BIOT - SAVART'S LAW

The Biot - Savart law gives the Relationship of magnetic field at any point with current Carrying element. $dB = \frac{\mu_o}{d\ell \times r}$ idl P dB Current element

IN VECTOR form : $\vec{B} = \frac{\mu_0 i}{4\pi} \int \frac{d\vec{l} \times \vec{r}}{|r|^3}$

AMPERE'S CIRCUITAL LAW

This Law states that the line integral of magnetic field B around a closed loop is equal to μ_{a} times the net current enclosed by the loop.

$\phi \vec{B} \cdot \vec{dI} = \mu_o \sum i_{enclosed}$

MAGNETIC FIELD OF TOROID :

 $\mathbf{B} = \mu_0 \mathbf{n} \mathbf{i}$; Here, $\mathbf{n} = \mathbf{N}$ $2\pi r$

r = average radius N = Total NUMBER of

turns in toroid.

The Region around a magnet in which its magnetic influence can be experienced is called magnetic Field. (\vec{B})

- . S.I UNIT TESLA (T).
- . Denote Coming out.
- . Denote going into the paper.

 $\mathbf{\bullet}$

 \otimes

 \odot

MAGNETIC FIELD OF

0 - - - - - 0

i = Current flowing

N = NUMBER OF LURN'S PER

LONG SOLENOID :

 \otimes

 $\mathbf{B} = \mu_0 \mathbf{n} \mathbf{i}$

UNIT LENGTH.

 $\overline{\bullet}$

≫В

Current

RIGHT-HAND RULE

Holding a currant carrying conductor in right hand in such a way that thumb Points in the direction of current and curling finger's gives direction of magnetic field.

MAGNETIC FORCE ON A MOVING CHARGED PARTICLE

 θ = Angle between direction of motion of charge and magnetic field.

Power delivered by Magnetic force to Charged Particle is always zero.

$\mathsf{P} = \vec{\mathsf{F}} \cdot \vec{\mathsf{V}} = \upsilon \left[\because (\vec{\mathsf{F}} \perp \vec{\mathsf{V}}) \right]$

Path of charged particle in External Magnetic Field:-

when charged particle is moving parallel or antiparallel to magnetic Field: Magnetic force $f = qvB Sin\theta = 0$ Charge Particle move un - deviated Radius of Path is r = ∞

Bohr Magneton

The magnetic moment associated with an electron which is revolving in first orbit of an atom.

$$\mu_{\rm B} = \frac{\rm en}{4\,\pi m} = 0.923 \times 10^{-23}$$

e = electronic charge

m = mass of electron

h = Planck & Constant

when charge Particle moving Perpendicular to magnetic field:-Magnetic force - F = 9VB Sin90° = 9VB $\frac{mv^2}{r} = qvB \Longrightarrow r = \frac{mV}{qB}$

Time period – T = $\frac{2\pi m}{\pi}$

when charge Particle is moving in any orbitary direction with respect to Magnetic **Field:** Magnetic force $\mathbf{F} = \mathbf{q} (\vec{\mathbf{V}} \times \vec{\mathbf{B}}) = \mathbf{q} \mathbf{v} \mathbf{B} \sin \theta$

Charge particle follow Helical Path. **Radius of Helix** – $\mathbf{r} = mV \sin \theta - mV_{\perp}$ Time Period – T = $\frac{2\pi r}{r}$

MAGNETIC FIELD OF SOME SPECIAL CURRENT CARRYING CONDUCTORS

Shape of current carrying conductor	Formula	special case
Y <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i>	$\vec{B} = \frac{\mu_{\circ}i}{4\pi r} \left(Sin\phi_{1} + Sin\phi_{2} \right) \hat{\eta}$	For infinitely long conductor.
	$\vec{B} = \frac{\mu_{\circ}i}{2\pi r} \left(\frac{\theta}{360_{\circ}}\right)\hat{\eta}$	For Semicircular arc.
i i i i i i i i i i	$\vec{B} = \frac{\mu_{o}i}{2\pi r}\hat{\eta}$	r = radius of Coil.
P = B	$\vec{B} = \frac{\mu_{o}ir^{2}}{2(x^{2} + r^{2})^{3/2}}$	X = diStance from the center of coil.

when an electron revolves. due to

current carrying loop and Produce

magnetic field. This is known as

Relation Between Magnetic Moment

m = mass of particle.

L = MVR - ANGULAR MOMENTUM

and Angular Momentum of Charge

where. M = Magnetic Moment

its movement it behaves as a

Atomic Magnetism.

 $M = \frac{qL}{2m} \Rightarrow \frac{M}{L} = \frac{q}{2m}$

Torque Acting on

 $\tau = \mathbf{nBiA} \operatorname{Sin} \theta$

I = current

 $\therefore \vec{\tau} = \vec{M} \times \vec{B}$

A= Area

CURRENT CORRYING COIL:

N = NUMBER OF LURNS

Particle

Am²

CURRENT CARRYING LOOP AS MAGNETIC DIPOLE

The Current Carrying Coil behaves as a bar magnet and magnetic moment of such Coil Can be expressed as M = niA. n = Number of Coils A = AreaCurrent → Magnetic → moment M Clockwise

Direction of current in Coil Show's Polarity

Orbital Current

Magnetic Induction at Nucleus Position

$$B = \frac{\mu_{o}I}{2r} = \frac{\mu_{o}ew}{4\pi r}$$

work done in Rotating a coil

Here. M = Magnetic Moment

Placed in magnetic field:

 $\boldsymbol{\omega} = \boldsymbol{\mathsf{MB}} \left(\mathbf{1} - \boldsymbol{\mathsf{Cos}} \boldsymbol{\theta} \right)$

of coil.

r = orbital Radius. I = orbital current

Magnetic Moment circular orbit

$$M = IA = \frac{ewr^2}{2} = \frac{evr}{2}$$
 A= Area of orbit.

Potential Energy of a Coil Placed in Magnetic Field:

 $U = -MB Cos\theta$ = - \vec{M} . \vec{B}

MAGNETIC EFFECT OF CURRENT

Magnetic moment -M = iA

Force on current carrying conductor in magnetic field

IN UNIFORM MAGNETIC FIELD THE total force acting on conductor of Length L is expressed as.

 $\vec{F} = i(\vec{L} \times \vec{B}) = iLBSin\theta$

 θ = Angle made by current direction with magnetic field.

force between two Parallel CURRENT CORRYING CONDUCTOR'S

$$F_{1} = F_{2} = F = \frac{\mu_{0} |I_{2}|}{2\pi a} \times L$$

$$a = \text{distance between two}$$
wires.
$$L = \text{Length of wires.}$$

$$i_{1} \uparrow \qquad \uparrow i_{2}$$