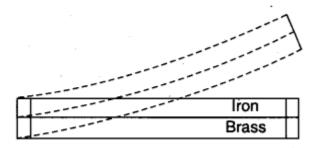
To Observe and Explain the Effect of Heating on a Bi-Metallic Strip

Aim


To observe and explain the effect of heating on a bi-metallic strip.

Apparatus

A bi-metallic strip (made of iron and brass bars), a board with clamp screw on one side and vertical scale on the other side, electric heating arrangement, or a burner thermometer.

Short Description of a Bi-metallic Strip

It is a strip made up of two bars of different metals but same dimensions, put together lengthwise and ripetted at their ends. The strip is straight at room temperature.

Fig. Bi-metallic strip.

When the bi-metallic strip is heated both bars expand differently. Since they are ripetted at their ends, their ends stay together. The bi-metallic strip bends keeping more expanding bar on its convex side. More is heating, more is the bending. In case of an iron-brass bi-metallic strip, the bent strip will have brass bar on its convex side.

Theory

If L_1 be the length of a rod (bar) at temperature $t_1^{\circ}C$ and L_2 be the length at $t_2^{\circ}C$, then $L_2 = L_1[1 + \alpha(t_2 - t_1)]$

where α is the coefficient of linear expansion of the material of the rod (bar).

If two rods of different metals have same length L_1 at temperature t_1 °C, their length at higher temperature t_2 °C will be different. The rod of a metal having more value of ' coefficient of linear expansion will have more length than the other rod.

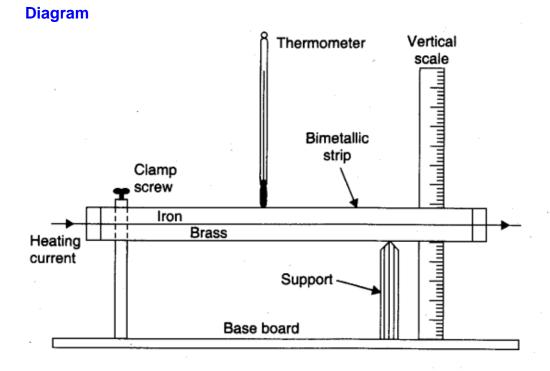


Fig. Bending of a bi-metallic strip.

Procedure

- 1. Clamp one end of the brass-iron bi-metallic strip, keeping brass bar on the lower side.
- 2. Keep the strip horizontal rested on a vertical support.
- 3. Fix a vertical scale near the free end of the bi-metallic strip.
- 4. Suspend a thermometer with its bulb touching the strip in the middle.
- 5. Note the initial temperature of the strip.
- 6. Note the vertical scale division coinciding with the upper edge of the strip.
- 7. Heat the strip by passing electric current through it or by using a burner. The thermometer will show a rise of temperature.
- 8. Watch the movement of the free end of the strip. The strip bends upwards (towards iron bar side) and position of upper edge of the strip changes.
- 9. Note the temperature after each rise of temperature by 2°C and also the position of the upper edge at that temperature.
- 10. Record your observations as given below.

Observations

Room temperature = 30°C (say) Least count of vertical scale = 1 mm.

Serial No. of Obs.	Temperature of bi-metallic strip t (°C)	Position of upper edge of bi-metallic strip x (mm)	Amount of bending upward (mm)
1.	30°C	<i>x</i> ₁ = -	$x_1 - x_1 =$
2.	32°C	<i>x</i> ₂ =	$x_2 - x_1 =$
11.	50°C	<i>x</i> ₁₁ =	$x_{11} - x_1 =$

Table for temperature and vertical scale reading

Calculations

- 1. Find the amount of bending by taking difference of position with initial position.
- 2. It is found that amount of bending increases as temperature rises.

Result

- 1. Bi-metallic strip bends more and more as its temperature rises.
- 2. Since brass bar is on convex side and iron bar on concave side of bent bi-metallic strip, brass bar expands more than the iron bar. Hence brass has larger linear expansion.

Precautions

- 1. The two bars should be firmly ripetted near their ends.
- 2. Brass bar should be kept on the lower side.
- 3. One end of the bi-metallic strip should be screw clamped.
- 4. Heating of whole bi-metallic strip should be uniform.

Sources of error

- 1. The ripettes may be loose.
- 2. Heating of strip may not be uniform.