THERMAL EXPANSION OF GASES SYNOPSIS

- A gas has neither unique shape nor unique volume.
- The gas completely occupies the vessel in which it is placed.
- The state of given mass of gas can be described in terms of three parameters like pressure, volume and temperature.
- Vapour and gas are two forms in which matter exist in gaseous condition.
- Vapour can be converted into a liquid by mere application of pressure.
- Gas can be converted into a liquid first by cooling the gas to a temperature less than its critical temperature and then applying high pressures.
- Critical temperature of a gas is the temperature at which the gas can be liquified by applying suitable pressures.

CRITICAL TEMPERATURE						
Helium	-268ºC (Or) 5K					
Hydrogen	-240ºC	(Or)	33K			
Oxygen	-118⁰C	(Or)	115K			
Air	-140⁰C	(Or)	133K			

 Boyle's Law : At constant temperature, the volume of a given mass of gas is inversely proportional to its pressure.

$$Pa\frac{1}{V} \mathbf{P} PV = K \mathbf{P} P_1 V_1 = P_2 V_2$$

 $Pad \not P = K \not P = \frac{P_1}{d_1} = \frac{P_2}{d_2}$

where d = density of the gas

- In PV = K, the value of the constant 'K' depends on
 - 1. Mass of gas 2. Temperature of gas
 - 3. System of units
- Boyle's law generally holds good only at low pressure and high temperatures. A gas which obey Boyle's law under all conditions of temperature and pressure is called ideal gas.
- Boyle's law can be experimentally verified by Quill's tube (or) Boyle's law apparatus.
- P-V graph at constant temperature is a rectangular hyperbola.

PV-P graph is a horizontal straight line parallel to pressure axis.

• P-1/v graph is a straight line passing through origin

• Two vesseles of volumes V_1 and V_2 containing a gas under pressures P1 and P_2 respectively are joined at the same temperature. Then the common pressure

$$P = \frac{P_1 V_1 + P_2 V_2}{V_1 + V_2}$$

• In Boyle's law apparatus h_1 , h_2 are the differences of levels in the two limbs when the lengths of air columns are

 l_1 and l_2 . Then (P + h₁) $I_1 = (P+h_2) I_2$ where P is atmospheric pressure.

therefore
$$P = \frac{h_2 l_2 + h_1 l_1}{l_1 - l_2}$$

In the same experiment, (P + h) I=

constant, k.
$$h = \frac{k}{l} - h$$

A graph between h and $\frac{1}{l}$ is a

straightline

• A capillary tube closed at one end and open at the other, contains a mercury pellet of length h. The length of air column between closed end and mercury pellet is *l*.

JR.PHYSICS

Under constant temperature, PI = constant. P When the tube is horizontal, pressure of air = P When the tube is vertical with open end up, pressure of air = P+h. When the tube is vertical with closed end up pressure of air = P-h. P-t⁰ graph is a straight line intersecting the If the tube makes an angle q with the temperature axis at -273.15° C. This vertical, then the pressure of air is temperatuer is called absolute zero. $P_{\pm} h \cos_{q}$ here P is atmospheric pressure. CHARLE'S CONSTANT PRESSURE LAW: • The volume of a given mass of gas at constant pressure is directly proportional to the absolute temperature. t⁰C 273 15°C $V aT = \frac{V_1}{T_1} = \frac{V_2}{T_2}$ The minimum temperature theoretically attainable is only -273°15° C. The scale V-T graph is a straight line passing through origin developed with this minimum temperature is known as absolute scale of temperature. (Kelvin scale of temperture). At absolute zero. $t = -273.15^{\circ}C$ (or) T = 0 Kъ T = t + 273.15°C The pressure and the volume of a gas • V - t graph is a straight line intersecting the becomes zero temperature axis at -273.15° C. This The value of PV becomes zero temperature is called absolute zero. All the molecular vibrations cease. Substances do not radiate energy. There is no negative temperature on kelvin • scale Real gases obey gas laws only at low pressure and high temperatures. All Gases are t⁰c real gases only. 273.15°C Attraction between the molecules of perfect gas CHARLE'S CONSTANT VOLUME LAW: is zero. The pressure of a given mass of a gass is Ideal or perfect gas obey gas laws at all directly proportional to the absolute temperatures and pressures without any temperature at constant volume. This law is limitations. also known as Gaylussac's law. • Hydrogen or Helium behaves closely as $PaT \neq \frac{P_1}{T_1} = \frac{P_2}{T_2}$ perfect gas. Hence it is preferred in constant volume gas thermometers.

GAS EQUATION:

 Combining Boyle's law and Charle's law, the resulting expression is an equation of state for ideal gas.

orgin

P-T graph is a straight line passing through

- For unit mass of a gas (1 gram (or) 1 Kg) PV=rt is called "GAS EQUATION" PV=mRT (for m grams)
- "r" is called gas constant (or) specific gas constant.
- The value of "r" depends on nature and mass of the gas.
- S.I.unit of "r" is J Kg⁻¹ K⁻¹. Dimensional formula for "r" is LT⁻² a⁻¹
- The value of "r" depends on nature and mass of the gas.
- For one mole of a gas PV=RT is called " UNIVERSAL (or) IDEAL (or) PERFECT GAS EQUATION".
- The value of "R" is same for all gasses irrespective of their nature.
- If M is gram molecular weight of the gas, then

$$r = \frac{R}{M}$$

$$PV = \frac{m}{M}RT \mathbf{P} PV = nRT \qquad \frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

where n=no. of moles of gas.

 S.I. unit of R is J mole ⁻¹ K⁻¹ values of "R" = 8.314 J gm mole⁻¹ K⁻¹ R=8.314 J kg mole ⁻¹ K⁻¹ R=0.821 litre atmosphere mole ⁻¹ K⁻¹ R=8.314 X 10⁷ ergs mole ⁻¹ K⁻¹ R = 1.987 cal mole ⁻¹ K⁻¹

• SIGNIFICIANCE OF R :

- The value of R gives the work done by one mole of any gas when it is heated under constant pressure through one degree Kelvin.
- The value of "R" does not depend on the mass of gas or its chemical formula.
- The fact that R is a constant for all gases is constant with Avaragadro's hypothesis that "equal volumes of all gases under same conditions of temperature and pressure contains equal number of molecules".
- The value of universal gas constant per molecule is 1.38 X 10⁻²³ J (molecule)⁻¹ K⁻¹ R=N₀K

Where K=Boltzmann's constant

N₀ = Avagadro's number

• The gas equation in terms of density

 $\frac{P}{dT}$ = constant. Where d= density of ideal gas.

• When pressure and volume are constant for

given ideal gas.

$$m a \frac{1}{T}, m = \frac{K}{T}, \frac{m_1}{m_2} = \frac{T_2}{T_1}$$

In Boyle's law experiment the graph drawn

between excess pressure "h" and $\frac{1}{7}$ is a

straight line which gives x-intercept indicating atmospheric pressure.

 $h = (h_2 - h_1)$

I = length of air column

• NUMBER OF MOLECULES PER UNIT VOLUME:

t°C

$$PV = nRT = (nN)\frac{R}{N}T \text{ or } P = \begin{cases} \frac{\partial nN}{\partial t} \\ V \end{cases} kT$$

So number of molecules per unit volume

$$=\frac{P}{kT}$$

• AVOGADRO'S LAW:

Equal volumes of all gases under the same conditions of temperature and pressure contain the same number of molecules.

 When an air bubble is released at the bottom of lake, it rises and the volume increases as it approaches the surface. Assuming the temperature to be constant (H + hdg) V₁ = HV₂

hdg = pressure due to water

H = atmospheric pressure.

If a gas with physical parameters (P₁,V₁,T₁) is mixed with another gas at (P₂,V₂,T₂) then the resultant mixture is at (P,V,T) then

$$\frac{P_1V_1}{T_1} + \frac{P_2V_2}{T_2} = \frac{PV}{T}$$

- When a ballon goes up to higher altitudes its volume will increase because pressure outside will decrease.
- Air passengers are requested to empty their ink pens because at greater heights pressure decreases so ink tends to overflow.

JR.PHYSICS

•	Soda bottle burst in summer as the pressure	2.	An ideal gas is that which
	of gas inside the bottle increases due to more		1. Cannot be liquified
temperature.			2. Can be easily liquified
CO	COEFFICINETS OF EXPANSION OF GAS		3. Has strong inter molecular forces
•	When a given mass of gas is heated under		4. Has a large size of molecules.
	constant pressure, its volume increases with	3.	The Product of pressure and volume has the
•			same units as
•	when a given mass of gas is heated under		1. Temparature 2. Work
	increase in temperature. Hence gases have two		3. Force 4. Power
	types of coefficients of expansions	4.	The temparature of a gas is due to
	1. Volume expansion coefficient.		1. P.E. of its molecules
	2. Pressure expansion coefficient.		2. K.E. of its molecules
•	Volume expansion coefficient : At		3. Attractive forces between molecules
	constant pressure the ratio of the increases in		4. Repulsive forces between molecules
	volume of gas per 1° C rise in temperature to	5.	At constant pressure density of a gas is
	its volume at 0° C is called volume coefficient		1. directly proportional to absolute temparature
	or expansion.		2.inversely proportional to absolute temperature
	$a = \frac{V_2 - V_1}{V_1 - V_1} / {}^o C$		3.independent of temparature
	$V_1 t_2 - V_2 t_1$		4. directly proportional to square root of absolute
•	If volumes of the gas are V and V at $\alpha^{e} C$ and		temparatute
•	v_0 and v_1 at 0 C and v_1 at 0 C and v_1	6.	All gasses deviate from gas laws at
			2 Low pressure and high temperature
	$V_{t} = V_{0} (1 + a V t)$		3. High pressure and high temperature
•	Volume expansion coefficient of gas can be		4. Low pressure and low temperature
	METHOD	7.	A gas can be liquified by applying pressure
•	PRESSURE COEFFICIENT OF GAS · At		alone when it is cooled to
•	constant volume the ratio of the increse in		3 Critical Temperature 3 None
	pressure of gas per 1º C rise in temperature to	8	Universal das constant per molecule is called
	its pressure at 0° C is called pressure coefficient		1. Rydberg constant 2. Kelvin constant
	$P_2 - P_1$		3. Boltzman constant 4. Stefan's constant
	of gas, $b = \frac{1}{Pt_{\star} - Pt_{\star}} / C$	9.	If an air bubble rises from the bottom to the surcace
_			of a lake at constant temparature its volume
•	It pressures of the gas are P_0 and P_1 at 0° C and		3. remain same 4. Zero
	1°C respectively, then $P_1 = P_0 (1 + b V t)$	10.	For perfect gas, the ratio of volume coefficent
•	Pressure coefficient of a gas air can be		of expansion to pressure coefficient is
	determined by JULLY'S BULB APPARATUS. It		1. equal to one 2. less than one
	For all appendix found that		3. more than one 4. an imaginary quantity
•	I OF AIL YASES IT IS IOUTIO LITAL	11.	A closed vessel contains some gas at
	$a = b = \frac{1}{C^{-1}} = 0.00366^{\circ}C^{-1}$		atmospheric pressure and room temperature.
	273		fast moving train. The temperature of the gas
	CONCEPTUAL QUESTIONS		1. will increase 2. will decrease
1.	Boyle's law holds good for an ideal gas during		3. will remain uncharged
	1. Isobaric changes 2.Isothermal changes		4. Increase or decrease depending on the
	3. Isochoric changes 4.Isotopic changes		chemical composition of gas

12. By increasing the temparature of liquid its 1. Volume and density decreases	22. At constant temeperature and volume, the mass of a gas is related to pressure as
2. Volume and density increases	
3. Volume increases and density decreases	$\ 1. m_a \frac{1}{2} + 2. m_a p + 3. m_a \frac{-1}{2} $
4. Volume decreases and density increases	
13. An ideal gas is allowed to expand freely against	4. m does not have any relation
a vaccum in a rigid insulated container. The gas undergoes:	23. At constant temperature and pressure, the volume of a given gas is related to mass as
1. Increase in internal energy	1. volume is not related to mass
2. increase in temparature	
3. decrease in internal energy but increase in	$\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}$ $\frac{2}{m}$
temparature	24. In a gas equation, $PV = RT$, V refers to the
internal energy.	volume of
1	1. any amount of a gas
14. $p - \frac{1}{2}$ graph for a gas under constant	2. one gram mass of a gas
	4. one litre of gas
temparature is	25. As pressure increases, the slope of the T-V
1. Straight line 2. Circle	graph for a given mass of a gas
15 The pressure of a given mass of gas at	1. increases 2. decreases
constant volume varies with temparature as	4 may increase or decrease
1 1 1	26. The slope of T-P graph for a given mass of a
1. $\frac{1}{T^2}$ 2. $\frac{1}{T}$ 3. $\frac{1}{T^3}$ 4. T	gas increases, the volume of the gas
	1. increases 2.decreases
16. The universal gas constant has the units	3. does not change 4 may increase or decrease
1. dyne/°C 2. erg/mole/K 2. erg-cm/k 4. Watt/k	27. When the volume of a gas is decreased at
17 The temperature at which the volume of all the	constant temparature the pressure increases
gases is zero is	because the molecules
1. +274 ⁰k 2273º C 3. 273º C 4273º k	1. strike unit area of the walls of the container
18. Which of the following methods will enable the	2. strike the unit area of the walls of the
volume of an ideal gas to be made four times	container with higher speed
1. double the absolute temperature and	3. strike the unit area of the wall of the
pressure	container with lesser speed 4. move with more kinetic energy
 naive the absolute temparture and double the pressure 	28. Boyle's law is represented by the equation
3. guadraple the absolute temperature at	PV=K
constant pressure	(K is not constant), K depends on
4. quarter the absolute temperature at	1. pressure of the gas 2. volume of the gas 3 mass of the gas 4 all the above
costant pressure	20 For any gap the pressure of $f_{i}^{f_{i}}$ is $f_{i}^{f_{i}}$
19. The pressure coefficeint of a gas is in /°C	23. For any gas the presure coefficient (b) is
1. 0.00367 2273	can be proved by
3.981 4.3.14	1. charle's law 2. Boyle's law
20. The volume of 1.5 moles of a gas at S.I.P. is	3. grahm's law 4. avagadro's number
1. 3 lit 2. 33.6 lit 3. 22.4 lit 4. 11.2lit	KEY
21. The temperature at which a body does not	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
radiate energy	
1.0°C 2.0K 3.273 K 4.4° C	16.2 17.2 18.3 19.1 20.2
	21.2 22.2 23.4 24.3 25.2
	26.2 27.1 28.3 29.2

JR.PHYSICS

380

	LEVEL - 1	1.
1.	A gas at 627 [°] C is cooled that its pressure becomes 1/3 of its initial value at constant volume. Its final tempeature is	3.173°
2.	1) 900 K 2) 600 K 3) 300 K 4)100K At what temperature will the volume of a gas be twice the volume at 27° C at a given pressure.	12. A 76 9 1)
3.	At what temperature the pressure of a gas will be double that of its pressure at 270° C, if the volume remains constant	13. TI 13. TI de te
4.	1) 543° C 2) 813° C 3) 3° C 4) 270° C The pressure of a gas is increased four times and its absolute temperature two times. The ratio of its final volume to its initial volume is	1.
5.	1) 1:2 2) 2:1 3) 1:1 4) 3:1 At 27° C certain gas occupied a volume of 4 litres. If the volume of this is to be increased to 12 litres at the same pressure, to what temperature the gas is to be heated	3. 14. Tl pi co
6.	1) 300 K 2) 900 K 3) 600 K 4) 1200K The volume of a gas at 27°C and 2 atmospheric pressure is 2 litres. If the pressure is doubled and absolute temperature is made half, the new volume of gas is 1) 50 ml 2) 500 ml 3) 1000 ml 4) 2000 ml	3) 15. Tv ai at to
7.	A given amount of gas is heated until both its pressure and volume are doubled. If initial temperature is 27° C, its final temperature is 1) 300 K 2) 600 K 3) 1200 K 4) 900K	1) 16. A pr
8.	A gas is kept at 13° C in a vessel, If the volume of the gas is kept constant and is heated, at what temperature the pressure will be doubled to its initial pressure 1) 572 K 2) 286 K 3) 143 K 4) 73 K	sa 1) 17. A pr its
9.	The volume of a gas is 5 litres at N.T.P. what will be its volume at 273° C and at a pressure of four atmospheres 1) 5litres 2) 2litres 3) 4litres 4) 2.5litres	1) 18. A 21 to
10.	At. N.T.P. 28 gm of Nitrogen occupies 22.4 litres. What is the mass of 5.6 litres of nitrozen at 38cm of Hg pressure and 273 ^o C temperature	w 1) 19. Ti ta
11.	1) 7 gm 2) 48 gm 3) 1.75 gm 4) 1.5 gm A given amount of gas occupies 1000cc at 27° C and 1200cc and 87° c. What is its volume coefficient of expansion	te pe 1)

$$\frac{1}{273^0}C^{-1} \qquad 2.\frac{1}{173^0}C^{-1}$$

$$3.173^{\circ}C^{-1}$$
 $4.273^{\circ}C^{-1}$

- 12. A vessel containing 9 litres of an ideal gas at 760 mm pressure is connected to an evacutated 9 litre vessel. The resultant pressure is
 - 1) 380 mm 2) 760 mm
 - 3) 190 mm 4) 1140 mm
- The density of a gas at N.T.P. is 1.5 gm/lit. its density at a pressure of 152cm of Hg and temperature 27^o C

$$2.\frac{273}{100} gm / ltr$$
 $2.\frac{150}{273} gm / ltr$

3.
$$\frac{1}{273}$$
 gm / ltr 4.1.5gm/lit

14. The density of air at N.T.P. is 1.293 gm/lit. If the pressure is tripled keeping its temperature constant its density becomes

1) 3.87 gm/ltr	2)1.293gm/ltr
3) 2.586 gm/ltr	4) 0.431 gm/ltr

- 15. Two vessels of volume 10 and 5 litres contain air at 5 atmospheres and X (Unknown) atmospheres. When they are connected together with a small tube the resultant pressure is '6' atmospheres find the value of 'X'
 - 1) 8 atm 2) 16 atm 3) 4 atm 4) 2 atm
- At 0° C temperature and 1 atmospheric pressure a given mass of gas occupies a volume of 273cc. What is its volume at the same pressure and at 50° C
 1) 323cc 2)273cc 3) 546cc 4)112cc
- 17. At 20^o C temperature and 1 atmosphere pressure if a gas has a volume of 293 ml . find its volume at NTP
 - I) 546cc 2) 273cc 3) 293cc 4) 124cc
- At constant pressure and at a temperature of 27° C, if the volume of a given amount of gas is to be raised three times find the temperature to which the gas should be heated.

1) 27° C 2) 625° C 3) 627° C 4)273° C

19. The mass of a gas is1.293 gms at N.T.P. is taken in avessel of volume one litre. At what temperature its mass becomes one gram at a pessure of 72 cm. Hg

) 334K 2) 334°C 3) 61K 4) 607K

20. The volume of a gas at constant pressure	LEVEL - II
increases by 2% when the temperature is	1. What should be the percentage increase in the
Increased by 5K, It's initial temperature is	pressure so that the volume of a gas may
1) 100K 2) 250K 3) 500K 4) 1000K	decrease by 5% at constant teperature.
21. An air bubble rises from the bottom of a lake	1) 5% 2) 10% 3) 5.26% 4) 4.26%
and its radius is doubled on reaching the	2. A spherical balloon rises up and the radius
of the lake is (1 atmospheric pressure = 10m	become twice that on the ground. Assuming
height of water column)	temperature to be constant the pressure at that
1) 7m 2) 70m 3) 10m 4) 0.7m	$\frac{1}{4} \frac{1}{2} \frac{1}$
22. A vessel containing 10 litre of air under a	
pressure of 1M Pa isconnected to a 4 litre empty	2) 1/9th that on the earth's surface
vessel. The final air pressure in the vessel	3) 1/8 times of that on the earth's surface
assuming that the process is	4) 3 times of that on the surface of the earth
$\frac{1}{2} \frac{1}{5} \frac{1}$	3. A given amount of a gas is heated till the volume
1) //J IVIPA 2) J//IVIPA 3) IVIPA 4) IUMPA	percentage change in temperature of the gas
23. A vessel contains a gas under a pressure of 5X10 ⁵ na What will be the day pressure if 3/5	is equal to nearly
of the mass of the gas is flown out the	1) 2% 2) 3% 3) 4% 4) 1%
temperature being maintained constant.	4. At the top of a mountain a thermo meter read
1) 50 MPa 2) 2MPa 3) 0.2MPa 4) 0.5MPa	7º C and barometer reads 70 cm of Hg. At the
24. What volume will a gas occupy at 343K if its	bottom of the mountain the barometer reads
volume at -25° C is 7.5 litre?. (The process is	76cm of Hg and thermometer reads 27° C. The
	density of air at the top of mountains is
1) 10.29 ltrs 2) 102.9 ltrs	
3) 1.029 IUS 4) 1029 IUS	5 At a given temperature and pressure 64 am
25. A gas occupies a volume of 10 ltrs at 27° C. 10 what kelvin temperature should it be cooled	of Oxygen and X gm of H occupy the same
isobarically to reduce its volume 0.25 of the initial	volume. Then x=gm
value?	1) 1 2) 2 3) 3 4) 4
1) 75K 2) 300K 3) 150K 4) 150° C	6. Two sample of Hydrogen and Oxygen of same
26. If the temperature of a gas is increased by 1K	mass possess same pressure and volume.
at constant pressure its volume increases by	The ratio of their temperature is $1 \cdot 1 \cdot 8 = 2 \cdot 1 \cdot 16 = 3 \cdot 8 \cdot 1 = 4 \cdot 16 \cdot 1$
0.0035 of the initial volume. The temperature of the das is	7 Two identical containers connected by a fine
1 100K 2 150K 3 300K 1 273K	capillary tube contain air at N.T.P. if one of those
27 A cylinder contains a gas at temperture of	containers is immersed in pure water, boilling
27° C and a pressure 1MPa If the	under normal pressure then new pressure is
temperature of the gas is lowered to -23° C .	1) 76 cm of Hg 2) 152 cm of Hg
the change in pressure is	3) 57 cm of Hg 4) 87.76 cm of Hg
1) 1MPa 2. 5/6MPa 3. 1/6MPa 4. 5MPa	8. The volume occupied by 8 gm of oxygen at
KEY	
1.3 2.1 3.2 4.1 5.2	1) 11.2 III 2) 22.4 III 3) 2.8 III 4) 5.6 III
6.2 7.3 8.1 9.3 10.3	9. An electric pulb of 250cc was sealed off at a pressure 10-3 mm of Hg and temperature
T1.T T2.T T3.T T4.T T5.T	27° C. The number of molecules present in the
10.1 17.2 10.3 19.2 20.2	das is
21.2 22.2 23.3 24.1 23.1 26.4 27.3	1) 8.02×10^{15} 2) 6.023×10^{23}
20.1 21.0	3) 8.021 x 10 ²³ 4) 6 x 10 ²²
JR.PHYSICS 3	82 THERMAL EXPANSION OF GASES

22. Two closed vessels of equal volume contain 29. A drop of alcohol introduced into the vaccum space air at 105k Pa at 300K and are connected of a mercury barometer completely evaporates and height of barometer slightly falls. If the barometer through a narrow tube. If one of the vessels is tube is raised further, the mercury level in barometer. now maintained at 300K and the other at 400K 1) rises 2) falls then the pressure becomes. 3) remains same 4) becomes 76cm 1) 120kPa 2) 105kPa 30. The volume of a gas at $0^{\circ}C$ is 546cc. At constant 4)300kPa 3) 150kPa pressure it is heated from $30^{\circ}C$ to $50^{\circ}C$ the 23. At constant temperature, if the pressure of given change in volume is mass of gas is increased by 15% then the 1) 20cc 2) 40cc 3) 10cc 4) 273cc percentage change in its volume will be (nearly) 31. State the equation corresponding to 8gm of O_2 is 1) 11.1% 2)-16.6% 1) PV=8RT 2) PV=RT/4 3) 18% 4) -13% 4) PV=RT/2 3) PV=RT 24. A Volume V absolute temperature T 32. How many times is the weight of the air filling a room diagram was obtained when a given mass of in winter $(7^{\circ}C)$ greater than weight in summer gas was heated. During the heating process fro nm state 1 to 2, the pressure $(37^{0}C)$?. Assume that pressure is constant. 1) 1.11 2) 0.90 3) 11.1 4)9.0 33. A given mass of ideal gas has volume (V) at pressure (P) and the room temperature. If its pressure is first increased by 50% and then decreased by 50% (both at constant temperature only), the volume becomes. 1) 4V/3 2) 3V/4 3) V 4) 4V/5 34. A cylinder contains gas at a pressure of 2.5 atm. Due to leakage, the pressure falls to 2 atm, after sometime. The percentage of the gas which is leaked 1) Remains constant 2) Decreased out is 3) Changed eratically 4) Increased 1)40 2) 15 3)20 4)25 KEY 25. At the bottom of a lake where temperature is 7^0 C the pressure is 2.8 atmosphere. An air bubble of ra-3.3 1.3 2.3 4.1 5.4 dius1 cm at the bottom rises to the surface. Where 6.2 7.4 8.4 9.1 10.2 the temperature is $27^{\circ}C$. Radius of air bubble at 11.4 12.2 13.3 14.1 15.1 the surface is 17.2 16.1 18.1 19.2 20.2 1) 3^{1/3} 2) $4^{1/3}$ 3) $5^{1/3}$ 4) $6^{1/3}$ 21.1 22.1 23.4 24.1 25.126. 2 grams of monoatomic gas occupies a volume of 2 26.3 27.3 28.3 29.3 30.2 31.2 32.1 33.1 34.3 litres at a pressure of $8.3 \times 10^5 Pa$ and $127^0 C$. Find the molecular weight of the gas. (R=8.3 joule/mole/K) **HINTS** 1) 2 gram/mole 2) 16 gram/mole $\frac{100X}{100-X}$, Where X is % decreases 3) 4 gram/mole 4) 32 gram/mole 1. 27. If ρ is the density, m is the mass of 1 molecule K Boltzman constant for a gas then the pressure of the 2. $\mathbf{P}_1 \mathbf{V}_1 = \mathbf{P}_2 \mathbf{V}_2$ gas is $P_1 r_1 = P_2 r_2$ PV = nRT3. 1) $P = \frac{\rho KT}{m}$ 2) $P = \frac{mKT}{\rho}$ $\frac{P_1}{d_1T_1} = \frac{P_2}{d_2T_2}$ 4. 3) $P = \frac{\rho m T}{\kappa}$ 4) $P = \rho K m T$ $\frac{m}{M}$ of Oxygen = $\frac{m}{M}$ of hydrogen 5. 28. A piston pump has displacement of 500cc. It is used to fill a tyre to a volume of 35000cc. at 10 atmospheres. The number of strokes required are 6. $\frac{T_1}{T_2} = \frac{M_1}{M_2}$ 1) 500 2)600 3)700 4) 350

7. The number of moles remain same

$$n_1 + n_2 = n_1^{-1} + n_2^{-1}$$

 $\frac{PV}{R \times 273} + \frac{PV}{R \times 273} = \frac{PV}{R \times 273} + \frac{PV}{R \times 373}$
8. $\frac{v_1}{m_1} = \frac{v_2}{m_2}$ Where $v_1 = 224$ lit
9. PV=NKT
K = Boltzman's Constant = 1.38 x 10⁻²³ J/K
10. $\frac{P_1}{P_2} = \frac{m_1 M_2}{m_2 M_1}$ V²p = Constant
V²(RT/V) = Constant
VT=Constant
12. Slope of V-T curve is proportional to 1/p
13. (H+h)l_1=(H+h)l_2
14. Slope of V-d curve proportional to 1/p
16. $\beta = \frac{P_1 - P_0}{P_0 t} = \frac{P_{100} - P_0}{P_0 \times 100}$
17. P = (P_1V_1 + P_2V_2)/V
18. P_1M_1=P_2M_2
20. Applying gas equation before and after
heating.
 $\frac{P(v_1 + v_2)}{300} = P^1 \left(\frac{v_1}{300} + \frac{v_2}{400}\right)$
21. P_1M_1 = P_2M_2 Where $v_1 + 2 = 50 = v_2$
P_2P_1 = ?
22. $n_1 + n_2 = n_1^{-1} + n_2^{-1} \frac{P}{300} + \frac{P}{300} + \frac{P}{400}$
23. % of change in volume = 100x/(100+x)
Where x = % of increase in pressure
25. $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
26. PV = (mRT)/M
27. PV = NKT, Where $v = m/\rho$, N = 1
28. N[P_1V_1] = P_2V_2
29. The level rises and becomes stedy for 76
cm of Hg
30. $\Delta V = V \alpha \alpha \Delta t$
Where $\alpha = 1/273^{\circ}C$
32. $m_1T_1=m_2T_2$
33. P_1V_1 = 3(P_1^{-2}V_2) V_2=2V/3
 $3(P_1/2)V_2 = \frac{1}{2}\left(\frac{3p_1}{2}\right)V_3$
 $V_3 = 2V_2 = 2 x 2V/3$
34. $\frac{P_1}{d_1} = \frac{P_2}{d_2}$; $\frac{\Delta d}{d} \times 100 = ?$

LEVEL - III An ideal gas is trapped between Hg thread of 12cm 1. and the closed lower end of a narrow vertical tube of uniform cross section. Length of the air column is 20.5cm. When the open end is kept upward. If the tube is making 30° with the horizontal then the length of the air column is (assuming temperature to be constant and atmospheric pressure = 76cm of Hg) 1) 22cm 2) 18cm 3)24cm 4) 20.2cm 2. The pressure of a certain mass of gas at $27^{\circ}C$ is 84cm of Hg. If 25% of the gas is now introduced into the same vessel at the same temperature, the final pressure of the gas will be in cm of Hg 2) 100 4)90 1)105 3)95 3. Two identical containers A and B with frictionless pistons contain the same ideal gas at the same temperature and same volume V. The mass of the gas in A is m_A and that in B is m_B . The gas in each cylinder is now allowed to expand isothermally to the final volume2V. The changes in the pressure in A and B are found to be ΛP and $1.5 \Delta P$ respectively. Then

 1) $4m_A = 9m_B$ 2) $2m_A = 3m_B$

 3) $3m_A = 2m_B$ 4) $9m_A = 4m_B$
4. Three flasks of identical volume are filled separately by (a) 1 gram of H_2 (b) 1 gram of O_2 (c) 1 gram of CO_2 . They are immersed in a tank of water so that all of them attain same temperature. The pressures P_1, P_2 and P_3 have the relation. 1) $P_1 > P_2 > P_3$ 2) $P_1 = P_2 = P_3$ 3) $P_1 < P_2 < P_3$ 4) $P_3 > P_1 > P_2$ 5. Two containers of equal volume containing the same gas at pressure P_1 and P_2 and absolute temperature T_1 and T_2 respectively were connected with narrow capillary tube. The gas reaches a common pressure P and a commn temperature T. The ratio P/T is equal to 1) $\frac{P_1}{T_1} + \frac{P_2}{T_2}$ 2) $\frac{1}{2} \left(\frac{P_1}{T_1} + \frac{P_2}{T_2} \right)$ 3) $\frac{P_1T_2 + P_2T_1}{T_1 + T_2}$ 4) $\frac{P_1T_2 - P_2T_1}{T_2 - T_2}$ 6. A vessel of volume V contains n_1 moles of oxygen and n_{γ} moles of carbon dioxide at absolute temperature T. The pressure of the mixture is

1)
$$\frac{(n_1 + n_2)RT}{V}$$
 2) $\frac{(n_1 - n_2)RT}{V}$
3) $\frac{n_1 n_2 RT}{V}$ 4) $\frac{n_1 RT}{n_2 V}$

385 THERMAL

THERMAL EXPANSION OF GASES

An air bubble of volume v_0 is released by a fish at a depth h in a lake. The bubble rises to the surface. Assume constant temperature and standard atmospheric pressure P above the lake. The volume of the bubble just before reaching the surface is (d is the density of water). 1) $v_0 + \frac{hgd}{P}$ 2) $\frac{v_0(P + hgd)}{P}$ 3) $\frac{v_0}{P} + hgd$ 4) $(v_0 + v_0 dg)$ 8. A vessel contains 1 mole of an ideal monoatomic gas. The coefficient of volume expansion of the gas is α . 2 moles of a diatmoic; ideal gas is then introduced into the same vessel. The coefficient of the volume expansion of the mixture will be 1) $3\alpha/2$ 2) $2\alpha/3$ 3) α 4) $\alpha/3$ 9. A reciever has a pressure of 144cm of Hg. After two strokes with an exhaust pump, the pressure is 36cm of Hg. After another two strokes the pressure will be. 1) 9cm of Hg 2) 2.4cm of Hg 3) 6cm of Hg 4) 3cm of Hg 10. During an experiment an ideal gas is found to obey an additional gas law VT =constant. The gas is initially at temperature T and pressure P. When it is heated to the temperature2T, the resulting pressure is 3) 4P 1)2P 2) P/2 4) P/4 11. Two glass bulbs of volumes $500cm^3$ and $200cm^3$ are connected with a narrow tube. Both of them are filled with air at 70mm of Hg and at $17^{\circ}C$ and sealed. The bulb of small volume is kept in ice and the other with larger volume is kept in steam. Then find the pressure of the gas in the bulb. 2) 200cm of Hg 1) 200mm of Hg 3) 873mm of Hg 4) 200m of Hg 12. The volume of an air bubble increases by x% as it rises from the bottom of a lake to its surface. If the height of the water barometer is H, the depth of the lake is 1) $\frac{Hx}{(100-x)}$ 2) $\frac{Hx}{(100+x)}$ 3) $\frac{Hx}{100}$ 4) 100H/x 13. The density of an air bubble decreases by x% as it rises from the bottom of a lake to its surface. If the height of the water barometer is H, the depth of the lake is 1) $\frac{Hx}{(100-x)}$ 2) $\frac{Hx}{(100+x)}$ 3) $\frac{Hx}{100}$ 4) 100H/x 14. If the pressure of a gas contained in a closed vessel increases by x% when heated by $1^{0}C$, its initial temperature is 1) 100/x Kelvin 2) 100/x Celsius

3)
$$\frac{x+100}{x}$$
 Kelvin 4) $\frac{100-x}{x}$ Celsius

KEY 3.3 2.1 4.1 1.1 5.2 6.1 7.2 8.3 9.1 10.3 12.3 11.1 13.1 14.1

HINTS

- $P_1V_1 = P_1V_2$, (H+h) = (H+h cos q) l_2 1. Where q is the angle made with the vertical
- $\frac{P_1}{m_1} = \frac{P_2}{m_2}$ 2.

3.
$$\frac{P_1}{m_1} = \frac{P_2}{m_2}$$

4.
$$P_1M_1 = P_2M_2 = P_3M_3$$

5.
$$\frac{P_1V_1}{T_1} + \frac{P_2V_2}{T_2} = \frac{Px2V}{T}$$

- $P = P_1 + P_2 = (n_1 + n_2)RT/V$ 6. 7. At the top PV_1
- At the bottom $(P+hdg)V_0$ $PV_1 = (P+hdg)V_0$

9.
$$Pn = Px^n$$

Where $x = volume = 100x(100 + x)$
 $36 = 144 x^2$ $x = 1/2$ $p_n^1 = 144 [1/2]^4=9$
VT = Constant

$$10 VT = Constar$$

$$\left(\frac{RT}{P}\right)T = \text{Constant} \ \frac{T^2}{P} = \text{Constant}$$

11.
$$n_1 + n_2 = n_1^{-1} + n_2^{-1}$$

 $\frac{P_1V_1}{RT_1} + \frac{P_2V_2}{RT_2} = \frac{P_2V_1}{RT_{100}} + \frac{P_2V_2}{RT_0}$

$$12. \qquad h = H\left(\frac{V_2}{V_1} - 1\right)$$

13.
$$h = H\left(\frac{V_2}{V_1} - 1\right) = h = H\left(\frac{d_2}{d_1} - 1\right)$$

14.
$$\frac{P_1}{T} = \frac{P_1\left(1 + \frac{x}{100}\right)}{T+1}$$

JR.PHYSICS

386

THERMAL EXPANSION OF GASES

	PREVIOUS EAMCET QUESTIONS	10	. A cylinder contained 10kg of gas at pressure 10^7 N /
1.	The mass of oxygen gas occupying a volume of 11.2 lit		m ² . The quantity of gas taken out of cylinder if final
	at a temperature 27°C and a pressure of 76mm of mer-		pressure is 2.5 X10° N/m ² is (Assume temperature of
	cury in Kilo grams is (molecular weight of oxygen = 32)		$\begin{array}{c} \text{gas is constant} \\ \text{(EAMCET 96 M)} \\ (E$
	1. 0.001456 2. 0.01456 (2002 F)	11	Two gases A and B having same pressure p. volume V
2	3. U.1450 4. 1.1450 (2002 E) A gas is heated through 1° C in a closed vessel. Its	1	and temperature T are mixed. if the mixture has vol-
2.	pressure is increased by 0.4% The initial tempera-		ume and temperature as V and T respectively the pres-
	ture of the gas is (2002 M)		sure of mixture is (AMCET 98 M)
	1.250°C 2.100°C 375°C 423°C		1)2P 2)P 3)P/2 4)4P
3.	A closed hollow insulated cylinder is filled with gas at	12	. A gas at temperature $27^{\circ}C$ and pressure 30 atmo-
	0°C and also contains an insulated piston of negli-		spheres is allowed to expand to one atmospheric
	gible weight and negligible thickness at the middle		pressure. If the volume becomes 10 times its initial
	$100 ^{\circ}$ C If the piston moves 5cm, the length of the hol-		volumes, the final temperature becomes
	low cvlinder is (2001)		(EAMCET 97 M)
	1) 13.65cm 2) 27.3cm 3) 38.6cm 4) 64.6 cm		$1)100^{\circ}C$ 2)373°K 3)373°C 4)-173°C
4.	When an air bubble of radius 'r' rises from the bottom	13	. For a constant volume gas thermometer one should
	to the surface of a lake, its radius becomes 5r / 4 (the		till the gas at (EAMCET 96 E)
	pressure of the atmosphere is equal to the 10m height		2) high temperature and high pressure
	or water courring. If the temperature is constant and the surface tension is neglected, the depth of the lake is		3) low temperature and low pressure
	(2001)		4) low temperature and high pressure
1	1) 3.53m 2) 6.53m 3) 9.53m 4) 12.53m	14	A mole of gas occupies a volume of 100ml at 50 mm
5.	A vessel is filled with an ideal gas at a pressure of 10		pressure. What is the volume occupied by 2 moles
	atmospheres and temp $27^{\circ}C$. Half of the mass of		of gas at 100 mm pressure and at same temperature?
	the gas is removed from the vessel & the temp. of the		1)50 ml 2)100 ml 3)200ml 4)500 ml
	remaining gas is increased to $87^{0}C$. Then the pres-	15	6. A closed vessel contains certain mass of a gas. If
	sure of the gas in the vessel will be		the pressure is increased by 0.4% by 1° C rise in
	1)5 atm 2)6 atm 3) 7 atm 4)8 atm		tempeature then the initial temperature is
6.	A flask is filled with 13 gm of an ideal gas at $27^{\circ}C$ its		(EAMCET 95 E)
	temperature is raised to $52^{\circ}C$. The mass of the gas		$1)23^{\circ}C$ $2)250^{\circ}C$ $3)-23^{\circ}C$ $4)300K$
	that has to be released to maintain the temperature of	16	A bubble rises from the bottom of a lake 90m deep on
	the gas in the fleck at z_{0}^{0} and the process remain		mospheric pressure equals to 10 m of water)
	ing the same is (EAMOET OK E)		1)4 times 2)8 times 3)10 times 4) 3 times
	1)25 gm = 2)20 g = 3)15 g = 4)10 g	17	. An air bubble rises from the bottom to the surface of
7.	A closed copper vessel contains water equal to half of		lake and it is found that its diameter is doubled. If
	its volume when the temperature. Of the vessel is		the neight of water barometer is 11m, the depth of the
	raised to $447^{\circ}c$ the pressure of steam in the vessel		1)70m 2)77m 3)7.7m 4)78m
1	is (Treat steam as an ideal gas, R=8310 J/k / mole,	18	. How much should the pressure of the gas be increased to
	density of water =1000 kg/ m^3 molecular weight of		decrease the volume by 10% at constant temperature ?
1	water =18) (EAMCET 2K.M)		1)10% 2)9.5% 3)11.11% 4)5.11%
	1) 33.24 x 10 ⁷ pa 2) 16.62 x 10 ⁷ pa	19	A gas at a temperature of $27^{\circ}C$ is heated at a con-
	3)10.31 x 10 ⁷ pa 4) 8.31 x 10 ⁷ pa		stant pressure to triple its volume. The final tempera-
8.	A real gas can be approximated to an ideal gas at		ture of the gas will be
	(EANICE 1 96 E) 1) low density 2) high pressure		$1)_{27}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ}C^{\circ$
1	3)high density 4)low temperature	20	A vessel is filled with an ideal gas at a pressure of 200
9.	One litre of Helium gas at a pressure of 76 cm -Hg		atm and is at a temperature of $27^{0}C$. One half of the
	and temperature $27^{\circ}C$ is heated till its pressure and		mass of the gas is removed from the vessel
	volume are doubled. The final temperature attained		and the tempera ture of the remaining gas is increased
	by the gas is (EAMCET 98 E)		to $87^{\circ}C$. At this temperature., the pressure of the
	$1)900^{\circ}C$ $2)927^{\circ}C$ $3)627^{\circ}C$ $4)327^{\circ}C$		gas will be (92 M)
			1)6 atm 2)12 atm 3)36 atm 4) 24 atm
1			
		1	

21.	A car tyre has air at 1.5 atm at 300 K.If P increases to	31	. A sample	of O_2 g	as and a	sample	of hydro	ogen gas
	(91 E)		both have	the same	e mass, 1	he same	volume	and same
	$1)_{350}{}^{\circ}C$ 2) $350K$ 3) $300^{\circ}C$ 4) $300K$		pressure. ratio of ter	Assum nperatur	ing them	n to be p aen das t	erfect ga o the ten	ases, the perature
22.	A sample of an ideal gas occupies a volume V at pres-		of hydroge	en gas is	s (82)			
	each molecule is m. The equation for density is	32	1)1:1 . A constan	2)1 t volume	:2 e thermo	3) 2:1 meter w	4 orks on) 1:4 (1980)
	(1988)		1)charles	law	2)pascals	law	
	1)mKT 2) $\frac{P}{2}$ 3) $\frac{P}{2}$ 4) $\frac{Pm}{2}$		3)Boyles I	aw	4	Archim	edis prin	lciple
	KT KT KT KT							
23.	If the volume of the gas is to be increased by 4 times (1988)				KE	Y		
	1)Temperature and pressure must be doubled.		1.2 6.4	2.4 7.2	3.4 8.1	4.3 9.2	5.2 10.2	
	by 4 times		11.1	12.4	13.2	14.2	15.3	
	3)At constant T, the pressure must be increased by 4		16.3 21.2	17.2 22.4	18.3 23.3	19.2 24.1	20.2 25.2	
	4)It cannot be increased		26.4	27.2	28.2	29.4	30.3	
24.	A perfect gas at 27° C heated at constant pressure so as to double its volume. The final temperature of the		31.1	32.1				
	gas will be (1987)							
	1) $327^{\circ}C$ 2) $327K$ 3) $600^{\circ}C$ 4)None							
25.	One litre of helium under a pressure of 2 atm and at							
	$27^{\circ}C$ is heated until its pressure and volume are doubled. The final temperature attained by the das is							
	(96)							
	1)927 K 2)927 $^{\circ}C$ 3)1200 $^{\circ}C$ 4)None							
26.	The graph between temperature in ${}^{\scriptscriptstyle 0}C$ and pressure							
	of a perfect gas is (1986) 1) hyperbola							
	2) a straight line passing through the origin							
	3) a straight line parallel to pressure axis							
	4)a straight line with a+Ve intercept on pressure axis							
	intercepting temperature axis at $-273^{\circ}C$.							
27.	A gas at $27^{0}C$ and pressure of 30atm is allowed to							
	expand to atmospheric pressure and volume 15 times							
	larger. The final temperature of gas is (1985) $1(122)^{0}C$ (1985)							
20	16 am of Q gas and x am of H gas accurv, the							
20.	same volume at the same tempera ture and pressure.							
	Then x= (1984)							
29.	1)1/2gm 2)1gm 3)8gm 4) 16 gm The pressure coefficient of a gas is							
	1)-273 2)981 3)3.14 4) $0.00367/{}^{0}C$							
30.	1000.c.c of a permanent gas at constant pressure is beated from 27° C to 327° C. The new volume will be							
	1)333.33 c.c 2)1000 c.c							
	3)2000 c.c 4)3000 c.c							
JR.	PHYSICS 3	88	T	HERM	AL EX	PANSI	ON OF	GASES

NEW MODEL QUESTIONS

1. Match list I with list II List - II List - I a) Dalton's Law e) PV = constant(T = constant)b) Charle's Law-I f) P/T = constant(V = constant)c) Charle's Law-II g) V/T= constant (P = constant)h) P = P1 + P2 + Pad) Boyle's Law 1. a-f. b-h, d-e. c-g, 2. a-g, b-h d-f. с-е, d-h. 3. a-f, b-e, c-g, 4. a-h, d-e. b-g, c-f, 2. According to Boyle's Law PV=C the value of C depends on. a) Mass of the gas b) Type of gas c) Temperature 1) a,b 2) b,c 3) a,c 4) a,b,c. 3. The Universal gas constant may be expressed as a) 8.31 J/mole-K c) 2.00 J/mole-K b) 8.31 cal/mole-K d) 2.00 cal/mole-K 1) a,c 2) a,d 3) b,c 4) b,d 4. Match List I with List II List - I List - II a) Volume Coefficient of e) Jolly's apparatus expansion of a gas f) Brownian motion b) Pressure coefficeient of expansion of a gas g) elements and c) Avagadro constant desonmes apparatus d) Ratio of two h) Regnaults apparatus specific heats of a gas d-h. 1. a-e, c-f, b-g, 2. a-f, b-h с-е, d-g. 3. a-h, b-e, c-f, d-g. 4. a-g, b-f, c-h, d-e. 5. Select the correct graphs a) the P-1/V graph at constant temperature is a rectangular hyperbola. b) the PV-V graph is a straight line parallel to the Y-axis. c) P-V graph at constant temperature is a straight line passing through the origion d) V-T graph at constant pressure is a straight line passing through the origion. 1) a,b 2) b,d 3) c,d 4) a,d

6. Match List I with List II List - I List - II a) 0.00366/° C e) Avogadro's Number b) 6.023 x 10²³ f) Universal gas molecules constant c) -273° C g) Pressure coefficient of a gas d) 8.31 J/K-mole h) Intercept of V-T graph at constant pressure c-h, d-f. b-e, 1. a-g, 2. a-f, d-h. b-g c-e, 3. a-g, b-e, c-f, d-h. d-h. 4. a-g, b-f, с-е, 7. Which of the following processes will quadruple the pressure a) Reduce V to half and double T b) Reduce V to 1/8th and reduce T to half c) Double V and half T d) Increase both V and T to double the values. 1. b,c 2. a,b 3. c,d 4. a,d. 8. Follwing operation are carried out on a sample of ideal gas initially at pressure P volume V and kelvin temperature T. a) At constant volume, the pressure is increased fourfold. b) At constant pressure, the volume is doubled c) The volume is doubled and pressure halved. d) If heated in a vessel open to atmosphere, onefourth of the gas escapes from the vessel. Arrange the above operations in the increasing order of final temperature 1) a,b,c,d 2) c,b,a,d 3) b,a,d,c 4) d,c,b,a9. An air bubble rises from the bottom of a deep lake the radius of the air bubble near the surface is 'r'; Its radius was a) r/2 at depth 30m b) r/2 at depth 70m c) r/3 at depth 140m d) r/3 at depth 260m 1. a.c 2. a,d 3. b.c 4. b,d 10. Select the correct formula a) k=RN_{av} b) $r = \frac{nM}{V}$ c) $\frac{p}{r} = \frac{RT}{M}$ d) R=kN_{av} 1. a,b,c 2. a,b,d 3. b,c,d 4. a,c,d Where k=Boltzman's constant R= gas constant, n= moles, r = density M= molucular weight p= pressure V= volume T= kelvin temperature

11 Boyle's law is valid for real cases at	d) Common Pressure at						
a) low pressure b) high pressure	$\left \left \begin{array}{c} a \\ constant volume \end{array} \right = (l_2 + l_1)h$						
c) low temperature d) high temperature	$ $ $ $ $ $						
1 ac 2 ad 3 bc 4 bd							
12 match List L and List II	$P_1V_1 + P_2V_2$						
	h) $\overline{V_1 + V_2}$						
List - I List - II							
a) P-V graph (T is e) St.line cutting temp							
b) P. T. graph (V is f) Rectangular hyper							
constant)	1. a-h, b-g, c-f, d-e.						
c) V-T graph (P is g) A St. line parallel to	2. $a-e$, $b-h$, $c-g$, $d-f$.						
constant) pressure axis.	3. a-f, b-e, c-h, d-g.						
d) PV- P garph (T is h) St. line passing	4. a-g, b-f, c-e, d-h.						
constant) through origin	16. Real gasses approaches ideal gas at high tem-						
	perature and low pressure because						
1. a-g, b-e, c-h, d-f.	a.inter atomic seperation is large						
2. a-h, b-f c-g, d-e.	b. size of the molecule is negligible when com-						
3. a-e, b-g, c-f, d-h.	pared to inter atomic seperation						
4. a-f, b-h, c-e, d-g.	1 a & b are true 2 only a strue						
13. match List I and List II	$\begin{array}{c} 1. a \in 0 \text{ are true} \\ 3 \text{ only } h \text{ is true} \\ \end{array}$						
List - I List - II	17 Devide Levy con he ward he						
a) Real gas e) Boltzmans constant	17. Doyle's Law can be verified by						
b) gas constant for 1 f) molecular forces are	a) Boyle's law apparatus						
molecule of a gas present	b) Quill tube apparatus						
c) gas constant for 1 g) molecular forces are	c) Regnaults apparatus						
mole of gas absent	d) Jolly's bulb apparatus						
d) ideal gas f) universal gas constant	1. a & b are true 2. a & c are true						
lae hf cardah	3. b & d are true 4. b & c are true						
2 a-f b-e c-h d-g	18. Boyle's law is applicable when						
3 a - g b - h c - e d - f	a) temperature is constant						
4. a-h, b-g, c-f, d-e,	b) gas is at high temperature and low pressure						
14 match List L and List II	c) the vessel enclosing the gas is good						
	conductor						
List - I List - II	d) the process is isothermal						
a) Barometer e) charles law b) specific and constant f) I molect bi-							
c) gas thermometer g) Boyle's law	1. $a \& b 2. b, c \& d 3. a, b \& c 4. a, b, c \& d$						
d) universal gas h J kg ⁻¹ k ⁻¹	19. In the equation PV=constant, the numerical						
constant	value of constant depends upon						
	a) temperature b) mass of the gas						
1. a-h, b-e, c-f, d-g.	c) system of units used d) nature of the gas						
2. a-g, b-h, c-e, d-t.	1. a & b 2. b & c 3. c & d 4. All						
5. a-I, b-g, c-h, d-e.	20. $PV = n RT$ holds good for						
4. a-c, 0-1, c-g, d-h.	a) Isobaric process b) Iso choric process						
15. match List I and List II	c) Iso thermal process d) Adiabatic process						
List - I List - II	$\ 1 a \& b 2 a b \& c 3 a b \& d 4 A \ $						
a) common pressure at $P_1T_2 + P_2T_1$	21 The perameter that determine the physical						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	state of gas are :						
b) atmospheric pressure	state of gas are:						
c) density of a gas $p_m = \frac{P_m}{P_m}$	a) riessure b) volume						
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	c) number of moles a) remperature						
	1. a & b 2. a,b & c 3. a,b & d 4. a,c & d						
JR.PHYSICS	390 THERMAL EXPANSION OF GASES						

22. According to kinetic theory of gasses at Zero kelvin	6. A) At constant pressure when a gas is heated from 40 to 41°C, the increase in volumes
a) Pressure of ideal gas is zerob) Volume of ideal gas is zeroc) Internal and filled as is zero	is 1/273 of its intial volume at 273 K
 c) Internal energy of ideal gas is zero d) Matter exists in gaseous state only 1. a & d are true 2. a,b & d are true 	R) Volume coefficient of gas is $\frac{1}{273}$ /°C
3. a,b & c are true 3. All are true	7. A) With increase in temperature, the pressure of
КЕҮ	given gas increases
1.4 2.3 3.2 4.3 5.2 6.1 7.2 8.4 9.4 10.3 11.2 12.4 13.2 14.2 15.1	R) Increase in temperature causes decrease in no. of collision of molecules with walls of container.
16.4 17.1 18.4 19.4 20.4	8. A) Volume of gas at 50° C is 'V'. Keeping the
ASSERTION AND REASON	pressure constant, the temperature is doubled. Volume becomes 2V.
while answering the assertion and reason ques- tions you are required to chose any one of the	R) AT constant pressure the volume of gas is
four followingresponses.	directly proportional its to absolute temperature.
1. Both assertion (A) and reason (R) are correct	
and R gives the correct explanation 2. Both assertion (A) and reason (P) are correct	9. A) In Jolly's bulb apparatus, as reservoir is moved
but R does give the correct explanation	up, the mercury level raises into the build.
3. A is true but R is false4. A is false but R is true	R) The pressure on the enclosed gas increases.
 A: Real gases do not obey the ideal gas equation. R: In the ideal gas equation, the volume occupied by the molecules as well as the inter molecular forces 	10. A) Pressure of gas is same every where inside a closed container
are ignored.2. A: gases are characterised with two coefficients of	R) the gas molecules under go elastic collisions among themselves and with walls
R: when heated both volume and pressure increase with the rise in temperature.	11. A) V-t graph for gas at constant pressure is a straight line passing through origion (t-tempera- ture in celcius)
 A: As an air bubble rises from the bottom of a lake, its sizes increases. B: The observation is in accordance with Boyle's 	R) volume is directly proportional to temperature (kelvin) at constant pressure
Law	12. A) P-V graph (at constant temperature) for ideal
4. A) PV/T=constant for 1 gram of gas. This con-	gas is rectangular perabola
stant varies from gas to gas.	R) ideal gas obeys Charle's law
R) 1 gram of different gases at NTP occupy	13. A) gasses obey Boyle's law at high temperature and low pressure only.
different volumes.	R) At low pressure and high temperature, gasses
5. A) PV/T =constant for 1 mole of gas. This	
constant is same for all gases.	IZEN/
R) 1 mole of different gases at NTP occupy	
same volume of 22.4 litres.	6.1 7.3 8.1 9.1 10.1 11.4 12.2 13.1

JR.PHYSICS

391