[2 Mark]

Q.1. What is the range of the function
$$f(x) = rac{|x-1|}{(x-1)}$$
?

Ans.

Given
$$f(x) = \frac{|x-1|}{(x-1)}$$

Obviously, $|x-1| = \begin{cases} (x-1) & \text{if } x - 1 > 0 \text{ or } x > 1 \\ - (x-1) & \text{if } x - 1 < 0 & \text{or } x < 1 \end{cases}$
Now, (i) $\forall x > 1$, $f(x) = \frac{(x-1)}{(x-1)} = 1$, (ii) $\forall x < 1$, $f(x) = \frac{-(x-1)}{(x-1)} = -1$,
i.e., $f(x) = -1$, 1
 \therefore Range of $f(x) = \{-1, 1\}$.

Q.2. If *f* is an invertible function, defined as $f(x) = \frac{3x-4}{5}$, write $f^{-1}(x)$.

Ans.

Since f^{-1} is inverse of f.

$$\therefore \quad fof -1 = I \quad \Rightarrow \quad fof^{-1}(x) = I(x)$$

$$\Rightarrow \quad fof^{-1}(x) = x \quad \Rightarrow \quad f(f - 1(x)) = (x)$$

$$\Rightarrow \quad \frac{3(f^{-1}(x)) - 4}{5} = x \quad \Rightarrow \quad f^{-1}(x) = \frac{5x + 4}{3}$$

Q.3. If $f : R \rightarrow R$ is defined by f(x) = 3x + 2, define f[f(x)].

Ans. f(f(x)) = f(3x + 2) = 3(3x + 2) + 2

$$= 9x + 6 + 2 = 9x + 8$$

Short Answer Questions-I (OIQ)

[2 Mark]

Q.1. State the reason for following binary operation '*', defined on the set Z of integers, to be non-commutative $a * b = ab^3$. Also find 2 * 3.

Ans. Since $ab^3 \neq ba^3 \forall a, b \in Z$

 \Rightarrow $a^*b \neq b^*a$

Hence, '*' is not commutative.

Also, $2 * 3 = 2 \times 3^3 = 54$

Q.2. If $f: R \to R$ defined by $\frac{f(x) = \frac{2x - 7}{4}}{4}$ is an invertible function then find f^{-1} .

Ans.

Let
$$f(x) = y$$
 \Rightarrow $y = \frac{2x - 7}{4}$
 $\Rightarrow \quad 2x - 7 = 4y$ $\Rightarrow \quad 2x = 4y + 7$ $\Rightarrow \quad x = \frac{4y + 7}{2}$
Hence, $f^{-1}(x) = \frac{4x + 7}{2}$

Q.3. Write the inverse relation corresponding to the relation *R* given by $R = \{(x, y): x \in N, x < 5, y = 3\}$. Also write the domain and range of inverse relation.

Ans.

Given,
$$R = \{(x, y) : x \in N, x < 5, y = 3\}$$

 $\Rightarrow \qquad R = \{(1, 3), (2, 3), (3, 3), (4, 3)\}$

Hence, required inverse relation is

 $R^{-1} = \{(3, 1), (3, 2), (3, 3), (3, 4)\}$

 $\therefore \qquad \text{Domain of } R^{-1} = \{3\}$

And Range of $R^{-1} = \{1, 2, 3, 4\}$

Q.4. Let $A = \{1, 2, 3\}$. Write all one-one functions on A.

Ans. All one-one functions on *A* are as follows:

 $f_1 = \{(1, 1), (2, 2), (3, 3)\};$ $f_2 = \{(1, 1), (2, 3), (3, 2)\}$

 $f_3 = \{(1, 2), (2, 1), (3, 3)\};$ $f_4 = \{(1, 3), (2, 2), (3, 1)\}$

 $f_5 = \{(1, 3), (2, 1), (3, 2)\};$ $f_6 = \{(1, 2), (2, 3), (3, 1)\}$

Q.5. If $f : R \rightarrow R$ and $g : R \rightarrow R$ are given by

f(x) = 3x + 1 and $g(x) = x^2 + 2$

Find fog(2).

Ans. $fog(x) = f(g(x)) = f(x^2 + 2) = 3(x^2 + 2) + 1 = 3x^2 + 6 + 1$

$$\Rightarrow fog(x) = 3x^2 + 7$$

 \therefore fog(2) = 3 × 2² + 7 = 12 + 7 = 19

Q.6. Let $A = \{1, 2, 3\}$, $B = \{4, 5\}$ and $C = \{5, 6\}$. Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be defined as f(1) = 4, f(2) = 5, f(3) = 4, g(4) = 5 and g(5) = 6. Find gof.

Ans. Obviously 'gof function is defined as

gof : $A \rightarrow C$ such that

gof(1) = g(f(1)) = g(4) = 5

gof(2) = g(f(2)) = g(5) = 6

gof(3) = g(f(3)) = g(4) = 5

Hence, $gof: A \to C$ is given by $gof = \{(1, 5), (2, 6), (3, 5)\}$

Q.7. Let * be the binary operation on the set $\{1, 2, 3, 4\}$ defined by a * b = HCF of a and b. Compute (2 * 3) * 4 and 2 * (3 * 4).

Ans. (2 * 3) * 4 = (HCF of 2 and 3) * 4 = (1 * 4) = 1

2 * (3 * 4) = 2 * (HCF of 3 and 4) = 2 * 1 = 1