7 The mid-frequency input impedance of the JFET amplifier given in figure lies in the range

- (a) $100-300 \Omega$
- (b) 1-3 kΩ
- (c) $10-20 \text{ k}\Omega$
- (d) 100-200 kΩ
- Q.8 Consider a JFET amplifier shown below:

If $g_m = 4000 \,\mu\text{U}$ then closed loop gain of amplifier is given by

- (a) 24
- (b) 12
- (c) 6.42
- (d) 2.66

Common Data Questions (9 and 10):

Assume that that threshold voltage of the N channel MOSFET shown in figure is +0.75 V. The output characteristic of the MOSFET are also shown below:

- Q.9 The transconductance of the MOSFET is
 - (a) 0.75 ms
- (b) 1 ms
- (c) 2 ms
- (d) 10 ms
- Q.10 The voltage gain of the amplifier is
 - (a) +5
- (b) -7.5
- (c) +10
- (d) -10
- Q.11 The ac schematic of an NMOS common-source stage is shown in the figure below, where part of the biasing circuits has been omitted for simplicity. For the n-channel MOSFET M, the transconductance $g_m = 1$ mAV, and body effect and channel length modulation effect are to be neglected. The lower cut-off frequency in Hz of the circuit is approximately is

- (a) 8
- (b) 32
- (c) 50
- (d) 200

[GATE-2013]

Numerical Data Type Questions

Q.12 In the figure shown below:

If $\mu_p = 1300 \text{ cm}^2/\text{V-sec}$; $\mu_p = 325 \text{ cm}^2/\text{V-sec}$,

then the value of the (W/L) ratio $\left(i.e.\frac{(W/L)_1}{(W/L)_2}\right)$

to make it a unity gain inverting amplifier is _____. (Assume $V_A = \infty$)

Q.13 Consider the circuit shown below. If the lower corner frequency due to coupling capacitor C_C is $f_L = 20$ Hz, then the value of coupling capacitor C_c is ____ μ F.

Q.14 Consider a circuit shown in figure below. The transistor parameters are

$$V_{TP} = -2 \text{ V}$$

$$K_p = 0.25 \text{ mA/V}^2$$

$$+5 \text{ V}$$

$$3.2 \text{ k}\Omega$$

$$V_0$$

The value of 3 dB corner frequency (in MHz) due to capacitor C_L is _____.

Try Yourself

T1. For the source follower circuit shown in the figure below, the transistor parameters are $V_T = 1 \text{ V}$, $\frac{1}{2}\mu_n C_{ox} = 30 \text{ }\mu\text{A/V}^2$ and neglect channel length modulation. The small signal voltage gain to be $A_v = \frac{V_0}{V_i} = 0.95$. The value of $\left(\frac{W}{L}\right)$ ratio if $I_{dQ} = 4 \text{ mA}$ is

- (a) 50
- (b) 47
- (c) 28
- (d) 36