Chapter 10. Quadratic And Exponential Functions

Ex. 10.5

Answer 1CU.

The equation is $y = a^x$ where a > 0.

Need to verify whether it cuts x - axis.

Take different values for a and sketch the graphs.

The graph of $y = 2^x$ is shown below:

The graph of $y = 5^x$ is shown below:

The graph of $y = \left(\frac{1}{2}\right)^x$ is shown below:

The graph of the function of the form $y = a^x$ where a > 0 is never meets for x - axis for any real value of x.

Therefore, the graph $y = a^x$ where a > 0 never cuts x - axis.

Answer 1PQ.

Consider the equation $x^2 + 2x = 35$

Claim: Solve the equation by quadratics formula.

Step1: Re-write the equation $x^2 + 2x = 35$ by the standard quadratic equation $ax^2 + bx + c = 0$ where $a \ne 0$

$$x^2 + 2x = 35$$
 (Original equation)

$$x^2 + 2x - 35 = 35 - 35$$
 (Subtract 35 on both sides)

$$x^2 + 2x - 35 = 0$$

Step2: Now solve the equation $x^2 + 2x = 35$ by quadratic formula

Now, compare the equation $x^2 + 2x = 35$ with the standard quadratic equation we obtain that a = 1; b = 2 and c = -35

Use the formula: "The solution of the quadratic equation $x^2 + 2x = 35$ where $a \neq 0$ are given by the quadratic form $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ "

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (Original formula)

$$x = \frac{-2 \pm \sqrt{(2)^2 - 4(1)(-35)}}{2(1)}$$
 (Replace a by 1, b by 2, and by -35)

$$= \frac{-2 \pm \sqrt{4 + 140}}{2}$$

$$= \frac{-2 \pm \sqrt{144}}{2}$$

$$= \frac{-2 \pm 12}{2}$$
 ($\sqrt{144} = 12$)

$$x = \frac{-2 + 12}{2}$$
 or $x = \frac{-2 - 12}{2}$

$$x = \frac{10}{2}$$
 or $x = \frac{-14}{2}$

$$x = 5$$
 or $x = -7$

Therefore x = 5 (or) x = -7

Step3: Check:

Substitute each value of x in the original equation $x^2 + 2x = 35$

$$x^{2} + 2x = 35$$
 (original equation)
 $(-7)^{2} + 2(-7) = 35$ (Replace x by -7)
 $49 - 14 = 35$
 $35 = 35$ True
 $x^{2} + 2x = 35$ (original equation)
 $(5)^{2} + 2(5) = 35$ (Replace x by 5)
 $25 + 10 = 35$
 $35 = 35$ True

therefore x = -7 and x = 5 satisfies the equation $x^2 + 2x = 35$

Hence, the solution set is $\{-7,5\}$

Answer 2CU.

An exponential function is a function that can be described by on equation of the form $y=a^x$, where a>0 and $a\neq 1$

Example Graph $y = 5^x$ (green curve)

Now we construct the table for $y = 5^x$

To substitute different values of x in the original function $y = 5^x$ to get the different values of y. plotting these all ordered pairs and connect them with a smooth curve.

Table for $y = 5^x$

	,	
х	5 ^x	у
-2	$5^{-2} = \frac{1}{25}$	$\frac{1}{25}$
-1	$5^{-1} = \frac{1}{5}$	$\frac{1}{5}$
0	5° = 1	1
1	5 ¹ = 5	5
2	$5^2 = 25$	25

Add these all ordered pairs (brown dots) to get a smooth curve.

The y – intercept is 1.

Answer 2PQ.

Consider the equation $2n^2 - 3n + 5 = 0$

<u>Claim</u>: Solve the equation $2n^2 - 3n + 5 = 0$ by quadratics formula.

Now, compare the equation $2n^2 - 3n + 5 = 0$ with the standard quadratic equation we obtain that a = 2; b = -3, c = 5 and x = n

Use the rule: "The solution of the quadratic equation $2v^2 - 4v = 1$ where $a \ne 0$ are given by the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ "

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (Original formula)

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(2)(5)}}{2(2)}$$
 (Replace a by 2 , b by -3 , c by 5 and x by n

$$= \frac{3 \pm \sqrt{9 - 40}}{4}$$

$$= \frac{3 \pm \sqrt{-31}}{4}$$

$$= \frac{3 \pm \sqrt{-1} \cdot \sqrt{31}}{4}$$

$$= \frac{3 \pm i \cdot \sqrt{31}}{4}$$
 or $n = \frac{3 - i\sqrt{31}}{4}$

Therefore, the roots of the equation $2n^2 - 3n + 5 = 0$, n is complex

Hence, there is no real roots of the equation $2n^2 - 3n + 5 = 0$

Answer 3CU.

Consider the graph $y = \left(\frac{1}{3}\right)^x$

<u>Claim:</u> Graph the function $y = \left(\frac{1}{3}\right)^x$ (green curve)

Now, we construct the table for $y = \left(\frac{1}{3}\right)^x$

To substitute different values of x in the original function $y = \left(\frac{1}{3}\right)^x$ to get the different values of y.

Plotting these all ordered pair and connect them with a smooth curve.

Table for
$$y = \left(\frac{1}{3}\right)^x$$

x	$\left(\frac{1}{3}\right)^x$	у	(x,y)
-4	$\left(\frac{1}{3}\right)^{-4} = 81$	81	(-4,81)
-3	$\left(\frac{1}{3}\right)^{-3} = 27$	27	(-3,27)
-2	$\left(\frac{1}{3}\right)^{-2} = 9$	9	(-2,9)
-1	$\left(\frac{1}{3}\right)^{-1} = 3$	3	(-1,3)
0	$\left(\frac{1}{3}\right)^0 = 1$	1	(0,1)
1	$\left(\frac{1}{3}\right)^{1} = 0.3$	0.3	(1,0.3)
3	$\left(\frac{1}{3}\right)^3 = 0.03$	0.03	(3,0.03)
4	$\left(\frac{1}{3}\right)^4 = 0.012$	0.012	(4,0.012)

Now, add these all ordered pairs (brown dots), to get a smooth curve. We observe that the graph $y = \left(\frac{1}{3}\right)^x$ is decreases as x increases. So Kiski graph B correct.

Because Amalia graphing $y = \left(\frac{1}{3}\right)^x$ is decreasing crease as x increasing.

Answer 3PQ.

Consider the equation $2v^2 - 4v = 1$

Claim: Solve the equation by quadratics formula.

<u>Step1</u>: Re-write the equation $2v^2 - 4v = 1$ by the standard quadratic equation $ax^2 + bx + c = 0$ where $a \neq 0$

$$2v^2 - 4v = 1$$
 (Original equation)

$$2v^2 - 4v - 1 = 1 - 1$$
 (Subtract 1 on both sides)

$$2v^2 - 4v - 1 = 0$$

Step2: Now solve the equation $2v^2 - 4v = 1$ by quadratic formula

Now, compare the equation $2v^2 - 4v = 1$ with the standard quadratic equation we obtain that a = 2; b = -4, c = -1 and x = v

Use the formula: "The solution of the quadratic equation $2v^2 - 4v = 1$ where $a \ne 0$ are given by the quadratic form $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ "

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (Original formula)

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-1)}}{2(2)}$$
 (Replace a by 2, b by -4 , c by -1)

$$= \frac{-(-4) \pm \sqrt{16 + 8}}{4}$$

$$= \frac{-(-4) \pm \sqrt{24}}{4}$$

$$\approx \frac{4 \pm 4.89}{4}$$
 or $v \approx \frac{4 - 4.89}{4}$

$$v \approx \frac{8.89}{4}$$
 or $v \approx \frac{-0.89}{4}$

$$v \approx 2.22$$
 or $v \approx -0.22$

Step3: Check:

Substitute each value of x in the original equation $2v^2 - 4v = 1$

$$2v^{2}-4v=1 \qquad \text{(original equation)}$$

$$2(-0.22)^{2}-4(-0.22)\stackrel{?}{=}1 \qquad \text{(Replace } x \text{ by } -0.22)$$

$$0.9 \stackrel{?}{\approx}1$$

$$1=1 \qquad \text{True}$$

$$2v^{2}-4v=1 \qquad \text{(original equation)}$$

$$2(2.22)^{2}-4(2.22)\stackrel{?}{=}1 \qquad \text{(Replace } x \text{ by } 2.22)$$

$$0.9 \stackrel{?}{\approx}1$$

$$1=1 \text{True}$$

Therefore v = -0.22 and v = 2.2 satisfies the equation $2v^2 - 4v = 1$

Hence, the solution set is $\{-0.22, 2.22\}$

Answer 4CU.

Consider the function $y = 3^x$

Claim: To graph the function $y = 3^x$ and use the graph.

Step 1: To determine the approximate value 31.2

Now, we construct the table for $y = 3^x$. To substitute different values of x in the original function $y = 3^x$ to get the different values of y

Plotting these all ordered pair and connect them with a smooth curve.

Table for $y = 3^x$

х	3 ^x	у	(x,y)
-3	$3^{-3} = \frac{1}{27}$	1 27	$\left(-3,\frac{1}{27}\right)$
-2	$3^{-2} = \frac{1}{9}$	$\frac{1}{9}$	$\left(-2,\frac{1}{9}\right)$
-1	$3^{-1} = \frac{1}{3}$	$\frac{1}{3}$	$\left(-1,\frac{1}{3}\right)$
0	3° = 1	1	(0,1)
1	31 = 3	3	(1,3)
2	$3^2 = 9$	9	(2,9)
3	$3^3 = 27$	27	(3,27)

Now, add these all ordered pairs, to get a smooth curve. The y- intercept is $\boxed{1}$

Step 2: use the graph to determine the approximate value of $3^{1.2}$

The graph represents all real values of x and their corresponding value of y for $y = 3^x$. So, the value of y is about 3.5 when x = 1.2. Use calculator to confirm this value

 $3^{1.2} \approx 3.737192819$

Answer 4PQ.

Consider the function $y = 0.5(4^x)$

<u>Claim</u>: Graph the function $y = 0.5(4^x)$ and to find the y-intercept of the function

$$y = 0.5(4^x)$$

Step1: Graph the function $y = 0.5(4^x)$

To construct the table for $y = 0.5(4^x)$

Now, substitute the different values of 'x', we obtain the y – values plotting these all ordered pairs and connect them we obtain the smooth curve.

Table for $y = 0.5(4^x)$

$$x = 0.5(4^{x})$$
 $y = (x, y)$
 $-3 = 0.5(4^{-3}) = 0.0078$ 0.0078 $(-3, 0.0078)$
 $-2 = 0.5(4^{-2}) = 0.031$ 0.031 $(-2, 0.031)$
 $-1 = 0.5(4^{-1}) = 0.125$ 0.125 $(-1, 0.125)$
 $0 = 0.5(4^{0}) = 0.5$ 0.5 $(0, 0.5)$
 $1 = 0.5(4^{1}) = 2$ 2 $(1, 2)$
 $2 = 0.5(4^{2}) = 8$ 8 $(2, 8)$
 $3 = 0.5(4^{3}) = 32$ 32 $(3, 32)$

Now connect these all ordered pairs we obtain the smooth curve. The curve $y = 0.5(4^x)$ cuts at y - axis (0, 0.5). The y - intercept of the function $y = 0.5(4^x)$ is $\boxed{0.5}$.

Step2: Verification

To find y – intercept of the function $y = 0.5(4^x)$ put x = 0 in the original function $y = 0.5(4^x)$, we obtain the y – intercept.

$$y = 0.5(4^x)$$
 (original equation)
 $y = 0.5(4^0)$ (Replace x by 0)
 $y = 0.5(1)$ (Use the rule $a^0 = 1$ if $a \ne 0$)
 $y = 0.5$

Therefore the y – intercept of the function $y = 0.5(4^x)$ is 0.5

Answer 5CU.

Consider the function $y = \left(\frac{1}{4}\right)^x$

Claim: To graph the function $y = \left(\frac{1}{4}\right)^x$ and use the graph to determine the approximate value of $\left(\frac{1}{4}\right)^{1.7}$

Step 1: Graph the function $y = \left(\frac{1}{4}\right)^x$

Now, we construct the table for $y = \left(\frac{1}{4}\right)^x$.

To substitute different values of x in the original function $y = \left(\frac{1}{4}\right)^x$ to get the different values of y

Plotting these all ordered pair and connect them with a smooth curve.

Table for
$$y = \left(\frac{1}{4}\right)^x$$

х	$\left(\frac{1}{4}\right)^x$	у	(x,y)
-3	$\left(\frac{1}{4}\right)^{-3} = 64$	64	(-3,64)
-2	$\left(\frac{1}{4}\right)^{-2} = 16$	16	(-2,16)
-1	$\left(\frac{1}{4}\right)^{-1} = 4$	4	(-1,4)
0	$\left(\frac{1}{4}\right)^0 = 1$	1	(0,1)
1	$\left(\frac{1}{4}\right)^1 = 0.25$	0.25	(1,0.25)
2	$\left(\frac{1}{4}\right)^2 = 0.0625$	0.0625	(2,0.0625)
3	$\left(\frac{1}{4}\right)^3 = 0.0156$	0.0156	(3,0.0156)

Now, add these all ordered pairs, to get a smooth curve. The y – intercept is 1

Step 2: use the graph to determine the approximate value of $\left(\frac{1}{4}\right)^{1.7}$

The graph represents all real values of x and their corresponding value of $y = \left(\frac{1}{4}\right)^x$.

So the value of y=0.094. When x=1.7. Use the calculator to confirm $\left(\frac{1}{4}\right)^{1.7}\approx 0.094732$

Answer 5PO.

Consider the function $v = 5^x - 4$

Claim: Graph the function $v = 5^x - 4$ and to find the y-intercept of the function

$$y = 5^x - 4$$

Step1: Graph the function $v = 5^x - 4$

To construct the table for $v = 5^x - 4$

Now, substitute the different values of 'x', we obtain the y - values plotting these all ordered pairs and connect them we obtain the smooth curve.

Table for $v = 5^x - 4$

$$x$$
 $5^{x}-4$ y (x,y)
 -3 $5^{-3}-4=-3.992$ -3.992 $(-3,-3.992)$
 -2 $5^{-2}-4=-3.96$ -3.96 $(-2,-3.96)$
 -1 $5^{-1}-4=-3.8$ -3.8 $(-1,-3.8)$
 0 $5^{0}-4=-3$ -3 $(0,-3)$
 1 $5^{1}-4=1$ 1 $(1,1)$
 2 $5^{2}-4=21$ 21 $(2,21)$
 3 $5^{3}-4=121$ 121 $(3,121)$

121

Now connect these all ordered pairs we obtain the smooth curve. The curve $v = 5^x - 4$ cuts at y - axis -3. The y - intercept of the function $y = 5^x - 4$ is -3.

Step2: Verification

3

To find y - intercept of the function $y = 5^x - 4$ put x = 0 in the original function $y = 5^x - 4$, we obtain the y – intercept.

$$y = 5^{x} - 4$$
 (original equation)
 $y = 5^{0} - 4$ (Replace x by 0)
 $y = 1 - 4$ (Use the rule $a^{0} = 1$ if $a \neq 0$)
 $y = -3$

Therefore the curve $y = 5^x - 4$ cuts at y - axis is (0, -3)

Hence, the y – intercept of the function $y = 5^x - 4$ is $\boxed{-3}$

Answer 6CU.

Consider the function $v = 9^x$

<u>Claim:</u> To graph the function $y = 9^x$ and use the graph to determine the approximate value of $9^{0.8}$

Step 1: Graph the function $y = 9^x$

Now, we construct the table for $v = 9^x$.

To substitute different values of x in the original function $y = 9^x$ to get the different values of y. Plotting these all ordered pair and connect them with a smooth curve.

x	9 ^x	у	(x,y)
-3	$9^{-3} = \frac{1}{9^3}$	0.00137	(-3,0.00137)
-2	$9^{-2} = \frac{1}{9^2}$	0.01234	(-2,0.01234)
-1	$9^{-1} = \frac{1}{9}$	0.1	(-1,0.1)
0	9° = 1	1	(0,1)
1	91 = 9	9	(1,9)
2	$9^2 = 81$	81	(2,81)

Now, add these all ordered pairs, to get a smooth curve. The y – intercept is $\boxed{1}$

Step 2: use the graph to determine the approximate value of $9^{0.8}$

The graph represents all real values of x and their corresponding value of y for $y=9^x$. So the value of y=5.7 use a calculator to conform this value

 $9^{0.8} \approx 5.799546135$

Answer 7CU.

Consider the function $y = 2 \cdot 3^x$

<u>Claim</u>: Graph the function $y = 2 \cdot 3^x$ and to find the y-intercept of $y = 2 \cdot 3^x$

Step1: Graph the function $y = 2 \cdot 3^x$

To construct the table for $y = 2 \cdot 3^x$

Now, substitute the different values of 'x' in the original function $y = 2 \cdot 3^x$, we obtain the y – values plotting these all ordered pairs and connect them we obtain the smooth curve.

Table for $y = 2 \cdot 3^x$

x	$2 \cdot 3^x$	у	(x,y)
-3	$2.3^{-3} = 0.074$	0.074	(-3,0.074)
-2	$2.3^{-2} = 0.22$	0.22	(-2,0.22)
-1	$2.3^{-1} = 0.66$	0.66	(-1,0.66)
0	$2.3^{\circ} = 2$	2	(0,2)
1	2.31 = 6	6	(1,6)
2	$2.3^2 = 18$	18	(2,18)
3	$2.3^3 = 54$	54	(3,54)

Now connect these all ordered pairs we obtain the smooth curve. The curve $y = 2 \cdot 3^x$ cuts at y - axis is (0,2). The y - intercept of the function $y = 2 \cdot 3^x$ is $\boxed{2}$.

Step2: Verification

To find y – intercept of the function $y = 2 \cdot 3^x$ put x = 0 in the original function $y = 2 \cdot 3^x$, we obtain the y – intercept.

$$y = 2 \cdot 3^{x}$$
 (original equation)
 $y = 2 \cdot 3^{0}$ (Replace x by 0)
 $y = 2 \cdot 1$ (Use the rule $a^{0} = 1$ if $a \neq 0$)
 $y = 2$

Therefore the curve $y = 2 \cdot 3^x$ cuts at y - axis is (0,2)

Hence, the y – intercept of the function $y = 2 \cdot 3^x$ is $\boxed{2}$

Answer 8CU.

Consider the function $y = 4(5^x - 10)$

<u>Claim</u>: Graph the function $y = 4(5^x - 10)$ and to find the y-intercept of $y = 4(5^x - 10)$

Step1: Graph the function $y = 4(5^x - 10)$

To construct the table for $y = 4(5^x - 10)$

Now, substitute the different values of 'x' in the original function $y = 4(5^x - 10)$, we obtain the y – values plotting these all ordered pairs and connect them we obtain the smooth curve.

Table for $y = 4(5^x - 10)$

х	$4(5^x-10)$	у	(x,y)
-3	$4(5^{-3}-10) = -39.968$	-39.968	(-3,-39.968)
-2	$4(5^{-2}-10) = -39.84$	-39.84	(-2,-39.84)
-1	$4(5^{-1}-10)=-39.2$	-39.2	(-1,-39.2)
0	$4(5^0 - 10) = -36$	-36	(0,-36)
1	$4(5^1-10)=-20$	-20	(1,-20)
2	$4(5^2 - 10) = 60$	60	(2,60)

Now connect these all ordered pairs we obtain the smooth curve. The curve $y = 4(5^x - 10)$ cuts at y - axis is (0, -36). The y - intercept of the function $y = 4(5^x - 10)$ is $\boxed{-36}$.

Step2: Verification

To find y – intercept of the function $y = 4(5^x - 10)$ put x = 0 in the original function $y = 4(5^x - 10)$, we obtain the y – intercept.

$$y = 4(5^x - 10)$$
 (original equation)
 $y = 4(5^0 - 10)$ (Replace x by 0)
 $y = 4(1-10)$ (Use the rule $a^0 = 1$ if $a \ne 0$)
 $y = 4(-9)$
 $y = -36$

Therefore the curve $y = 4(5^x - 10)$ cuts at y - axis is (0, -36)

Hence, the y – intercept of the function $y = 4(5^x - 10)$ is $\boxed{-36}$

Answer 9CU.

Consider the data

х	0	1	2	3	4	5
у	1	6	36	216	1296	7776

Step1: look for a Determine the pattern.

The domain values are at regular interval of '1' let's see. If there is a common factor among the range values,

Hence, yes the domain vales are at regular interval and the range values have a common factor '6' the data are probably exponential. The equation for the data involve 6^x

Step2:

We observe that, the graph shows rapidly decreasing values of if as a increases. This is a characteristic of exponential behavior.

Answer 10CU.

Consider the following data

2	r	4	6	8	10	12	14
)	v	5	9	13	17	21	25

Step1: Look for a pattern.

The domain values are at regular interval of '2'. The range values have a common difference 6

Therefore, the data do not display exponential behavior, but rather linear behavior.

Hence, not the domain vales are at regular interval and the range values have a common difference $\boxed{6}$

Step2:

х	4	6	8	10	12	14
у	5	9	13	17	21	25

We observe that, this is a graph of line not an exponential function.

Answer 11CU.

Consider, a wise man asked his rules to provide rice for feeding his people. Rather than receiving a constant daily supply of rice, the wise man asked the rules to given him.

2 grains rice for the first square on a chess board, 4 grains for the second on a chess board, 8 grains for the third, 16 for the fourth and so on doubling the amount of rice with each square of the board.

Claim: To construct the table

Since 2 grains rice for the first square on the board

4 grains rice for the second square on the board

8 grains rice for the third square on the board

16 grains rice for the fourth square on the board

Board at x: represents the rice on a chess board

y: represents the rice on a chess board

х	1	2	3	4
у	2	4	8	16

Step2: To find the equation for the data.

The domain values are at regular intervals of 1 let's see if there is a common factor among the range values.

Therefore, the domain values at regular intervals and the range values have a common factor 2.

Hence, the data probably exponential, the equation for the data may involve $y = 2^x$

<u>Step3</u>: To find the how many grains of rice will the wise man receive for the last (64) square on the chess board.

Substitute x = 64 in the original function

 $y = 2^x$ we get the grains of rice on a chess board.

```
y = 2^{x} (original function)

y = 2^{64} (Replace x by 64)

y = 1.84 \times 10^{19}
```

Hence, 1.84×10^{19} grains of rice will the wise man receive for the last 64th square on chess board.

Answer 12CU.

Consider one pound of rice contains 24000 grains (approximate)

One tone = 2000 pounds

Per a ton number of rice grains = 2000×24000

```
=48,000,000
```

According to the problems wise man asked the emperor

For 1st square on chess board 21= 2 grains

For 2nd square on chess board 22= 4 grains

```
......
```

For 64th square on chess board 264 = $1.844674407 \times 10^{19}$ grains

Since chess board contains 64 squares

We can write the grains per a square $y = 2^x$ exponential

Graph we can draw the table for the function

Table:

$$x = \text{square number}$$
 $y = \text{number of grains in the square} = 2^x$ (x, y)

1 $2^1 = 2$ $(1, 2)$

2 $2^2 = 4$ $(2, 4)$

3 $2^3 = 8$ $(3, 8)$

4 $2^4 = 16$ $(4, 16)$

5 $2^5 = 32$ $(5, 32)$

.... $(5, 32)$

.... $(5, 32)$

The last night the wise man received the rice

$$= 2 + 2^2 + 2^3 + 2^4 + \dots + 2^{64} = s^{64}$$

It is in G.P with a = 2; r = 2

$$s_n = \frac{a(r^n - 1)}{r - 1}$$

$$s_{64} = \frac{2(2^{64} - 1)}{2 - 1}$$

$$= 2(2^{64} - 1)$$

$$= 2^{65} - 2$$

$$= 3.689348815 \times 10^{19} \text{ grains}$$

$$= 3.689348815 \times 10^{19} \text{ tone so now.}$$

$$= \frac{3.689348815 \times 10^{19}}{48,000,000}$$
tons as per ton 48,000,000 tons

$$=$$
 7.6816143365×10¹¹ tons

The wise man received the rice $7.6816143365 \times 10^{11} tons$ from the emperor.

Answer 13PA.

Consider the function $y = 5^x$

<u>Claim:</u> To graph the function $y = 5^x$ and use the graph to determine the approximate value of $5^{1.1}$

Step 1: Graph the function $y = 5^x$

Now, we construct the table for $y = 5^x$.

To substitute different values of x in the original function $y = 5^x$. To obtain the different values of y. plotting these ordered pairs and connected them with a smooth curve.

Table for $v = 5^x$

x	5 ^x	у	(x,y)
-3	$5^{-3} = \frac{1}{5^3}$	0.008	(-3,0.008)
-2	$5^{-2} = \frac{1}{5^2}$	0.04	(-2,0.04)
-1	$5^{-1} = \frac{1}{5}$	0.2	(-1,0.2)
0	5° = 1	1	(0,1)
1	5 ¹ = 5	5	(1,5)
2	$5^2 = 25$	25	(2,25)
3	$5^3 = 125$	125	(3,125)

Now, add these all ordered pairs, to get a smooth curve. The y – intercept is 1

<u>Step 2:</u> The graph represents all real values of x and their corresponding values of y for $y = 5^x$. So, the value of y is about 5.87. use a calculator to confirm this value.

 $5^{1.1} \approx 5.873094715$

Answer 14PA.

Consider the function $y = 10^x$

<u>Claim:</u> To graph the function $y = 10^x$ and use the graph to determine the approximate value of $5^{1.1}$

Step 1: Graph the function $y = 10^x$

Now, we construct the table for $y = 10^x$.

To substitute different values of x in the original function $y = 10^x$. To obtain the different values of y, plotting these ordered pairs and connected them with a smooth curve.

Table for $y = 10^x$

	-		
х	10 ^x	у	(x,y)
-3	$10^{-3} = \frac{1}{10^3}$	0.001	(-3,0.001)
-2	$10^{-2} = \frac{1}{10^2}$	0.01	(-2,0.01)
-1	$10^{-1} = \frac{1}{10^1}$	0.1	(-1,0.1)
0	$10^0 = 1$	1	(0,1)
1	10 ¹ = 10	10	(1,10)
2	$10^2 = 100$	100	(2,100)
3	$10^3 = 1000$	1000	(3,1000)

Now, add these all ordered pairs, to get a smooth curve. The y – intercept is 1

Step 2: To determine the approximate value of $10^{0.3}$

The graph represents all real values of x and their corresponding values of y for $y = 10^x$. So, the value of y is 1.995 use a calculator to confirm this value.

$$10^{0.3}\approx 2$$

Answer 15PA.

Consider the function $y = \left(\frac{1}{10}\right)^x$

<u>Claim:</u> To graph the function $y = \left(\frac{1}{10}\right)^x$ and use the graph to determine the approximate value of $5^{1.1}$

Step 1: Graph the function $y = \left(\frac{1}{10}\right)^x$

Now, we construct the table for $y = \left(\frac{1}{10}\right)^x$.

To substitute different values of x in the original function $y = \left(\frac{1}{10}\right)^x$. To obtain the different values of y. plotting these ordered pairs and connected them with a smooth curve.

Table for
$$y = \left(\frac{1}{10}\right)^x$$

x	$\left(\frac{1}{10}\right)^x$	у	(x,y)
-3	$\left(\frac{1}{10}\right)^{-3}$	1000	(-3,1000)
-2	$\left(\frac{1}{10}\right)^{-2}$	100	(-2,100)
-1	$\left(\frac{1}{10}\right)^{-1}$	10	(-1,10)
0	$\left(\frac{1}{10}\right)^0$	1	(0,1)
1	$\left(\frac{1}{10}\right)^{1}$	0.1	(1,0.1)
2	$\left(\frac{1}{10}\right)^2$	0.01	(2,0.01)
3	$\left(\frac{1}{10}\right)^3$	0.001	(3,0.001)

Now, add these all ordered pairs, to get a smooth curve. The y – intercept is $\boxed{1}$

Step 2: Use the graph to determine the approximate value of $\left(\frac{1}{10}\right)^{-1.3}$

The graph represents all real value of x and their corresponding values of y for $y = \left(\frac{1}{10}\right)^x$. So the value of y is about 20. Use a calculator to confirm this value.

$$\left(\frac{1}{10}\right)^{-1.3} = 19.95262315$$

Answer 16PA.

Consider the function $y = f(x) = \left(\frac{1}{5}\right)^x; \left(\frac{1}{5}\right)^{0.5}$

Claim: Graph the function $y = f(x) = \left(\frac{1}{5}\right)^x$ and to find y – intercept.

Step 1: Graph the function $y = f(x) = \left(\frac{1}{5}\right)^x$

Now construct table for $y = \left(\frac{1}{5}\right)^x$.

To substitute different values of x in the original equation $y = \left(\frac{1}{5}\right)^x$.

We obtain y- values. Plotting the this ordered all pairs and connected them. We get a smooth curve.

Table for
$$y = \left(\frac{1}{5}\right)^x$$

х	у
-3	$\left(\frac{1}{5}\right)^{-3} = 125$
-2	$\left(\frac{1}{5}\right)^{-2} = 25$
-1	$\left(\frac{1}{5}\right)^{-1} = 5$
0	$\left(\frac{1}{5}\right)^0 = 1$
0.5	$\left(\frac{1}{5}\right)^{0.5} = 0.45$

1	$\left(\frac{1}{5}\right)^1 = 0.2$
2	$\left(\frac{1}{5}\right)^2 = 0.04$
3	$\left(\frac{1}{5}\right)^3 = 0.008$

Now, connected all ordered pairs we obtain a smooth curve and the curve $y = \left(\frac{1}{5}\right)^x$ is cut at y -axis is (0, 1).

Therefore y – intercept of the graph $y = \left(\frac{1}{5}\right)^x$ is $\boxed{1}$

By the graph the value of $\left(\frac{1}{5}\right)^{0.5}$ is $\boxed{0.45}$

<u>Step2</u>: to find the value of $\left(\frac{1}{5}\right)^{0.5}$ by using calculator $\left(\frac{1}{5}\right)^{0.5} = \boxed{0.4472}$

Answer 17PA.

Consider the function $y = f(x) = 6^x$; $6^{0.3}$

<u>Claim</u>: Graph the function $y = f(x) = 6^x$ and to find y - intercept.

Step1: Graph the function $y = f(x) = 6^x$

Now construct table for $y = 6^x$. To substitute different values of x in the original equation $y = 6^x$, we obtain y- values. Plotting the this ordered all pairs and connected them. We get a smooth curve.

Table for $y = 6^x$

	, ,
x	у
-2	$6^{-2} = 0.028$
-1	$6^{-1} = 0.16$
0	$6^0 = 1$
0.3	$6^{0.3} = 1.7$
1	$6^1 = 6$
2	$6^2 = 36$

Now, connected all ordered pairs we obtain a smooth curve and the curve $y = 6^x$ is cut at y - axis is (0, 1).

Therefore y – intercept of the graph $y = 6^x$ is $\boxed{1}$

By the graph the value of $6^{0.3}$ is $\boxed{1.7}$

Step2: To find the value of $6^{0.3}$ by using calculator $6^{0.3} = \boxed{1.7117}$

Answer 18PA.

Consider the function $y = f(x) = 8^x; 8^{0.8}$

<u>Claim</u>: Graph the function $y = f(x) = 8^x$ and to find y - intercept.

Step1: Graph the function $y = f(x) = 8^x$

Now construct table for $y = 8^x$. To substitute different values of x in the original equation $y = 8^x$, we obtain y- values. Plotting the all ordered all pairs and connected them. We get a smooth curve.

Table for $y = 8^x$

х	у
-2	$8^{-2} = 0.02$
-1	$8^{-1} = 0.13$
0	8° = 1
0.8	$8^{0.8} = 5.3$
1	81 = 8
2	$8^2 = 64$

Now, connected all ordered pairs we obtain a smooth curve and the curve $y = 8^x$ is cut at y - axis is (0, 1).

Therefore y – intercept of the graph $y = 8^x$ is $\boxed{1}$

By the graph the value of $8^{0.8}$ is $\boxed{5.3}$

Step2: to find the value of $8^{0.8}$ by using calculator $8^{0.8} = 5.27803$

Answer 19PA.

Consider the function $y = 5(2^x)$

<u>Claim</u>: Graph the function $y = 5(2^x)$ and to find the y – intercept of the function $y = 5(2^x)$.

Step1: Graph the function $y = 5(2^x)$

Now, to construct the table for $y = 5(2^x)$

To substitute the different values of x in the original function $y = 5(2^x)$, we obtain the y – values. Plotting these all ordered pairs and connect them, we obtain the curve.

Table for $y = 5(2^x)$

$$x 5 \cdot (2^x) y (x,y)$$

$$-3$$
 $5 \cdot (2^{-3}) = 0.625$ $(-3, 0.625)$

$$-2$$
 $5 \cdot (2^{-2}) = 1.25$ $(-2, 1.25)$

$$-1$$
 $5 \cdot (2^{-1}) = 2.5$ $(-1, 2.5)$

$$0 5 \cdot (2^0) = 5 5 (0,5)$$

1
$$5 \cdot (2^1) = 10$$
 10 (1,10)

2
$$5 \cdot (2^2) = 20$$
 20 $(2,20)$

$$3 5 \cdot (2^3) = 40 40 (3,40)$$

Now, connect these all ordered pairs we obtain the smooth curve the curve $y = 5(2^x)$ cuts at y = -3 axis is (0, 5). The y - intercept of the curve $y = 5(2^x)$ is $\boxed{5}$

Step2: Verification:

To find the y – intercept of the function $y = 5(2^x)$, put x = 0 is the original function $y = 5(2^x)$

$$y = 5(2^{x})$$
 (original function)
 $y = 5(2^{0})$ (Replace x by 0)
 $y = 5 \cdot 1$
 $y = 5$

Therefore, the curve $y = 5(2^x)$ cuts at y - axis is (0, 5).

Hence, the y – intercept of the function $y = 5(2^x)$ is $\boxed{5}$

Answer 20PA.

Consider the function $y = 3(5^x)$

<u>Claim</u>: Graph the function $y = 3(5^x)$ and to find the y – intercept of the function $y = 3(5^x)$.

Step 1: Graph the function $y = 3(5^x)$

To construct the table for $y = 3(5^x)$

To substitute the different values of x in the original function $y = 3(5^x)$, we obtain the y – values. Plotting these all ordered pairs and connect them, we obtain the curve.

Table for $y = 3(5^x)$

$$x = 3(5^x)$$
 $y = (x,y)$

$$-3$$
 $3(5^{-3}) = 0.024$ $(-3, 0.024)$

$$-2$$
 $3(5^{-2}) = 0.12$ $(-2, 0.12)$

$$-1$$
 $3(5^{-1}) = 0.6$ $(-1, 0.6)$

$$0 3(5^0) = 3 3 (0,3)$$

1
$$3(5^1) = 15$$
 15 $(1,15)$

$$2 3(5^2) = 75 75 (2,75)$$

Now, connect these all ordered pairs we obtain the smooth curve the curve $y = 3(5^x)$ cuts at y - axis is (0, 3). The y - intercept of the curve $y = 3(5^x)$ is $\boxed{3}$

Step2: Verification:

Now to find the y – intercept of the function $y = 3(5^x)$, put x = 0 is the original function

$$y = 3(5^x)$$

$$y = 3(5^x)$$
 (original function)

$$y = 3(5^{\circ})$$
 (Replace x by 0)

 $y = 3 \cdot 1$

$$y = 3$$

Therefore, the curve $y = 3(5^x)$ cuts at y - axis is (0, 3).

Hence, the y – intercept of the function $y = 3(5^x)$ is $\boxed{3}$

Answer 21PA.

Consider the function $y = 3^x - 7$

<u>Claim</u>: Graph the function $y = 3^x - 7$ and to find the y – intercept of the function $y = 3^x - 7$.

Step1:

Graph the function $y = 3^x - 7$

To construct the table for $y = 3^x - 7$

To substitute the different values of x in the original function $y = 3^x - 7$, we obtain the y – values. Plotting these all ordered pairs and connect them, we obtain the curve.

Table for $y = 3^x - 7$

$$x 3^x - 7 y (x, y)$$

$$-3$$
 $3^{-3} - 7 = -6.963$ -6.963 $\left(-3, -6.963\right)$

$$-2$$
 $3^{-2} - 7 = -6.888$ -6.888 $(-2, -6.888)$

$$-1$$
 $3^{-1} - 7 = -6.666$ -6.666 $\left(-1, -6.666\right)$

$$0 3^{-1} - 7 = -6 -6 (0, -6)$$

$$1 3^{-1} - 7 = -4 -4 (1, -4)$$

$$2 3^{-1} - 7 = 2 2 (2,2)$$

$$3 3^{-1} - 7 = 20 20 (3,20)$$

Now, connect these all ordered pairs we obtain the smooth curve the curve $y = 3^x - 7$ cuts at y - axis is (0, -6). The y - intercept of the curve $y = 3^x - 7$ is $\boxed{-6}$

Step2: Verification:

Now to find the y- intercept of the function $y=3^x-7$, put x=0 is the original function

$$y = 3^x - 7$$

$$y = 3^x - 7$$
 (original function)

$$y = 3^0 - 7 (Replace x by 0)$$

$$y = 1 - 7$$
 (Use the rule $a^0 = 1$ if $a \ne 0$)

$$y = -6$$

Therefore, the curve $y = 3^x - 7$ cuts at y - axis is (0, -6).

Hence, the y – intercept of the function $y = 3^x - 7$ is $\boxed{-6}$

Answer 22PA.

Consider the function $v = 2^x + 4$

<u>Claim</u>: Graph the function $y = 2^x + 4$ and to find the y – intercept of the function $y = 2^x + 4$

Step1:

Graph the function $v = 2^x + 4$

To construct the table for $y = 2^x + 4$

To substitute the different values of x in the original function $v = 2^x + 4$, we obtain the y values. Plotting these all ordered pairs and connect them, we obtain the curve.

Table for $y = 2^x + 4$

$$x = 2^{x} + 4$$

$$-3$$
 $2^{-3} + 4 = 4.125$

$$(-3, 4.125)$$

$$-2$$
 $2^{-2} + 4 = 4.25$

$$(-2, 4.25)$$

$$-1$$
 $2^{-1} + 4 = 4.5$ 4.5 $(-1, 4.5)$

$$(-1, 4.5)$$

$$0 2^0 + 4 = 5$$

$$1 2^1 + 4 = 6$$

$$2 2^2 + 4 = 8$$

$$3 2^3 + 4 = 12$$

Now, connect these all ordered pairs we obtain the smooth curve the curve $y = 2^x + 4$ cuts at y - axis is (0, 5). The y - intercept of the curve $y = 2^x + 4$ is $\boxed{5}$

Step2: Verification:

Now to find the y – intercept of the function $y = 2^x + 4$, put x = 0 is the original function

$$y = 2^x + 4$$

$$y = 2^x + 4$$
 (original function)

$$y = 2^0 + 4 \qquad \qquad \text{(Replace } x \text{ by 0)}$$

$$y = 1 + 4$$
 (Use the rule $a^0 = 1$ if $a \ne 0$)

$$y = 5$$

Therefore, the curve $y = 2^x + 4$ cuts at y - axis is (0, 5).

Hence, the y – intercept of the function $y = 2^x + 4$ is $\boxed{5}$

Answer 23PA.

Consider the function $y = 2(3^x) - 1$

Claim: Graph the function $y = 2(3^x) - 1$ and to find the y – intercept of the function $y = 2(3^x) - 1$

Step1:

Graph the function $y = 2(3^x) - 1$

To construct the table for $y = 2(3^x) - 1$

To substitute the different values of x in the original function $y = 2(3^x) - 1$, we obtain the y – values. Plotting these all ordered pairs and connect them, we obtain the curve.

Table for $y = 2(3^x) - 1$

$$x \qquad 2(3^x)-1 \qquad \qquad y \qquad (x,y)$$

$$-3$$
 $2(3^{-3})-1=-0.926$ -0.926 $(-3,-0.926)$

$$-2$$
 $2(3^{-2})-1=-0.777$ -0.777 $(-2,-0.777)$

$$-1$$
 $2(3^{-1})-1=-0.333$ -0.333 $(-1,-0.333)$

$$0 2(3^{\circ}) - 1 = 1 1 (0,1)$$

1
$$2(3^1)-1=5$$
 5 $(1,5)$

2
$$2(3^2)-1=17$$
 17 (2,17)

3
$$2(3^3)-1=53$$
 53. $(3,53)$

Now, connect these all ordered pairs we obtain the smooth curve the curve $y=2(3^x)-1$ cuts at y- axis is (0, 1). The y- intercept of the curve $y=2(3^x)-1$ is $\boxed{1}$

Step2: Verification:

Now to find the y – intercept of the function $y = 2(3^x) - 1$, put x = 0 is the original function

$$y = 2(3^{x})-1$$

 $y = 2(3^{x})-1$ (original function)

$$y = 2(3^0) - 1 \qquad \qquad \text{(Replace } x \text{ by } 0\text{)}$$

$$y = 2(1)-1$$
 (Use the rule $a^0 = 1$ if $a \ne 0$)

$$y = 2 - 1$$

$$y = 1$$

Therefore, the curve $y = 2(3^x) - 1$ cuts at y - axis is (0, 1).

Hence, the y – intercept of the function $y = 2(3^x) - 1$ is $\boxed{1}$

Answer 24PA.

Consider the function $y = 5(2^x) + 4$

<u>Claim</u>: Graph the function $y = 5(2^x) + 4$ and to find the y – intercept of the function $y = 5(2^x) + 4$

Step1:

Graph the function $y = 5(2^x) + 4$

To construct the table for $y = 5(2^x) + 4$

To substitute the different values of x in the original function $y = 5(2^x) + 4$, we obtain the y values. Plotting these all ordered pairs and connect them, we obtain the curve.

Table for $y = 5(2^x) + 4$

$$x \qquad 5(2^x) + 4 \qquad \qquad y \qquad \qquad (x,y)$$

$$-3$$
 $5(2^{-3})+4=4.625$ 4.625 $(-3,4.625)$ -2 $5(2^{-2})+4=5.25$ 5.25 $(-2,5.25)$

$$-2$$
 $5(2^{-2})+4=5.25$ 5.25 $(-2,5.25)$

$$-1$$
 $5(2^{-1})+4=6.5$ $(-1,6.5)$

$$0 5(2^0) + 4 = 9 9 (0,9)$$

1
$$5(2^1)+4=14$$
 14 (1,14)

2
$$5(2^2)+4=24$$
 24 $(2,24)$

3
$$5(2^3)+4=44$$
 44. $(3,44)$

Now, connect these all ordered pairs we obtain the smooth curve the curve $y = 5(2^x) + 4$ cuts at y - axis is (0, 9). The y - intercept of the curve $y = 5(2^x) + 4$ is $\boxed{9}$

Step2: Verification:

Now to find the y – intercept of the function $y = 5(2^x) + 4$, put x = 0 is the original function

$$y = 5(2^{x}) + 4$$

 $y = 5(2^{x}) + 4$ (original function)

$$y = 5(2^{\circ}) + 4$$
 (Replace x by 0)

$$y = 5(1) + 4$$
 (Use the rule $a^0 = 1$ if $a \ne 0$)

$$y = 5 + 4$$

$$y = 9$$

Therefore, the curve $y = 5(2^x) + 4$ cuts at y - axis is (0, 9).

Hence, the y – intercept of the function $y = 5(2^x) + 4$ is $\boxed{9}$

Answer 25PA.

Consider the function $y = 2(3^x + 1)$

<u>Claim</u>: Graph the function $y = 2(3^x + 1)$ and to find the y – intercept of the function $y = 2(3^x + 1)$

Step1:

Graph the function $y = 2(3^x + 1)$

To construct the table for $y = 2(3^x + 1)$

To substitute the different values of x in the original function $y = 2(3^x + 1)$, we obtain the y values. Plotting these all ordered pairs and connect them, we obtain the curve.

Table for $y = 2(3^x + 1)$

$$x \qquad 2(3^x+1) \qquad \qquad y \qquad \qquad (x,y)$$

$$-3$$
 $2(3^{-3}+1)=2.074$ $(-3,2.074)$

$$-2$$
 $2(3^{-2}+1)=2.222$ 2.222 $(-2,2.222)$ -1 $2(3^{-1}+1)=2.666$ 2.666 $(-1,2.666)$

$$-1$$
 $2(3^{-1}+1)=2.666$ 2.666 $(-1,2.666)$

$$0 2(3^0 + 1) = 4 4 (0,4)$$

1
$$2(3^1+1)=8$$
 8 (1,8)

$$2 2(3^2+1)=20 20 (2,20)$$

$$3 2(3^3+1)=56 56. (3,56)$$

Now, connect these all ordered pairs we obtain the smooth curve the curve $y = 2(3^x + 1)$ cuts at y - axis is (0, 4). The y - intercept of the curve $y = 2(3^x + 1)$ is $\boxed{4}$

Step2: Verification:

Now to find the y - intercept of the function $y = 2(3^x + 1)$, put x = 0 is the original function

$$y = 2(3^x + 1)$$

$$y = 5(2^x) + 4$$
 (original function)

$$y = 5(2^0) + 4 \qquad \qquad \text{(Replace } x \text{ by 0)}$$

$$y = 5(1) + 4$$
 (Use the rule $a^0 = 1$ if $a \ne 0$)

$$y = 5 + 4$$

$$y = 9$$

Therefore, the curve $y = 2(3^x + 1)$ cuts at y - axis is (0, 4).

Hence, the y – intercept of the function $y = 2(3^x + 1)$ is $\boxed{4}$

Answer 26PA.

Consider the function $y = 3(2^x - 5)$

Claim: Graph the function $y = 3(2^x - 5)$ and to find the y – intercept of the function $y = 3(2^x - 5)$

Step1:

Graph the function $y = 3(2^x - 5)$

To construct the table for $y = 3(2^x - 5)$

To substitute the different values of x in the original function $y = 3(2^x - 5)$, we obtain the y - 5 values. Plotting these all ordered pairs and connect them, we obtain the curve.

Table for $y = 3(2^x - 5)$

$$x \qquad 3(2^x - 5) \qquad \qquad y \qquad (x, y)$$

$$-3$$
 $3(2^{-3}-5)=-14.625$ -14.625 $(-3,-14.625)$

$$-2$$
 $3(2^{-2}-5)=-14.25$ -14.25 $(-2,-14.25)$

$$-1$$
 $3(2^{-1}-5)=-13.5$ -13.5 $(-1,-13.5)$

$$0 3(2^{0}-5) = -12 -12 (0,-12)$$

1
$$3(2^{1}-5)=-9$$
 -9 $(1,-9)$

$$2 3(2^2 - 5) = -3 -3 (2, -3)$$

$$3 \qquad 3(2^3 - 5) = 12 \qquad 12. \qquad (3,12)$$

Now, connect these all ordered pairs we obtain the smooth curve the curve $y = 3(2^x - 5)$ cuts at y - axis is (0, -12). The y - intercept of the curve $y = 3(2^x - 5)$ is $\boxed{-12}$

Step2: Verification:

Now to find the y – intercept of the function $y = 3(2^x - 5)$, put x = 0 is the original function

$$y = 3(2^x - 5)$$

$$y = 3(2^x - 5)$$
 (original function)

$$y = 3(2^0 - 5)$$
 (Replace x by 0)

$$y = 3(1-5)$$
 (Use the rule $a^0 = 1$ if $a \ne 0$)

$$y = 3 \cdot -4$$

$$y = -12$$

Therefore, the curve $y = 3(2^x - 5)$ cuts at y - axis is (0, -12).

Hence, the y – intercept of the function $y = 3(2^x - 5)$ is $\boxed{-12}$

Answer 27PA.

Consider the following data

Х	-2	-1	0	1
у	-5	-2	1	4

Step1: look for a pattern

The domain values are regular interval of "1" the range values have a common difference "3"

The data do not display exponential behavior, but rather linear behavior.

Hence, \boxed{No} , the domain values are at regular intervals and range values have a common difference $\boxed{3}$

Step2: Graph the data

Created with a trial version of Advanced Grapher - http://www.alentum.com/agrapher/

We observe that, this is a graph of line not an exponential function.

Answer 28PA.

Consider the data

х	0	1	2	3
у	1	0.5	0.25	0.125

Step1: look for a pattern

The domain values are regular interval of "1" the range values have a common difference "3"

Therefore, the domain values are regular intervals and the range values have a common factor "0.5"

Hence, yes the data are probably exponential. The equation for the data may involve $\left(0.5\right)^{x}$.

Step2: Graph the data

Created with a trial version of Advanced Grapher - http://www.alentum.com/agrapher/

The graph shows rapidly decreasing values of y as x increases. This is a characteristic of exponential behavior.

Answer 29PA.

Consider the following data

х	10	20	30	40
у	16	12	9	6.75

Step1: Look for a pattern

The domain values are regular interval of 10 let's see there is a common factor among the range values

$$\searrow$$

Therefore, the domain values are regular intervals and the range values have a common factor

$$\frac{3}{4}$$

Hence, yes the data values are probably exponential. The equation for the day may involve

$$\frac{3}{4}$$
 or $(0.75)^x$

Step2: Graph the data

We observe that, the graph shows a rapidly decreasing values of *y* as *x* increases. This is a characteristic of exponential function.

Answer 30PA.

Consider the data

Х	-1	0	1	2
у	-0.5	1.0	-2.0	4.0

Step1: Look for a pattern

The domain values are regular interval of 1" let's see there is a common factor among the range values

Therefore, the domain values are regular intervals and the range values have a common factor -2".

Hence, yes the data values are probably exponential. The equation for the data may involve $(-2)^x$

Step2: Graph the data

Created with a trial version of Advanced Grapher - http://www.alentum.com/agrapher/

The graph shows rapidly decreasing values of y as x increasing. This is a characteristic of exponential behavior.

Answer 31PA.

Consider the data

X	3	6	9	12
у	5	5	5	5

Step1: Look for a pattern

The domain values are regular interval of "3" let's the range values have a common difference '0'.

Therefore, the data do not display exponential behavior, but rather linear behavior.

Hence, \boxed{No} the domain values are at regular intervals, but the range values have common difference '0' (the range values do not change)

Step2: Graph the data

Created with a trial version of Advanced Grapher - http://www.alentum.com/agrapher/

We observe that, this is a graph of a line, not an exponential function.

Answer 32PA.

Consider the following data

х	5	3	1	-1
у	32	16	8	4

Step1: Look for a pattern

The domain values are regular interval of -2 let's see if there is a common factor among the range values.

Therefore, the domain values are at regular intervals and the range values have a common factor $\left(\frac{1}{2}\right)$.

Hence, yes the data a probably exponential the equation for the data a may involve $\left(\frac{1}{2}\right)^x$.

Step2: Graph the data

The graph shows rapidly decreasing values of a exponential function

Answer 33PA.

Consider the amount of money spent at west outlet mall in midtown continue to increases. The total T(x) in millions of dollars can be estimated by the function

$$T(x) = 12(1.12)^x$$
 where x is the number of years after if open in 1995

Claim: To find the amount of sales for the mall in years 2005, 2006 and 2007.

Case 1: To find the amount of sales for the mall in the year 2005.

The year x = current year - opened year

$$=2005-1995$$

$$x = 10$$

After 10 years to find the amount of sales for the mall

Now, substitute x = 10 in the original function

$$T(x) = 12(1.12)^{x}$$

 $T(x) = 12(1.12)^{x}$ o

$$T(x) = 12(1.12)^x$$
 original function

$$T(10) = 12(1.12)^{10}$$
 replace x by 10
= 12(3.1058)
= 37.27

Therefore, after 10 years (in 2005 years), the amount of sales for the mall is

\$37.27 millions

Hence, 37.27 millions sales in 2005

To find the amount of sales for the mall in the year 2006

The year x = current year - opened year

$$=2006-1995$$

$$=11$$

After 11 years to find the amount of sales for the mall

Now, substitute x = 11 in the original function

$$T(x) = 12(1.12)^{x}$$

 $T(11) = 12(1.12)^{11}$ (Replace x by 11)
 $= 12(3.4785)$
 $= 41.74$

Therefore, After 11 year (in 2006), the amount of sales for the mall is \$41.74 millions

Hence, 41.74 millions sales in 2006

Case 3: To find the amount of sales for the mall in the year 2007.

The year x = current year - opened year

$$=2007-1995$$

=12

After 12 years to find the amount of sales for the mall

Now, substitute x = 12 in the original function

$$T(x) = 12(1.12)^{x}$$

 $T(12) = 12(1.12)^{12}$ (Replace x by 12)
 $= 12(3.896)$
 $= 46.75$

Therefore, After 12 year (in 2007), the amount of sales for the mall is \$46.75 millions

Hence, 46.75 millions sales in 2007

Answer 34PA.

Consider the function $T(x) = 12(1.12)^x$

<u>Claim</u>: Graph the function $T(x) = 12(1.12)^x$ and to find y – intercept.

Step 1: Graph the function $T(x) = 12(1.12)^x$

Now construct table for $T(x) = 12(1.12)^x$. To substitute different values of x in the original equation $T(x) = 12(1.12)^x$, we obtain y – values. Plotting the this ordered all pairs and connected them. We get a smooth curve

Table for $T(x) = 12(1.12)^x$

x	$T(x) = 12(1.12)^x$
-3	$12(1.12)^{-3} = 8.54$
-2	$12(1.12)^{-2} = 9.57$
-1	$12(1.12)^{-1} = 10.71$
0	$12(1.12)^0 = 12$
0.3	12(1.12)1 = 13.44
1	$12(1.12)^2 = 15.05$
2	$12(1.12)^3 = 16.86$

Now, connect all ordered pairs. We obtain smooth curve and the curve $T(x) = 12(1.12)^x$ is cut at y - axis is (0, 12).

Therefore $y - \text{Intercept of the graph } T(x) = 12(1.12)^x \text{ is } \boxed{12}$

Answer 35PA.

Consider the amount of money spent at west outlet mall in midtown continue to increases.

The total T(x) in millions of dollars can be estimated by the function

 $T(x) = 12(1.12)^x$ where x is the number of years after if open in 1995

Claim: To find the y - intercept represent in this problem

According to the problem

The initial year is 1995

Now, we have to find the y - intercept of the function $T(x) = 12(1.12)^x$

Put x = 0 in the original function

$$T(x) = 12(1.12)^x$$
, we obtain y – intercept of the function

$$T(x) = 12(1.12)^x$$
 original function

$$T(0) = 12(1.12)^0$$
 replace x by 0
= 12(1)
= 12

Therefore, the curve $T(x) = 12(1.12)^x$ cuts at y – axis is (0,12). Here x = 0 means the initial years. According to the problem, the initial year is 1995

Therefore, y - intercept of the function is \$12millions sales in 1995

Hence, \$12millions sales in the initial year 1995

Answer 36PA.

Consider the bacteria E cell function

According to the problem E(0) = 100

The cell divides into two identical cell

It can reproduce itself in 5 minutes

Initially the number of Bacteria = 100

Per 15 minutes it will be expanded

In 1st 15 minutes bacteria E = 200b

In 2nd 15 minutes bacteria E = 400b

In 3rd 15 minutes bacteria E = 600b

In 4th 15 minutes bacteria E = 1600b

In one hour the bacteria = 1600

We can write the function $y = (100)2^x$

$$y = (100)2^x$$

x = time period 15 minutes

y = number of bacteria

If
$$x = 0$$
; $y = 100 \cdot (2)^0 = 100$

If
$$x = 1$$
; $y = 100 \cdot (2)^1 = 200$

If
$$x = 2$$
; $y = 100 \cdot (2)^2 = 400$

If
$$x = 3$$
; $y = 100 \cdot (2)^3 = 800$

If
$$x = 4$$
; $y = 100 \cdot (2)^4 = 1600$

In one hour the bacteria = 1600

Answer 37PA.

In a regional quiz bowl competition, three schools compute and winner advances to the next round. Therefore, after each round, only $\frac{1}{3}$ of school remain in the competition for the next round. Suppose 729 schools.

Now start the competition

First round winners are = (Total number of schools)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^1$

The second round winners are = (first round winners)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^2$

The third round winners are = ((second round winners))

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^3$

The fourth round winners are = (Third round winners)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^4$

Therefore the *n*th round winners is $=((n-1)^{th})$ winner

(The number of remaining school $\frac{1}{3}$)

$$= 729 \cdot \left(\frac{1}{3}\right) \cdot \frac{1}{3}$$

The $(x^4)^{th}$ round winner is = $((x-1)^{th}$ winner) (After each round only $\frac{1}{3}$ of each schools)

$$= 729 \left(\frac{1}{3}\right)^{x-1} \cdot \left(\frac{1}{3}\right)^{1}$$
$$= 729 \left(\frac{1}{3}\right)^{x}$$

Hence, the number of schools remaining after x rounds is $s(x) = 729 \left(\frac{1}{3}\right)^x$

Where s(x) represent the number of schools after remaining x rounds

Answer 38PA.

In a regional quiz bowl competition, three schools compute and winner advances to the next round. Therefore, after each round, only $\frac{1}{3}$ of school remain in the competition for the next round. Suppose 729 schools.

Now start the competition

Claim: To find how many schools are left after 3 rounds.

Step1: To write an exponential function to the number of schools remaining after 'x' rounds.

First round winners are = (Total number of schools)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^1$

The second round winners are = (first round winners)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^2$

The third round winners are = ((second round winners))

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^3$

The fourth round winners are = (Third round winners)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^4$

Therefore the *n*th round winners is $=((n-1)^{th}$ winner)

(The number of remaining school $\frac{1}{3}$)

$$= 729 \cdot \left(\frac{1}{3}\right) \cdot \frac{1}{3}$$

The $(x^4)^{th}$ round winner is = $((x-1)^{th} \text{ winner})$ (After each round only $\frac{1}{3}$ of each schools)

$$= 729 \left(\frac{1}{3}\right)^{x-1} \cdot \left(\frac{1}{3}\right)^{1}$$
$$= 729 \left(\frac{1}{3}\right)^{x}$$

Hence, the number of schools remaining after x rounds is $s(x) = 729 \left(\frac{1}{3}\right)^x$

Therefore, the number of school remaining after 'x' round is $729 \left(\frac{1}{3}\right)^x$

Step2: To find the number of school remaining after 3 rounds.

Now, substitute x = 3 in the original function $s(x) = 729 \left(\frac{1}{3}\right)^x$ where s(x) represent the number of schools after remaining 'x' rounds.

$$s(x) = 729 \left(\frac{1}{3}\right)^{x}$$

$$s(3) = 729 \left(\frac{1}{3}\right)^{3}$$
 (Replace x by 3)
$$= 729 \frac{1}{3^{3}}$$

$$= 729 \cdot \frac{1}{27}$$

$$= 27 \cdot 27 \cdot \frac{1}{27}$$

$$= 27$$

Hence, the remaining schools after 3 rounds is 27

Answer 39PA.

In a regional quiz bowl competition, three schools compute and winner advances to the next round. Therefore, after each round, only $\frac{1}{3}$ of school remain in the competition for the next round. Suppose 729 schools, start the competition

Claim: To find the how many rounds will it take to declare a champion..

Step1: To write the function to the number of schools after 'x' rounds.

First round winners are = (Total number of schools)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^1$

The second round winners are = (first round winners)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^2$

The third round winners are = ((second round winners))

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^3$

The fourth round winners are = (Third round winners)

(After each round only
$$\frac{1}{3}$$
 of schools = $= 729 \cdot \left(\frac{1}{3}\right)^4$

Therefore the *n*th round winners is $=((n-1)^{th}$ winner)

(The number of remaining school $\frac{1}{2}$)

$$= 729 \cdot \left(\frac{1}{3}\right) \cdot \frac{1}{3}$$

The $(x^4)^{th}$ round winner is = $((x-1)^{th}$ winner) (After each round only $\frac{1}{3}$ of each schools)

$$= 729 \left(\frac{1}{3}\right)^{x-1} \cdot \left(\frac{1}{3}\right)^{1}$$
$$= 729 \left(\frac{1}{3}\right)^{x}$$

$$=729\left(\frac{1}{3}\right)^{x}$$

Hence, the number of schools remaining after x rounds is $s(x) = 729 \left(\frac{1}{3}\right)^{x}$

$$s(x) = 729 \left(\frac{1}{3}\right)^x$$

Therefore, the number of school remaining after 'x' round is $729\left(\frac{1}{2}\right)$

Step2: Solve for 'x'.

In a school competition winner is only one school,

Now, substitute s(x) = 1 is the original function

$$s(x) = 729 \left(\frac{1}{3}\right)^{x} \qquad \text{(we obtain the } x \text{ value)}$$

$$1 = \frac{729}{729} \left(\frac{1}{3}\right)^{x} \qquad \text{(Divide 729 on each side)}$$

$$\frac{1}{729} = \left(\frac{1}{3}\right)^{x}$$

$$\log_{10} \left(\frac{1}{729}\right) = \log_{10} \left(\frac{1}{3}\right)^{x} \qquad \text{(Taking log}_{10} \text{ on both sides)}$$

$$\log_{10} \left(\frac{1}{729}\right) = x \cdot \log_{10} \frac{1}{3} \qquad \text{(Use the rule log}_{10} \ a^{n} = m \log_{10} a\right)$$

$$\frac{\log_{10} \left(\frac{1}{729}\right)}{\log_{10} \frac{1}{3}} = x \qquad \text{(Solve for } x\text{)}$$

Hence, after x = 6 rounds it will take to declare a champion.

Answer 40PA.

A runner is training for a marathon, running a total of 20 miles per week on a regular basis.

She plans to increase the distance D(x) in miles according to the function $D(x) = 20(1 \cdot 1)^x$ where 'x' represents the number of weeks of training.

Claim: According to the function to find the distance in miles in the week of 1,2,3 and 4.

Step1; To find the distance (miles) in the first week

Now, substitute x = 1 in the original function

$$D(x) = 20(1.1)^{x}$$

 $D(1) = 20(1.1)^{1}$ (Replace x by 1)
 $D(1) = 20(1.1)$
 $D(1) = 22$

Hence, she is running 22 miles in 1st week

Step2: To find the distance (miles) in the second week

Now, substitute x = 2 in the original function

$$D(x) = 20(1.1)^{x}$$

 $D(2) = 20(1.1)^{2}$ (Replace x by 2)

D(2) = 24.2

Hence, she is running 24.2 miles in 2nd week.

Step3: To find the distance (miles) in the third week

Now, substitute x = 3 in the original function

$$D(x) = 20(1.1)^{x}$$

 $D(3) = 20(1.1)^{3}$ (Replace x by 3)
 $D(3) = 20(1.331)$
 $D(3) = 26.62$

Hence, she is running 26.62 miles in 3rd week.

Step4: To find the distance (miles) in the fourth week

Now, substitute x = 4 in the original function

$$D(x) = 20(1.1)^{x}$$

 $D(4) = 20(1.1)^{4}$ (Replace x by 4)
 $D(4) = 20(1.4641)$
 $D(4) = 29.282$

Hence, she is running 29.282 miles in 4th week.

Step5: To construct the table

Week	distance (Miles)	
1	22	
2	24.2	
3	26.62	
4	29.282	

Answer 41PA.

A runner is training for a marathon, running a total of 20 miles per week on a regular basis. She plans to increase the distance D(x) in miles according to the function $D(x) = 20(1 \cdot 1)^x$ where 'x' represents the number of weeks of training.

Claim: According to the function to find the distance in miles in the week of 1, 2, 3 and 4.

Step1; To find, what is the week that total will be 50 miles or more

Now, substitute D(x) = 50 in the original function

$$D(x) = 20(1.1)^{x}$$

$$D(x) = 20(1.1)^{x}$$
 (original equation)
$$50 = 20(1.1)^{x}$$
 (Replace $D(x)$ by 50)
$$\frac{50}{20} = \frac{20}{20}(1.1)^{x}$$
 (Divide 20 on both sides)
$$\frac{50}{20} = (1.1)^{x}$$

$$\log_{10}\left(\frac{50}{20}\right) = \log_{10}\left(1.1\right)^{x}$$
 (taking \log_{10} on both sides)
$$x = \frac{\log_{10}\left(\frac{50}{20}\right)}{\log_{10}\left(1.1\right)^{x}}$$

$$= 9.61$$

$$\approx 10$$

Hence, she is running 50 miles or more in 10^{th} week

Answer 42PA.

Consider the graph $y = \left(\frac{1}{5}\right)^x$

Claim: Graph the function $y = \left(\frac{1}{5}\right)^x$ as a transformation of the graph of $y = 5^x$

Step1: Graph the function $y = 5^x$

To construct the table for $y = 5^x$

Now, substitute the different value of x in the original function $y = 5^x$, we obtained pairs and connect them we get a smooth curve

Take for $y = 5^x$

$$x 5^x y (x,y)$$

$$-3$$
 $5^{-3} = 0.008$ 0.008 $(-3, 0.008)$

$$-2$$
 $5^{-2} = 0.04$ 0.04 $(-2, 0.04)$

$$-1$$
 $5^{-1} = 0.2$ 0.2 $(-1, 0.2)$

$$0 5^0 = 1 1 (0,1)$$

1
$$5^1 = 5$$
 5 (1,5)

$$2 5^2 = 25 25 (2,25)$$

Step2: graph the function $y = \left(\frac{1}{5}\right)^x$

To construct the table for $y = \left(\frac{1}{5}\right)^x$

Now, substitute the different values of 'x' in the original function $y = \left(\frac{1}{5}\right)^x$ we obtain y values.

Plotting these all ordered pairs and connect them we obtain the smooth curve

Table for
$$y = \left(\frac{1}{5}\right)^x$$

$$x = \left(\frac{1}{5}\right)^x \qquad y \qquad (x,y)$$

$$-3$$
 $\left(\frac{1}{5}\right)^{-3} = 125$ 125 $\left(-3,125\right)$

$$-2$$
 $\left(\frac{1}{5}\right)^{-2} = 25$ 25 $\left(-2,25\right)$

$$-1$$
 $\left(\frac{1}{5}\right)^{-1} = 5$ 5 $\left(-1,5\right)$

$$0 \qquad \left(\frac{1}{5}\right)^0 = 1 \qquad 1 \tag{0,1}$$

$$1 \qquad \left(\frac{1}{5}\right)^1 = 0.2 \qquad 0.2 \tag{1,0.2}$$

$$2 \qquad \left(\frac{1}{5}\right)^2 = 0.04 \quad 0.04 \qquad (2,0.04)$$

$$3 \qquad \left(\frac{1}{5}\right)^3 = 0.008 \quad 0.008 \qquad (2, 0.008)$$

Step3: To describe the graph $y = \left(\frac{1}{5}\right)^x$ as a transformation of the graph $y = 5^x$

We observe that, the graph $y = \left(\frac{1}{5}\right)^x$ is wider 2 units of the graph $y = y^x$

Answer 43PA.

Consider the graph $y = 5^x + 2$

<u>Claim</u>: Graph the function $y = 5^x + 2$ as a transformation of the graph of $y = 5^x$

Step1: Graph the function $y = 5^x$

To construct the table for $v = 5^x$

Now, substitute the different value of x in the original function $y = 5^x$, we obtained pairs and connect them we get a smooth curve

Take for $y = 5^x$

$$x 5^x y (x,y)$$

$$-3$$
 $5^{-3} = 0.008$ 0.008 $(-3, 0.008)$

$$-2$$
 $5^{-2} = 0.04$ 0.04 $(-2, 0.04)$

$$-1$$
 $5^{-1} = 0.2$ 0.2 $(-1, 0.2)$

$$0 5^0 = 1 1 (0,1)$$

1
$$5^1 = 5$$
 5 $(1,5)$

$$2 5^2 = 25 25 (2,25)$$

$$3 53 = 125 125 (3,125)$$

Step2: graph the function $y = 5^x + 2$

To construct the table for $y = 5^x + 2$

Now, substitute the different values of 'x' in the original function $y = 5^x + 2$ we obtain y - values. Plotting these all ordered pairs and connect them we obtain the smooth curve

\boldsymbol{x}	$5^{x} + 2$	y	(x,y)
-3	$5^{-3} + 2 = 2.008$	2.008	(-3, 2.008)
-2	$5^{-2} + 2 = 2.04$	2.04	(-2, 2.04)
-1	$5^{-1} + 2 = 2.2$	2.2	(-1, 2.2)
0	$5^0 + 2 = 3$	3	(0,3)
1	$5^1 + 2 = 7$	7	(1,7)
2	$5^2 + 2 = 27$	27	(2,27)
3	$5^3 + 2 = 127$	127	(2,127)

Step3: To describe the graph $y = 5^x + 2$ as a transformation of the graph $y = 5^x + 2$

We observe that, the graph $y = 5^x + 2$ is wider 2 units of the graph $y = 5^x$

Answer 44PA.

Consider the graph $v = 5^x - 4$

<u>Claim</u>: Graph the function $y = 5^x - 4$ as a transformation of the graph of $y = 5^x$

Step 1: Graph the function $v = 5^x$

To construct the table for $v = 5^x$

Now, substitute the different value of x in the original function $v = 5^x$, we obtained pairs and connect them we get a smooth curve

(-1,0.2)

Take for $v = 5^x$

$$x 5^x y (x,y)$$

$$-3$$
 $5^{-3} = 0.008$ 0.008 $(-3, 0.008)$

$$-2$$
 $5^{-2} = 0.04$ 0.04 $(-2,0.04)$ -1 $5^{-1} = 0.2$ 0.2 $(-1,0.2)$

$$0 5^0 = 1 1 (0,1)$$

1
$$5^1 = 5$$
 5 (1,5)

$$2 5^2 = 25 25 (2,25)$$

$$3 5^3 = 125 125 (3,125)$$

Step2: graph the function $v = 5^x - 4$

To construct the table for $v = 5^x - 4$

Now, substitute the different values of 'x' in the original function $y = 5^x - 4$ we obtain y - values. Plotting these all ordered pairs and connect them we obtain the smooth curve

$$x$$
 $5^{x}-4$ y (x,y)
 -3 $5^{-3}-4=-3.992$ -3.992 $(-3,-3.992)$
 -2 $5^{-2}-4=-3.8$ -3.8 $(-2,-3.8)$
 -1 $5^{-1}-4=-3.8$ -3.8 $(-1,-3.8)$
 0 $5^{0}-4=-3$ -3 $(0,-3)$

$$0 5^{\circ} - 4 = -3 -3 (0, -3)$$

1
$$5^1 - 4 = 1$$
 1 (1,1)

$$2 5^2 - 4 = 21 21 (2,21)$$

3
$$5^3 - 4 = 121$$
 121 (2,121)

Step3: To describe the graph $y = 5^x - 4$ as a transformation of the graph $y = 5^x - 4$

We observe that, the graph $y = 5^x - 4$ is wider 4 units down to the function $y = 5^x$

Answer 45PA.

If the number of items on each level of a piece of art is a given number times the number of items on the previous level, an exponential function can be used to describe the situation, Answer should inside the following.

- For the carving of the pliers, $v = 2^x$
- For this situation, x is an integer between 0 and 8 inclusive. The values of y are 1, 2, 4, 8, 16, 32, 64, 128 and 256.

Answer 46PA.

Look at the choice of $f(x) = x^2$, $f(x) = x^5$ and $f(x) = x^3 + 2x^2 - x + 5$ is polynomial function. To remove the choice A, C and D.

Therefore the exponential function is $f(x) = 6^x$

Hence Answer \boxed{B}

Consider the function $y = 2^x$ and $y = 6^x$

Step1: Graph the function $v = 2^x$

To construct the table for $y = 2^x$

Now, substitute the different value of x in the original function $y = 2^x$, we obtained the y - values.

Plotting these all ordered pairs and connected them we obtain the smooth curve

Take for $y = 2^x$

\boldsymbol{x}	2 ^x	y	(x,y)
-4	$2^{-4} = 0.0625$	0.0625	(-4, 0.0625)
-3	$2^{-3} = 0.125$	0.125	(-3, 0.125)
-2	$2^{-2} = 0.25$	0.25	(-2, 0.25)
-1	$1^{-1} = 0.5$	0.5	(-1, 0.2)
0	$2^0 = 1$	1	(0,1)
1	$2^1 = 2$	2	(1,2)
2	$2^2 = 4$	4	(2,4)
3	$2^3 = 8$	8	(3,8)
4	$2^4 = 16$	16	(3,16)

Answer 47PA.

Step2: graph the function $y = 6^x$

To construct the table for $y = 6^x$

Now, substitute the different values of 'x' in the original function $y = 6^x$ we obtain y - values. Plotting these all ordered pairs and connect them we obtain the smooth curve

\boldsymbol{x}	6 ^x	y	(x,y)
-3	$6^{-3} = 0.0046$	0.0046	(-3, 0.0046)
-2	$6^{-2} = 0.0278$	0.0278	(-2, 0.0278)
-1	$6^{-1} = 0.1667$	0.1667	(-1,0.1667)
0	$6^0 = 1$	1	(0,1)
1	$6^1 = 6$	6	(1,6)
2	$6^2 = 36$	36	(2,36)

Step3: The graph of $y = 6^x$ is greater than the graph of $y = 2^x$

Answer A

Answer 48PA.

Consider the equation $x^2 - 9x - 36 = 0$

Claim: Solve the equation $x^2 - 9x - 36 = 0$

Now compare the equation $x^2 - 9x - 36 = 0$ with the standard form of the quadratic equation

$$ax^2 + bx + c = 0$$
. We obtain $a = 1, b = -9$ and $c = -36$

Use the formula

The solution of the quadratic equation $ax^2 + bx + c = 0$ where $a \ne 0$ are given by the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

[Quadratic formula]

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-9) \pm \sqrt{(-9)^2 - 4(1)(-36)}}{2(1)}$$

$$= \frac{9 \pm \sqrt{81 + 144}}{2}$$

$$= \frac{9 \pm \sqrt{225}}{2}$$

$$= \frac{9 \pm 15}{2}$$

[Replace
$$b = -9, c = -36$$
 and $a = 1$]

$$x = \frac{9+15}{2}$$

$$x = \frac{9+15}{2}$$
 or $x = \frac{9-15}{2}$

$$x = \frac{24}{2}$$

$$x = \frac{24}{2} \qquad \text{or} \qquad x = \frac{-6}{2}$$

$$x = 12 \qquad \text{or} \qquad x = -3$$

$$x = 12$$

$$x = -3$$

Therefore, the solution set is $\{-3,12\}$

Answer 49PA.

Consider the equation $2t^2 + 3t - 1 = 0$

Claim: Solve the equation $2t^2 + 3t - 1 = 0$

Now compare the equation $2t^2 + 3t - 1 = 0$ with the standard form of the quadratic equation

$$ax^2 + bx + c = 0$$
. We obtain $a = 2, b = 3$, $c = -1$ and $x = t$

Use the formula

The solution of the quadratic equation $ax^2 + bx + c = 0$ where $a \ne 0$ are given by the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 [Quadratic formula]

$$x = \frac{-3 \pm \sqrt{(3)^2 - 4(2)(-1)}}{2(2)}$$
 [Replace $b = 3, c = -1$ and $a = 2$]

$$= \frac{-3 \pm \sqrt{9 + 8}}{4}$$

$$= \frac{3 \pm \sqrt{17}}{4}$$

$$= \frac{-3 \pm 4.1}{4}$$
 [$\sqrt{17} = 4.1$]

$$x = \frac{-3 + 4.1}{4}$$
 or $x = \frac{-3 - 4.1}{4}$

$$x \approx \frac{1.1}{42}$$
 or $x \approx \frac{-7.1}{4}$

Therefore, the solution set is $\{-1.8, 0.3\}$

 $x \approx 0.3$

Answer 50MYS.

Consider the equation $5y^2 + 3 = y$

Claim: Solve the equation $5y^2 + 3 = y$

Step 1: Rewrite the equation $5y^2 + 3 = y$ in standard form of the quadratic equation $ax^2 + bx + c = 0$ where $a \ne 0$

$$5y^2 + 3 = y$$
 [original equation]
 $5y^2 + 3 - y = y - y$ [Substract "y" on both sides]
 $5y^2 - y + 3 = 0$

Step 2: Now solve the equation $5y^2 - y + 3 = 0$ compare the equation $5y^2 - y + 3$ with the standard form of the quadratic equation $ax^2 + bx + c = 0$ where $a \ne 0$ we obtain a = 5, b = -1 and c = 3 and x = y

Use the formula

The solution of the quadratic equation $ax^2 + bx + c = 0$ where $a \ne 0$ are given by the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 [Quadratic formula]

$$x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(5)(3)}}{2(5)}$$
 [Replace $a = 5, b = -1$ and $c = 3$ and $x = y$]

$$= \frac{-1 \pm \sqrt{1 - 60}}{10}$$

$$= \frac{1 \pm \sqrt{-59}}{10}$$
 [Use te rule $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$]

$$= \frac{1 \pm \sqrt{-1 \cdot 59}}{10}$$

$$= \frac{1 \pm i\sqrt{59}}{10}$$
 [use the rule $\sqrt{-1} = i$]

Therefore,

$$y = \frac{1 + i\sqrt{59}}{10}$$
 or $y = \frac{1 - i\sqrt{59}}{10}$

The solution set is
$$\left\{\frac{1+i\sqrt{59}}{10}, \frac{1-i\sqrt{59}}{10}\right\}$$

Answer 51MYS.

Consider the equation $x^2 - 7x = -10$

Claim: Solve the equation $x^2 - 7x = -10$

Step 1: Rewrite the equation $x^2 - 7x = -10$ in standard form of the quadratic equation

$$ax^2 + bx + c = 0$$
 where $a \neq 0$

$$x^2 - 7x = -10$$
 [original equation]

$$x^2 - 7x + 10 = -10 + 10$$
 [Add "10" on both sides]

$$x^2 - 7x + 10 = 0$$

Step 2: Now solve the equation $x^2 - 7x + 10 = 0$ by factorization

$$x^2 - 7x + 10 = 0$$
 [original equation]

$$x^2 - 5x - 2x + 10 = 0$$

$$x \cdot x - 5 \cdot x - 2 \cdot x + 2 \cdot 5 = 0$$
 [use the distributive property]

$$x(x-5)-2(x-5)=0$$

$$(x-5)(x-2)=0$$

$$x - 2 = 0$$
 or $x - 5 = 0$

$$x = 2$$
 or $x = 5$

Therefore, the solution set is $\{2,5\}$

Answer 52MYS.

Consider the equation $a^2 - 12a = 3$

Claim: Solve the equation $a^2 - 12a = 3$

Step 1: Rewrite the equation $a^2 - 12a = 3$ in standard form of the quadratic equation

$$ax^2 + bx + c = 0$$
 where $a \neq 0$

$$a^2 - 12a = 3$$
 [original equation]

$$a^2 - 12a - 3 = 3 - 3$$
 [Substract "3" on both sides]

$$a^2 - 12a - 3 = 0$$

Step 2: Now solve the equation $a^2 - 12a - 3 = 0$ by quadratic formula

Now, compare the equation $a^2 - 12a - 3 = 0$ with the standard form of the quadratic equation $ax^2 + bx + c = 0$ where $a \neq 0$ we obtain a = 1, b = -12 and c = -3 and x = a

Use the formula

The solution of the quadratic equation $ax^2 + bx + c = 0$ where $a \ne 0$ are given by the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

[Quadratic formula]

$$x = \frac{-(-12) \pm \sqrt{(-12)^2 - 4(1)(-3)}}{2(1)} \qquad \begin{bmatrix} \text{Replace } a = 1, b = -12\\ \text{and } c = -3 \text{ and } x = a \end{bmatrix}$$

Replace
$$a = 1, b = -12$$

and $c = -3$ and $x = a$

$$=\frac{12\pm\sqrt{144+12}}{2}$$

$$=\frac{12\pm\sqrt{156}}{2}$$

$$\approx \frac{12 \pm 12.5}{2}$$

$$\sqrt{156} \approx 12.5$$

$$a \approx \frac{12 + 12.5}{2}$$

$$a \approx \frac{12 + 12.5}{2}$$
 or $a \approx \frac{12 - 12.5}{2}$

$$a \approx \frac{24.5}{2}$$
 or $a \approx \frac{-0.5}{2}$

$$a \approx 12.2$$

The solution set is $\{-0.3,12.2\}$

Consider the equation $t^2 + 6t + 3 = 0$

Claim: Solve the equation $t^2 + 6t + 3 = 0$

Step 1: Solve the equation $t^2 + 6t + 3 = 0$ by Quadratic formula

Now, compare the equation $t^2 + 6t + 3 = 0$ with the standard form of the quadratic equation $ax^2 + bx + c = 0$ where $a \neq 0$ we obtain a = 1, b = 6, c = 3 and x = t

Use the formula

The solution of the quadratic equation $ax^2 + bx + c = 0$ where $a \ne 0$ are given by the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(6) \pm \sqrt{(6)^2 - 4(1)(3)}}{2(1)}$$
 [Replace $a = 1, b = 6$] and $c = 3$ and $x = t$]

Replace
$$a = 1, b = 6$$

and $c = 3$ and $x = t$

$$=\frac{-6\pm\sqrt{36-12}}{2}$$

$$=\frac{-6\pm\sqrt{24}}{2}$$

$$=\frac{-6\pm 4.9}{2}$$

$$t \approx \frac{-6 + 4.9}{2}$$
 or $t \approx \frac{-6 - 4.9}{2}$

$$t \approx \frac{-6-4.9}{2}$$

$$t \approx \frac{-1.1}{2}$$

$$t \approx \frac{-1.1}{2}$$
 or $t \approx \frac{-10.9}{2}$

$$t \approx 0.55$$

$$t \approx 5.45$$

The solution set is $\{0.55, 5.45\}$

Answer 54MYS.

Consider the trinomial $m^2 - 14m + 40$

Claim: To find the factor of $m^2 - 14m + 40$

$$m^2 - 14m + 40 = m^2 - 10m - 4m + 40$$

= $m \cdot m - 10 \cdot m - 4 \cdot m - 4(-10)$
= $m(m-10) - 4(m-10)$ [use distributive property]
 $m^2 - 14m + 40 = (m-4)(m-10)$

The factors of
$$m^2-14m+40$$
 is $(m-4)(m-10)$

Answer 55MYS.

Consider the trinomial $t^2 - 2t + 35$

Claim: To find the factor of $t^2 - 2t + 35$

$$t^{2}-2t+35 = t^{2}-2 \cdot t \cdot 1+35$$

$$= t \cdot t - 2 \cdot t \cdot 1 - 1^{2} - 1^{2} + 35$$

$$= (t-1)^{2} + 34 \qquad \left[\text{use the rule}; a^{2} - 2ab + b^{2} = (a-b)^{2} \right]$$

$$= (t-1)^{2} + \left(\sqrt{34}\right)^{2}$$

$$t^2 - 2t + 35 = (t - 1)^2 + (\sqrt{34})^2$$

Therefore, the trinomial $t^2-2t+35$ cannot be factorial using integers.

Hence, $t^2 - 2t + 35$ is prime

Answer 56MYS.

Consider the trinomial $z^2 - 5z - 24$

Claim: To find the factor of $z^2 - 5z - 24$

$$z^{2} - 5z - 24 = z^{2} - 2 \cdot z \cdot \frac{5}{2} - 24$$

$$= t^{2} - 2 \cdot z \cdot \frac{5}{2} + \left(\frac{5}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2} - 24$$

$$= z^{2} - 5z + \frac{25}{4} - \frac{25}{4} - 24$$

$$= \left(z - \frac{5}{2}\right)^{2} - \frac{121}{4} \qquad \left[\text{use the rule}; a^{2} - 2ab + b^{2} = (a - b)^{2} \right]$$

$$z^{2} - 5z - 24 = \left(z - \frac{5}{2}\right)^{2} - \frac{121}{4}$$

Therefore, the trinomial $z^2 - 5z - 24$ cannot be factorial using integers.

Hence, $z^2 - 5z - 24$ is prime

Answer 57MYS.

Let 'x' be the first number

And 'v' be the second number

Step 1:- According to the problem three times one number equal to twice second number

$$3 \times x = 2 \times y$$

$$3x = 2y$$

Step 2: According to the problem

Twice the first number is 3 more than the second number

$$2 \times x = 3 + y$$

$$2x = 3 + y$$

Step 3: To find 'x' value

Now substitute y = 2x - 3 in 3x = 2y

$$3x = 2y$$

3x = 2y [original equation]

$$3x = 2(2x-3)$$

3x = 2(2x-3) [Replace y by 2x-3]

$$3x = 4x - 6$$

3x = 4x - 6 [Subtract '4x' on both sides]

$$3x - 4x = 4x - 6 - 4x$$

$$-1x = -6$$

$$x = 6$$

Step 4: To find y

Substitute x = 6 in y = 2x - 3

$$v = 2x - 3$$

y = 2x - 3 [original equation]

$$v = 2(6) - 3$$

 $y = 2(6) - 3 \qquad [Replace x by 6]$

$$y = 12 - 3$$

= 9

$$y = 9$$

Therefore, the two numbers is 6 and 9

Answer 58MYS.

Consider the inequality x+7>2

Claim: Solve the inequality x+7>2

$$x+7>2$$
 [original inequality]

$$x+7-7>2-4$$
 [Substract '7' on both sides]

$$x > -5$$

The solution of integral x+7>2 is x>-5

Hence, the solution set is $\{x \mid x > -5\}$

Answer 59MYS.

Consider the inequality $10 \ge x + 8$

Claim: Solve the inequality $10 \ge x + 8$

$$10 \ge x + 8$$
 [original inequality]

$$-8+10 \ge x+8-8$$
 [Substract '8' on both sides]

 $2 \ge x$

The solution of integral $10 \ge x + 8$ is $2 \ge x$ or $x \le 2$

Hence, the solution set is $\{x \mid x \le 2\}$

Answer 60MYS.

Consider the inequality y-7 < -12

Solve the inequality y-7 < -12

$$y-7 < -12$$
 [original inequality]

$$y-7+7 < -12+7$$
 [Add '87' on both sides]
 $y < -5$

The solution of integral y-7 < -12 is y-5

Hence, the solution set is $\{y \mid y < -5\}$

Answer 61MYS.

Consider the formula $p(1+r)^t$

Claim: To determine $p(1+r)^t$ when $p=5, r=\frac{1}{2}$ and t=2

Now, we substitute $p = 5, r = \frac{1}{2}$ and t = 2 in $p(1+r)^t$

$$p(1+r)^{t} = 5\left(1+\frac{1}{2}\right)^{2}$$
 [Replace p by 5, r by $\frac{1}{2}$ and t by 2]
= $5(1+0.5)^{2}$
= $5(1.5)^{2}$
= $5(2.25)$

=11.25

$$p(1+r)^{t} = 11.25$$
 when $p = 5, r = \frac{1}{2}$ and $t = 2$

Hence, the value of $p(1+r)^t$ is $\boxed{11.25}$ when $p=5, r=\frac{1}{2}$ and t=2

Answer 62MYS.

Consider the formula $p(1+r)^t$

Claim: To determine $p(1+r)^t$ when $p=300, r=\frac{1}{4}$ and t=3

Now, we substitute $p = 300, r = \frac{1}{4}$ and t = 3 in $p(1+r)^t$

$$p(1+r)^{t} = 300\left(1+\frac{1}{4}\right)^{3} \qquad \left[\text{Replace } p \text{ by } 300, r \text{ by } \frac{1}{4} \text{ and } t \text{ by } 3\right]$$
$$= 300(1+0.25)^{3}$$
$$= 300(1.953125)$$

≈ 586

Therefore, the value of $p(1+r)^t$ is 586 (approx)

When
$$p = 300, r = \frac{1}{4}$$
 and $t = 3$

Answer 63MYS.

Consider the formula p(1+r)'

Claim: To determine $p(1+r)^t$ when p=100, r=0.2 and t=2

Now, we substitute p = 100, r = 0.2 and t = 2 in $p(1+r)^t$

$$p(1+r)^t = 100(1+0.2)^2$$
 [Replace p by 100, r by 0.2 and t by 2]
= $100(1.2)^2$
= $100(1.44)$
= 144

Therefore, the value of $p(1+r)^t$ is 144 when p=100, r=0.2 and t=2

Answer 64MYS.

Consider the formula p(1+r)'

Claim: To determine $p(1+r)^t$ when p=6, r=0.5 and t=3

Now, we substitute p = 6, r = 0.5 and t = 3 in $p(1+r)^t$

$$p(1+r)^t = 6(1+0.5)^3$$
 [Replace p by 6, r by 0.5 and t by 3]
= $6(1.5)^3$
= $6(3.375)$
= 20.25

Therefore, the value of $p(1+r)^t$ is 20.25 when p=6, r=0.5 and t=3