
Chapter 7 
APPLICATIONS 
OF THE DEFINITE INTEGRAL 

§ 7.1. Computing the Limits of Sums with 
the Aid of Definite Integrals 

It is often necessary to compute the limit of a sum when the 
number of summands increases unlimitedly. In some cases such li­
mits can be found with the aid of the definite integral if it is pos­
sible to transform the given sum into an integral sum. 

For instance, considering the points _!_, _! , ... , !!:.. as points of 
n n n 

division of the interval [O, l] into n equal parts of length ~x = _!__, 
n 

for each continuous fun.ct ion f (x), we have 
1 

}~~ -!z [ f ( ~ ) + f ( ! ) + ... + f ( ~ ) ] = S f (x) dx. 
0 

7.1.1. Compute 
n I . n + . 2:rt . (n-1) nl lim - sm - sm - + ... + sm -- . n n n n 

ti .. "' 

Solution. The numbers in brackets represent the values of the 
function f (x) =sin x at the points 

_ n. 2n. . (n-1) n 
X,-n' X2=/j• ... , Xn-1= -n-' 

subdividing the interval [O, n] into n equal parts of length ~x= ~. 
n 

Therefore, if we add the summand sin nn = 0 to our sum, the Iat­
n 

ter will be the integral sum for the function f(x)=sinx on the 
interval [O, n]. 

By definition, the limit of such an integral sum as n - oo b the 
definite integral of the function f (x) =sin x from 0 to n: 

11 ( • 11 • :ln . (n-1) n . nn) Jim - sm - + sm - + ... + sm + sm - = n n n n n 
n-o"' 

"' 
= S sinxdx=- cos xi:= 2. 

0 
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7.1.2. Compute the limit 

I. ( I + 1 1 ) 1m ,,,- .,,- _ + ... + y . 
n-+a:i r 4n2-l r 4n2-22 4n2 -n2 

Solution. Transform the sum in parentheses in the following way: 

I I .,,- + .,,- + ... + 1/ -
r 4n2 - I r 4n2 -22 r 4n2 -n2 

I I I l =n( I I+ -.I 2)2+ ... + -.I ( )2) V 4-fi2 v 4-( n v 4 - ~ • 

The obtained sum is the integral sum for the function f (x) = 

= 1 ,,-
1 on the interval [O, 1] subdivided into n equal parts. 

r 4-x2 
The limit of this sum as n--+ oo is equal to the definite integral 
of this function from 0 to 1: 

l 

S dx . x II :rt 
= y 4 -x2 =arc sm 2 o = 6. 

0 

7.1.3. Compute 

}~m,,, ~ l 1 + Vn~3+ Vn~6+ Vn~9+ · · · + Vn+3~n-I)]' 
Solution. Transform the given expression in the following way: 

~ll -.In -.In -.I n 1-n + V n+a+ V n+6+ · · · + V n+3(n-I) -
=~[ .. I I +-.I I +-.I I + ... +-./_l __ J 

n V 1+0 V I+~ V i+~ V i+3(n-I) • 
n n n 

The obtained sum is the inte.gral sum for the function f (x) = 

= Vr 1 !x on the interval [0, 3]; therefore, by defi.nit ion, 

!~n"' ~ ( l+ Vn~3+ Vn~6+ · · · + Vn+3~n-I))= 
3 3 l 

= j. Vi!xdx= Jo+x)-2 dx=2V l+xl:=4-2=2. 
0 0 



312 Ch. VII. Applications of the Definite Integral 

7.1.4. Using the definite integral, compute the following limits: 

I. ( I I I ) (a) 1m -+1 + + 2+ ... +-+ ; 
n-oo n n n n 

(b) lim _!__ ( -. /' l + 1 + -. /'I+ 2 + ... + -. /' l + n); 
n-oo n V n V n V n 

( ) I. I+ V 2 + V 3+ ... + v-~. 
C Im v , 

n - 00 n4 

d I. :re ( l :rt 2:n (n- I) :n) . 
( ) Im -2 + COS -2 -J- COS -2 -1- .•. + COS - 2- , 

n-+oo n n n n 

(e) }~~ n [(n~l)2+(n~2)2+· .. + (2~) 2 J · 
v' 7. 1 .5. Compute the limit A= Jim _n_ . . 

n-oo n 
Solution. Let us take logarithms 

In A = lim In ;:;-;;i = Jim J_ [in_!__+ In !_ + ... + ln !!_l · 
n-oo n n-+oo n n n n 

The expression in brackets is the integral sum for the integral 
I 

~In xdx = (xln x-x)I~= -1. 
0 v--

Conseq uen t ly, lnA=-1 and Jim __ n_! =e- 1 • 
n ,, .... 00 

§ 7.2. Finding Average Values of a Function 

The average value of f (x) over the interval [a, b] is the number 
b 

I (' 
µ = b-a j f (x) dx. 

a 
b _I_ 

The square root { b~a S [f (x)]2 dx} 2 of the average value of the 
a 

square ol the function is called the root mean square (rms) of the 
function f (x) over [a, b]. 

7.2.1. Find the average value µ of the function f (x) = V x over 
the interval [O, I]. 

Solution. In this case 
4 

l -

I 5 3 ,- 3x 3 11 3 
µ = 1-0 V xdx=-4- o =4 · 

c 
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7.2.2. Find the average values of the functions: 

(a) f (x) = sin2 x over [O, 2n]; 
I 

(b) f (x) =ex+ 1 over [O, 2]. 

313 

7.2.3. Determine the average length of all vertical chords of the 
x2 y2 

hyperbola a2 - b2 = l over the interval a~ x ~ 2a. 

Solution. The problem consists in finding the average value of 

the function f(x)=2y=2!:.Vx2 -a2 over the interval [a, 2a]: a 
2a 

I r>bv-­µ=2- \ - x2 -a2 dx= 
a J a 

a 

=!~[; Vx2 -a2 -~ ln(x+ Vx2 -a2)J:a=b[2V3-1n(2+V3)]. 

7 .2.4. Find the average ordinate of the sinusoid y =sin x over 
the interval [ 0, n]. 

Solution: 
n n 

µ =...!.. S sin xdx =-..!.._cosx =~ ~ 0.637. n n n 
0 0 

Rewrite the obtained result in the following way: 

:t 

µ·n = ~· n = S sinxdx. 
0 

Using the geometric meaning of the definite integral, we can say 

that the area of the rectangle with the altitudeµ=~ and the base 
n 

n equals the area of a figure bounded by a half-wave of the sinu­
soid y =sin x, 0 ~ x ~ n, and by the x-axis. 

7.2.5. Find the average length of all positive ordinates of the 
circle x2 + y2 =I. 

7.2.6. Show that the average value of the function f (x), conti­
nuous on the interval [a, b], is the limit of the arithmetic mean 
of the values of this function taken over equal intervals of the 
argument x. 

Solution. Subdivide the interval [a, b] into n equal parts by the 

points xi=a+ib-"/ (i=O, I, 2, ... , n). 
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Form the arithmetic mean of the values of the function f (x) at 
n points of division x0 , x1' ... , Xn_ 1 : 

n-1 
µn = f (Xo)+f (x1)~ · .. +f (Xn-1) = ~ LJ (xi)• 

i=O 

This mean may be represented in the following form: 

where 

I n-1 

µn = b-a L f (xi) ~xi, 
i=O 

b-a 
~Xi=--. n 

The latter sum is the integral sum for the function f (x), the-
refore 

n-1 b 

lim µn = b~- Jim L f (xi) ~xi= b I r f (x) dx = µ, 
n-oo an-® aj 

i=O a 

which completes the solution. 

7 .2. 7. Find the average value of pressure (Pm) varying from 2 
to 10 atm if the pressure p and the volume v are related as follows: 

3 

pv2 =160. 

Solution. As p varies from 2 to 10 atm, v traverses the interval 
[4V4. 4V100]; hence 

4 v10o 3 

Pm= (V 1 V ) f 160v -2 dv = 
4 100- 4 . 

4V4 
_ _ 320 -+ 14 ViOO _ 40 ,..., - (V 3' )v v- -V (V V ),...,4.32atm. 

4 100- v 4 4 4 20 10+ 2 

7 .2.8. In hydraulics there is Bazin's formula expressing the velo­
city v of water flowing in a wide rectangular channel as a function 
of the depth h at which the point under consideration is situated 
below the open surface, 

V=V0 - 20 V HL (~ ) 2
, 

where v0 is the velocity on the open surface, H is the depth of 
the channel, L its slope. 

Find the average velocity vm of flow in the cross-section of the 
channel. 
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Solution. We have 
H 

Vm = ~ S [v0 -20 VHL(~ )2]dh= v0 -
2
3°VHL. 

0 

315 

7.2.9. Determine the average value of the electromotive force 
Em over one period, i.e. over the time from t = 0 to t = T, if 
electromotive force is computed by the formula 

EE .2nt 
= 0 sm 7 , 

where T is the duration of the period in seconds, £ 0 the amplitude 
(the maximum value) of the electromotive force corresponding to 

the value t =0.25T. The fraction 2~t is called the phase. 
Solution. 

T 

E Eo s . 2:nt dt E0 T [ , 2:nt] T O m=y smy =r.2:n -cosy 0 = . 
0 

Thus, the average value of the electromotive force over one pe­
riod equals zero. 

7 .2.10. Each of the two vertical poles OA and CD is equipped 
with an electric lamp of luminous intensity i fixed at a height h. 
The distance between the poles is d. Find the average illumination 
of the straight line OC connecting the bases of the poles. 

7 .2.11. Find the average value of the square of the electromotive 

force (E2)m over the interval from t = 0 to t = ~ (see Prob­

lem 7.2.9). 

Solution. Since 

we have 

E E . 2:nt 
= 0 smy. 

T !.._ 4:nt 
2 2 l-cos-

(£2) = ~ £2 s . 2 2:nt dt - ~ £2 (' T dt -
m T o sm T -T o \ 2 -

0 0 

- E~ [t-.!.. s'1n 4:nt] ~ = E~ 
- T 4n T o· 2 • 

7.2.12. If a function f (x) is defined on an infinite interval 
[O, oo ), then its average value will be 

b 

µ = !~~ ! J f (x) dx, 
0 
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if this limit exists. Find the average power consumption of an 
alternating-current circuit if the current intensity I and voltage u 
are expressed by the following formulas, respectively: 

I = I 0 cos (wt + a); 
u = U0 cos (wt+ a+ <p), 

where <p is the constant phase shift of the voltage as compared 
with the current intensity (the parameters w and a will not enter 
into the expression for the average power). 

Solution. The average power consumption 
T 

Wm= Jim f S J0 cos(wt+a)u0 cos((J)t+a+<p)dt. 
T-.oo O 

Taking into consideration that 

I 
cos a cos ~ = 2 [cos (a + ~) + cos (a - ~)], 

we will get 
T 

wm =Jim 1~~0 S [cos (2wt + 2a.+ <p) +cos <p] dt = 
T .... oo 0 

_ 1. {/0 u0 .sin(2ffiT+2a+cp)-sin(2a+cp)+/0u0 l_l0u0 
_ tm 4w T 2 cosqil - 2 cosqi. 

T -.oo 

Hence, it is clear why so much importance is attached to the 
quantity cos qi in electrical engineering. 

7 .2.13. Find the average value µ of the function f (x) over the 
indicated intervals: 

(a)f(x)=2x2 +l over [O, l]; 

(b) f (x) =J_ over [I, 2]; 
x 

(c) f(x)=3x-2x+3 over [O, 2]. 

7 .2.14. A body falling to the ground from a state of rest acqui­
res a velocity v1 = V2gs1 on covering a vertical path S=S1 • Show 

that the average velocity vm over this path is equal to 2~1 

7.2.15. The cross-section of the trough has the form of a para­
bolic segment with a base a and depth h. Find the average depth 
of the trough. 

7.2.16. Find the average value Im of alternating current intensity 

over time interval from 0 to ~ (see Problem 7.2.12). 
(!) 
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7.2.17. Prove that the average value of the focal radius of an 

ellipse p = 1 P , where p = b2 
; a, b are the semi-axes and e is -e cos cp a 

eccentricity, is equal to b. 

7 .2.18. On the segment AB of length a a point P is taken at a 
distance x from the end-point A. Show that the average value of 
the areas of the rectangles constructed on the segments AP and 

a2 
PB is equal to 6 . 

7 .2.19. Find the average value of the function 

cos 2 x 
f (x) = sin2 x+4 cos 2 x 

over the interval l 0, % ] . Check directly that this average, equal 
I to 6 , is the value of the function f (x) for a certain x = £ lying 

within the indicated interval. 

§ 7.3. Computing Areas in Rectangular Coordinates 

If a plane figure is bounded by the straight lines X= a, x = 
=b(a<b) and the curves y=y1 (x), y=y2 (x), pro,lided y1 (x)~ 
~ y2 (x) (a~ x ~ b), then its area is computed by the formula 

b 

S = ~ [y 2 (x)-y1 (x)] dx. 
a 

In certain cases the left boundary x =a (or the right boundary 
x=b) can degenerate into a point of intersection of the curves 

y .c !I 

]] . 

,8 
A I 

: !f=fft(x) i 
I I x 

0 b 
:.c 0 a b a (a) {b) 

Fig. 65 

y = y1 (x) and y = y2 (x). Then a and b are found as the abscissas 
of the points of intersection of the indicated curves (Fig. 65, a, b). 

7 .3.1. Compute the area of the figure bounded by the straight 
lines x=O, x=2 and the curves y=2x, y=2x-x2 (Fig. 66). 
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Solution. Since the maximum of the function y = 2x-x2 is at­
tained at the point x = 1 and is equal to 1, and the function 
y= 2x ~ 1 on the interval [O, 2], we have 

2 

S = S [2x -(2x- x2)] dx = 1~x2 1: -( x2 - ;') 1: = 1 ~ 2- ~ . 
0 

7 .3.2. Compute the area of the figure bounded by the parabolas 
X=-2y2 , X=l-3y2 (Fig. 67). 

y 
4 

!I 

1 
y=2x-x 2 

0 1 2 
----------- -1 

Fig. 66 Fig. 67 

Solution. Solving the system of equations 

{ X= 2y2 ; 

X= l-3y2 , 

find the ordinates of the points of intersection of the curves y1 =-1, 
y2 = 1. Since l -3y2 ~-2y2 for -1 <,. y <,. 1, then we have 

I 

S= s [(l-3y2)-(-2y2)] dy=2 (y-~3 ) I~=~. 
-1 

7.3.3. Find the area of the 
figure contained between the !f 
parabola x2 = 4y and the witch 

of Agnesi y = ~4 (see Fig. x, 
68). 

Solution. Find the abscis­
sas of the points A and C of ~--_2..1....---=:..o~i.::__.._ __ __.x 
intersection of the curves. For 
this purpose eliminate y from Fig. 68 
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the system of equations 

8 x2 
whence x2 +4 = 4 , or x'+4x2 -32=0. 

The real roots of this equation are the points Xi= -2 and 

X2 =2. As is seen from the figure, x2 ~ 4 ~ ~2 on the interval 

[-2, 2]. (It is also p~ssible to ascertain this by directly computing 
the values of these functions at any point inside the interval, for 
instance, at x = 0.) 

Consequently, 
2 

S= S (x2~ 4 -~2 )dx=(4arctan ;-~;)[~ 2 =2n-f. 
-2 

7.3.4. Find the area of the figure bounded by the parabola 
y=x2 + 1 and the straight line x+y=3. 

7.3.5. Compute the area of the figure which lies in the first qua­
drant inside the circle x2 + y2 = 3a2 and is bounded by the parabo-
las x2 = 2ay and y2 = 2ax (a> 0) (Fig. !f 
69). 

Solution. Find the abscissa of the po­
int A of intersection of the parabola 
y2 = 2ax and the circle x2 + y2 = 3a2 • 

Eliminating y from the system of equa­
tions 

{ xz + y2 = 3a2' 
y2 =2ax, 

we obtain x2 + 2ax-3a2 = 0, whence we 
get the only positive root: xA =a. Analo­

Fig. 69 

gously, we find the abscissa of the point D of intersection of the 
circle X2 + y2 = 3a2 and the parabola X2 = 2ay; Xv= a V2. 

Thus, the sought-for area is equal to 

a VI 
S= ~ [y2 (x)-Yi(x)]dx, 

0 

h ( ) x2 (x) __ f V2Ux for 0 ~ x ~a, 
w ere Yi x = -2a ' Y2 - I r v-l V 3a2-x2 for a< x~a 2. 
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By the additivity property of the integral 
u aV2 

S = 5 ( V 2ax- ~:) dx + 5 ( V 3a2 - x2 - ~:) dx = 
0 a 

[ .. - 2 ~ xa ] a [ x 3a2 x xa ] a V2 
= V2a ·-x 2 --- + -V3a2 -x2 +-arcsin--_--- = 

3 6a o 2 '2 a JI 3 6a a 

2 JI 2 2 a2 3a2 ( . V2 _ · _l -)- V 2 2 J__ 2 _ =-3-a - 6 + 2 arcsm V3 arcsm V3 3 a+ 6 a -

-(¥2+3 . ') 2 - - 3- 2 arcsm 3 a. 

Here we make use of the trigonometric formula: 

arcsina-arcsin~ =arcsin(a J/l-~2 -~ Vl-a2) (a~> 0) 
for transforming 

. -. /2 . I . ( -. /2 -. /2 I I ) arcs1n V 3 -arcsm V3 =arcstn V 3 V 3- y-3 y-3 = 

. I 
=arc sin 3 . 

7.3.6. Compute the area of the figure lying in the first quadrant 
and bounded by the curves y 2 = 4x, 

Y x2 = 4y and x2 + y2 = 5. 

7.3.7. Compute the area of the 
figure bounded by the lines y = 
x+ I, y=cosx and the x-axis 

__.c."-'-LJ.~L.f-L-'~-'-'-'-lt...L.L.UL:-~ x (Fig. 70). 
1 0 -1 

Fig. 70 
Solution. The function 

( x+ 1 if -1 ~x~O, 

Y = f (x) = l cos x if 0 ~ x ~ ~ 

is continuous on the interval [ -1, ~ J . The area of the curvili­
near trapezoid is equal to 

n n 
2 0 -2 

S= S f(x)dx= 5 (x+ l)dx+ 5 cosxdx=(x~l)2 [ 1 +sinxj
0
; ={. 

-I - I 0 

7.3.8. Find the area of the segment of the curve y2 =x3 -x2 if 
the line x = 2 is the chord determining the segment. 
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Solution. From the equality y2 = x2 (x- 1) it follows that 
x2 (x-1) ~ 0, therefore either x = 0 or x ~ 1. In other words, the 
domain of definition of the implicit function y2 = x3 -x2 consists 
of the point X=O and the interval [l, oo). In computing the area 
the isolated point (0, 0) does not play any role, therefore, the 
interval of integration is [1, 2) (see Fig. 71). 

Passing over to explicit representation y = ± x V x- 1, we see 
that the segment is bounded above by the curve y=xVx-1 and 
below by the curvey=-xVx-1. Hence, 

2 2 

S = ~ [ x V x- 1-(-x V x- 1)] dx = 2 ~ x V x- 1 dx. 
I I 

Make the sub st itut ion 

Then 
I 

x-l=t2 , 

dx= 2t dt, I 0 
'2 I 

S = 4 s ( f 2 + 1) f 2 dt = 4 [~ + ~] I = 32 
5 3 0 15. 

0 

7 .3.9. Determine the area of the figure 
bounded by two branches of the curve 
(y-x)2 = x3 and the straight line x = 1. 

!/ 

Solution. Note first of all that y, as an Fig. 71 
implicit fund ion of x, is defined only for 
x ~ O; the left side of the equation is always non-negative. Now 
we find the equations of two branches of the curve y= x-xVX, 

y =x+xVx. Since x~o. we have x+xVx~x-xVx, and 
therefore 

I I 5 

S V- v- s v- 4 211 4 S= (x+x x-x +x x)dx= 2 x xdx==s-x 0 =s. 
0 0 

7.3.10. Compute the area enclosed by the loop of the curve 
y2 =x(x-l)2 • 

Solution. The domain of definition of the implicit function y is 
the interval 0 ~ x < + oo. Since the equation of the curve conta­
ins y to the second power, the curve is symmetrical about the 
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x-axis. The positive branch y1 (x) is given by the equation 

= (x>=Vx!x-ll={Vx(l-x), O~x~I. 
Y Y1 Vx(x-l), x>l. 

The common points of the symmPtrical branches y1 (x) and y2 (x) = 
= -y1 (x) must lie on the x-axis. But y1 (x) = Vx Ix- 11=0 only 
at x1 = 0 and at x2 = l. 

Consequently, the loop is formed by the curves y=Vx(l-x) 
and y = - J/x ( 1 - x), 0 ~ x ~ l (see Fig. 72), the area enclosed 
being 

SI v- s' ( T : ) 8 S = 2 x ( 1-x) dx = 2 x -x dx = 15 . 
0 0 

7 .3.11. Find the area enclosed by the loop of the curve 
y2 = (x- l)(x-2)2 • 

!I 
7 

0 

Fig. 72 Fig.73 

7 .3.12. Find the area of the figure bounded by the parabola 
y= - x2 -2x+ 3, the line tangent to it at the point M (2, -5) 
and the 11-axis. 

Solution. The equation of the tangent at the point M (2, -5) 
has the form y+5=-6(x-2) or y=7-6x. Since the branches 
of the parabola are directed downward, the parabola lies below the 
tangent, i.e. 7-6x~-x2 -2x+3 on the interval [O, 2] (Fig. 73). 

Hence, 

2 2 

S= S [7-6x-(-x2 -2x+3)] dx= S (x2 -4x+4)dx =~. 
0 0 
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7.3.13. Find the area bounded by the parabola y=x2 -2x+2, 
the line tangent to it at the point M (3, 5) and the axis of ordi­
nates. 

7.3.14. We take on the ellipse 

x2 y2 
Q2+1,2= 1 (a> b) 

a point M (x, y) lying in the first quadrant. 
Show that the sector of the ellipse bounded by its semi-major 

axis and the focal radius drawn to the point M has an area 
ab x s = 2 arc cos a . 

With the aid of this result deduce a formula for computing the 
area of the entire ellipse. 

!! 

Fig. 74 Fig. 75 

Solution. We have (Fig. 74): 

S S S S _xy_ b v-2--2. 
OMAO = ilOJ}IB+ MABM; ilOMB- :r- 2a x a -x' 

u a 

SMABM=\ydx= -Va2 -t 2 dt=- t a2-t 2 +a2 arcsin- = " 5 b -- b ( v- t ) la 
<1 a 2a a x 
x , 

S. :rt • x x bt . mce -2 -arc stn - =arc cos-, we o am 
a a 

S b [ v-2 -2 + 2 x 1 MABJ}1=2£l -X a -X a arc COS a , 
Hence 

S S ab x 
OMAO = MMB + S MABM + 2 arc COS a • 
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At x=O, the sector becomes a quarter of the ellipse, i.e. 
IS ah abn ab 

4 elllpse=2arccos0=2· 2=4n. 

and consequently, Seillpse=nab. At a=b we get the area of a circle 
sclrcle = na2 • 

x2 
7.3.15. Find the area bounded by the parabolas y=4x2 , Y=g-

and the straight line y = 2. 
Solution. In this case it is advisable to integrate with respect 

to y and take advantage of the symmetry of the figure (see Fig. 75). 
Therefore, solving the equations of the parabolas for x, we have: 

yY v-
X = ± -2 - • X=±3 y. 

By symmetry of the figure about the y-axis the area sought is 
equal to the doubled area SoABo: 

2 :> 

S ( V- 1 v-) sv- 20Jf2 S=2S0 A80 =2 3 y-2 y dy=5 ydy=-;j-. 
0 0 

7.3.16. From an arbitrary point M(x, y) of thecurvey=xm 
(m > 0) perpendiculars MN and ML (x > 0) are dropped onto the 
coordinate axes. What part of the area of the rectangle ON ML does 
the area ON MO (Fig. 76) constitute? 

!J g=.xm 
y 

L M 1 

.J: 

----c<-:t 

0 N 
x 

-1 ---y;e-
Fig. 76 Fig. 77 

7.3.17. Prove that the areas S0 , Sl' S2 , S3 , ••• , bounded by the 
x-axis and half-waves of the curve y = e-ax sin px, x ~ 0, form a 

an 

geometric progression with the common ratio q = e -tr. 
Solution. The curve of Fig. 77 intersects the positive semi-axis 

Ox at the points where. sin Px= 0, whence 

Xn= ;'Jt' n=O, I, 2, ...• 
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The function y = e-u sin Px is positive in the intervals (x2k, X2k+i) 

and negative in (x2k+i• X2k+ 2), i.e. the sign of the function in the 
interval (xn, xn+i) coincides with that of the number (-l)n. Therefore 

(n+ l)n (n+ l)n 
-II- -,1-

S= n ~ lyldx=(-l)n ~ e-axsinpxdx. 
nn nn 
lf If 

But the indefinite integral is equal to 

S e-q 
e-•x sin Pxdx =- a2 +~2 (a sin Px+P cos Px)+C. 

Consequent I y, 

Hence 
S e-a(n+l)n/ll 

n+I - e-ait/ll q = -S- = e-ann/ll - ' 
n 

which completes the proof. 

7.3.18. Find the areas enclosed between the circle x2 +y2 -2x+ 
+4y-ll=0 and the parabola y=-t2 +2x+l-2V3. 

Solution. Rewriting the equations of the curves, we have: 

(x-l)2 +(y+2)2 =l6, !f 
y=-(x-1)2 -2 V3+2. 

Consequently, the centre of the 
circle lies at the point C (I, -2) 
and the radius of the circle equals 
4. The axis of the parabola coin­
cides with the straight line x = 1 
and its vertex lies at the point 
B (1, 2, -2 V 3) (Fig. 78). 

The area S ABDFA of the smaller 
figure is found by the formula 

"D 

S ABDFA = ~ (Ypar-Ycirc1e) dx, 
"A 

F 

Fig. 78 
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where xA and xv are determined from the system of equations 

j (x-1)2 + (y+ 2)2 =16, 

\ y+2=-(x-1)2 -2y"3 +4, 

whence XA=-1, Xv=3. 
Hence, 

3 

SABDFA = ~ [(-x2 + 2x+ 1-2V3) + (2 + Vl6-(x- l) 2 )] dx= 
-1 

rl x3 ;- x I -
= - 3 +x2 +(3-2l 3)x+-; V 16-(x-1)2 + 

16 x-JJ3 32 ;- -- I + 2 arcsin --4- 1 = 3 -8 ~ 3 +2V12+16arcsin 2 = 

32 v- 8 =3--4 3 +3 :rt. 

The area of the second figure is easy to determine. 
Note. The computation of the integral can be simplified by using 

the shift x-1 = z and taking advantage of the evenness of the 
integrand. 

7.3.19. Compute the area bounded by the curves y=(x-4)2, 
y = 16-x2 and the x-axis. 

7 .3.20. Compute the area enclosed between the parabolas 
3 x = y2; x = 4 y2 + 1. 

7.3.21. Compute the area of the portions cut off by the hyper­
bola x2-3y2= 1 from the ellipse x2+4y2=8. 

7.3.22. Compute the area enclosed by the curve y2 =(l-x2) 3 • 

7 .3.23. Compute the area enclosed by the loop of the curve 
4 (y2 -x2) + xa = 0. 

7 .3.24. Compute the area of the figure bounded by the curve 
Vx + J/y = 1 and the straight line x+ y= 1. 

7 .3.25. Compute the area of the figure enclosed by the curve 
y2 = x2 ( 1 - x2). 

7 .3.26. Compute the area enclosed by the loop of the curve 
x3+x2-y2 =0. 

7 .3.27. Compute the area bounded by the axis of ordinates and 
the curve x = y2 ( 1-y). 

7 .3.28. Compute the area bounded by the curve y = x4 - 2x3 + 
+ x2 + 3, the axis of abs<issas and two ordinates corresponding to 
the points of minimum of the function y (x). 
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§ 7.4. Computing Areas with Parametrically Represented 
Boundaries 

If the boundary of a figure is represented by parametric equations 

x = x (t), y = y (t), 

then the area of the figure is evaluated by one of the three for 
mu las: 

fl ti fl 

S = - Sy (t) x' (t) dt; s = s x (t) y' (t) dt; S= ~ S (xy' -yx')dt, 
u a a 

where a and ~ are the values of the parameter t corresponding 
respectively to the beginning and the end of the traversal of the 
contour in the positive direction (the figure remains on the left). 

7.4.1. Compute the area enclosed by the ellipse 

x=acost, y=bsint (O~t~2n). 

Solution. Here it is convenient first to compute 

xy' -yx' =a cost xbcos t +b sin t xa sin t =ab. 
Hence 

2;c 2:n 

S = i S (xy' -yx') dt = ~ S ab dt =nab. 
0 0 

2 2 

7.4.2. Find the area enclosed by the astroid (:) 3 + ( ~) 3 = 1. 

Solution. Let us write the equation of the astroid in parametric 
form: x =a coss t, y =a sins t, 0 ~ t ~ 2n. Here it is also conve­
nient to evaluate first 

xy' -yx' = a2 (coss t · 3 sin2 t cost+ sins t · 3 cos2 t sin t) = 

= 3a2 cos2 t sin2 t. 
Hence, 

2:n 2:rt 

S= ~ S (xy'-yx')dt= ~ a2 S sin2 2tdt=fa2n. 
0 0 

7 .4.3. Find the area of the region bounded by an arc of the 
cycloid x=a(t-sint), y=a(l-cost) and the x-axis. 

Solution. Here the contour consists of an arc of the cycloid 
(0 ~ t ~ 2n) and a segment of the x-axis (0 ~ x ~ 2na). Let us 

fl 

apply the formula S=-~yx'dt. 
a 
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Since on the segment of the x-axis we have y = 0, it only re­
rpains to compute the integral (taking into account the direction 
of a boundary traversal): 

o 2n 

S=-~ a(l-cost)a(l-cost)dt=a2 ~ (l-cost) 2 dt= 
~ 0 

2n 

= a2 S [ 1 - 2 cost + ~ (1 + cos 2t) J dt = 3na2 • 

0 

7.4.4. Compute the area of the region enclosed by the curve 
x=asint, y=bsin2t. 

Solution. When constructing the curve one should bear in mind 
that it is symmetrical about the axes of coordinates. Indeed, if we 
substitute n-t for t, the variable x remains unchanged, while y 
only changes its sign; consequently, the curve is symmetrical about 
the x-axis. When substituting n+ t for t the variable y remains 
unchanged, and x only changes its sign, which means that the 
curve is symmetrical about the y-axis. 

ff 

t~Jf 

-f~~~~~~'+--~~~~--:2:..-+-x 

Fig. 79 

Furthermore, since the functions x=asint; y=bsin2t have a 
common period 2n, it is sufficient to confine ourselves to the fol­
lowing interval of variation of the parameter: 0 ~ t ~ 2n. 

From the equations of the curve it readily follows that the va­
riables x and y simultaneously retain non-negative values only 

when the parameter t varies on the interval [ 0, ~ J , therefore at 

0 ~ t ~ ~ we obtain the portion of the curve situated in the first 

quadrant. The curve is shown in Fig. 79. 
As is seen from the figure, it is sufficient to evaluate the area 

enclosed by one loop of the curve corresponding to the variation 
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of the parameter t from 0 to :rt and then to double the result 
:rt :rt :rt 

S= 2 ~ yx' dt =2 ~ bsin 2t xacost dt =4ab ~ cos2 t sin t dt = 
0 0 0 

= -4ab (co;a t) 1: = f ab. 

7 .4.5. Find the area of the region enclosed by the loop of the 
curve 

t /2 
X=3(6-t); Y=g(6-t). 

Solution. Locate the points of self-intersection of the curve. Both 
functions x (t) and y (t) are defined throughout the entire number 
scale -oo < t < oo. 

At the point of self-intersection the values of the abscissa (and 
ordinate) coincide at different values of the parameter. Since x= 
= 3-f (t-3)2 , the abscissas coincide at t=3 +A.. For the func­

tion y (t) to take on one and the same value at the same values 
(3+A.)2 (3-A.)2 

of the parameter t, the equality - 8-(3-A.)=-8-(3+A.) must 

be fulfilled for A. =i= 0, whence A.= ±3. 

B 

Fig. 80 Fig. 81 

Thus, at t 1 =0 and at t 2 =6 we have x(t1)=x(t2)=0, and 
y (t 1) = y (t 2) = 0, i. e. the point (0, 0) is the only point of self­
intersection. Wh~n t changes from 0 to 6, the points of the curve 
are found in the first quadrant. As t varies from 0 to 3, the 
point M (x, y) describes the lower part of the loop, since in the 

indicated interval x (t) and y (t) = 3~x increase, and then the func­

tion x (t) begins to decrease, while y (t) still keeps increasing. Fi­
gure 80 shows the traversal of the curve corresponding to increas­
ing t (the figure remains on the left). 
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In computing the area enclosed by the loop sought it is conve­
nient to use the formula 

6 6 

S 1 s ( I ') dt 1 (' / 2 (6-1)2 dt 27 =2 xy -yx =2 J 24 =s· 
0 0 

7 .4.6. Find the area enclosed by the loop of the curve: x = t 8 ; 

t3 
y=t-3. 

7 .4. 7. Compute the area enclosed by the cardioid: x = 
=a cost (1 +cost); y=a sin t (I+ cost). 

Solution. Since x (t) and y (t) are periodic functions, it is suffi­
cient to consider the interval [-n, n]. The curve is symmetrical 
about the x-axis, since on substituting -t for t the value of the 
variable x remains unchanged, while y only changes its sign, and 
y ~ 0 as t varies from 0 to n. 

As t changes from 0 to n the function u =cost decreases from 

1 to -1, and the abscissa x=au(l+u)=a [-{+(u+ ~)2] 
first decreases from x la=i = 2a to x /u=-+ = -f and then increases 

to x ~u= _1 =0. We can show that the ordinate y increases on the 

interval ( 0 ~ t ~ ~ ) and decreases on the interva I ( 1- ~ t ~ :rt) . 
The curve is shown in Fig. 81, the arrow indicating the direc­

tion of its traversal as t increases. 
Consequent I y, 

n n 

S = ~ S (xy' - yx') dt = a2 S ( 1 + cos t)2 dt = { na2 • 

-n o 

7 .4.8. Compute the area of the region enclosed by the curve 
x = cos t, y = b sin 3 t. 

7 .4.9. Compute the areas enclosed by the loops of the curves: 

(a) X=i 2 -l, y=t 3-f; 
(b) X=2f-t 2 ; y=2f2-f3; 

t 
(c) X=f2; Y=3(3-t2). 

7 .4.10. Compute the area of the region enclosed by the curve 
x=acost; y=bsintcos2 t. 

7 .4.11. Compute the area enclosed by the evolute ol the ellipse 
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§ 7.5. The Area of a Curvilinear Sector in Polar 
Coordinates 

331 

In polar coordinates the area of a sector bounded by the curve 
p = p ( cp) and the rays cp1 =a and cp 2 = B is expressed by the integral 

" S=+Sp2 (cp)dcp. 
a 

7 .5.1. Find the area of the region situated in the first quadrant 
and bounded by the parabola y2 =4ax and the straight lines 
y=x-a and x=a. 

Solution. Let us introduce a polar system of coordinates by 
placing the pole at the focus F of the parabola and directing the 
polar axis in the positive direction 
along the x-axis. Then the equation of 

the parabola will be p = 1 P , whe-
- coscp 

re p is the parameter of the parabola. 
In this case p = 2a, and the focus F has 
the coordinates (a, 0). Hence, the equa­
tion of the parabola will acquire the 

2a form p = 1 , and those of the 
- cos <p 

ff 

Jt --I-~------ x straight lines will become cp=4 and O 

cp = -i (Fig. 82). Therefore, Fig. 82 
n :re 
2 2 

S _ I ~ 4a2 d _ 2 2 ~ d<p 
FABF-2 (T.:...cos <p)2 qi - a 

:re 
T 

4 sin4 ~ 
n 
4 

Changing the variable: 
qi I z 

dcp =dz 
2 sin2 (<p/2) ' 

:rt/4 lcot (:rt/8) , 
:rt/2 I 1 

we obtain 
cot (n/8) 

SFABF=a2 s 
I 

or, taking into 
n I+ cos (:rr/4) --

account that cot 8 = sin (n/4) = l + V 2, 

SFABF=2a2 ( 1 +: V2). 
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7 .5.2. Compute the area of the region enclosed by 

(a) the cardioid p = 1 +cos <p; 
(b) the curve p =a cos <p. 

7 .5.3. Find the area of the regions bounded by the curve 
p = 2a cos 3<p and the arcs of the circle p =a and situated outside 
the circle. 

Solution. Since the function p = 2a cos 3<p has a period T = ~n' 
the radius vector describes three equal loops of the curve as <p va­
ries between -:rt and :rt. Permissible values for <p are those at 
which cos 3<p ~ 0, whence 

n 2kn n 2kn 
-5+-3-~<p~5+3 (k=O, ± 1, +2, ... ). 

Consequently, one of the loops is described as <p varies between 

-i and ~ , and the other two loops as <p varies between % and 
5n 7n 3n 

6 , and between 6 and 2 , respect-

ively (Fig. 83). Cutting out the parts, 
belonging to the circle p =a, we get 
the figure whose area is sought. Cle­
arly, it is equal to the triple area 

~--~~~L~~ SMLNM· 
2a x Let us find the polar coordinates of 

the points of intersection M and N. 
For this purpose solve the equation 

2a cos 3<p =a, i. e. cos 3<p =--} . Between 

- ~ and ~only the roots -~and 
Fig. 83 6 6 · 9 

~ (k=O) are found. Thus, the point N 

is specified by the polar angle <p 1 = - ; , and the point M by <p2 = ; . 

As is seen from the figure, 

SMLNIH = SOMLNO-SOMNO = 
~9 ~9 

= _!_ s 4a2 cos2 3<p d<p--1 r a 2 d<p = a2 (~ + V3) 
2 2 .l 9 6 • 

-rr/9 -rr/9 

7 .5.4. Compute the area of the figure bounded by the circle 
p = 3 V2 a cos <p and p = 3a sin <p. 

Solution. The first circle lies in the right half-plane and passes 
through the pole p = 0, touching the vertical line. The second circle 
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is situated in the upper half-plane and passes through the pole 
p = 0, touching the horizontal line. Consequently, the pole is a point 
of intersection of the circles. The other point of intersection of the 
circles B is found from the equation 3 V2 a cos cp = 3a sin cp, whence 
B (arc tan V2, a V6). As is seen from Fig. 84, the sought-for area 

0 8v.?a 

Fig. 84 

!I 
VJ 

Fig. 85 

S is equal to the sum cf the areas of the circular segments OABO 
and OCBO adjoining each other along the ray cp =arc tan V2. The 
arc BAO is described by the end-point of the polar radius p of 

the first circle for arc tan V2 ~qi~ ~ , and the arc OCB by the 

end-point of the polar radius p of the second circle for 0 ~qi~ 
~arc tan V2. Therefore 

.TT 

2 

SoARo = 9a2 S cos2 qi dcp = ~ a2 ( ~ - arc tan V2 - r;-) , 
arc tan V2 

arc tan V2 

Sarno= ~ a2 S sin2 cp dcp = ! a2 (arc tan V2 - r;-) . 
0 

Hence, 
SoABo + SoCBo = 2.25122 (n-arc tan V2 -V2). 

7 .5.5. Find the area of the figure cut out by the circle p = V3 sin cp 
from the cardioid p = 1 +cos cp (Fig. 85). 

Solution. Let us first find the points of intersection of these cur­
ves. To this end solve the system 

{ p = V3 sin qi, 0 ~ cp ~ n, 
p = 1 +cos cp, 

:n; 
whence cpl = 3 ' cr2 = n. 
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The sought-for area is the sum of twJ areas: one is a circular 
segment, the other a segment of the cardioid; the segments adjoin 

each other along the ray <p = ~ . The arc BAO is described by the 

end-point of the polar radius p of the cardioid as the polar angle <p 

changes from ~ to n, and the arc OCB by the end-point of the 
1t 

polar radius p of the circle for 0 ~qi~ 3 . 
Therefore 

" 3 :rt 

S =-4- S .'3 sin2 qi dqi + ~ S (1 +cos qi) 2 dqi = 
0 :rt 

:1 

3 ( sin 2<p) I ~ I ( . <p sin 2q:) 111 

=-:r <p--2- ~ +2 qi+2smcp +·~+-4- : = 

= ~ (n-V3 ). 

7.5.6. Find the area of the figure bounded by the cardioid 
p=a(l-cosqi) and the circle p=a. 

7.5.7. Find the area of the region enclosed by the loop of the 
folium of Dt scartes x3 + y3 = 3axy. 

Solution. Let us pass over b polar coordinates using the usual 

!! A 
formulas x =p cos <p, y = p sin qi. Then 
the equation of the curve is: 

p3 (cos3 cp + sin 3 (p) = 3ap2 sm cp cos q,, 

or 
3a sin <p cos <p 

:c P = cos3 <p + sin3 <p 
3a sin 2<p 

(sincp+coscp) (2-sin 2<p) 

It follows from this equation that, 
1t 

firstly, p=O at <p=O and at <p= 2 , 
3n 

and secondly, p - oo as <p - 4 and Fig. 86 
cp-+ - ~ . The latter means that 

the folium of Descartes has an asymptote, whose equation y = 
=- x-a can be found in the usual way in rectangular coordinates. 

Consequently, the loop of the folium of Descartes is described 

as q> changes from 0 to ; and is situated in the first quadrant 

(see Fig. 86). 
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Thus, the sought-for area is equal to 

2 

l s 9a2 cos 2 cp sin·~ <p 
5 oAo = 2 (cosa 4 + sin:i lp)2 dcp. 

0 

335 

Taking advantage of the curve's symmetry about the bisector 

y=x, i.e. about the ray cp= ~, we can compute the area of half 

ol the loop (from cp = 0 to cp = ~) and then double it. This enab­

les us to apply the substitution 

which gives 

tan cp = z, 
d<p --=dz 

cos2 QJ ' rn 0 
' I 

4 I 

S _ g 2 s cos2 cp sin" <p d _ 9 2 s z2 dz 
oAo - a (cos3 cp+ sin:i <.p)2 cp - a (I+ z3)2. 

0 0 

Still new substitution 

1 + Z3 =V, 
3z2 dz =dv, ttW 1 

2 

leads to the integral 
i 

S 3 2 s dv 3 2 
OAO = a (i2 = 2 a . 

I 

7 .5.8. Compute the area of the region enclosed by one loop of 
the curves: 

(a) p=acos2cp; (b) p=asin2cp. 

7 .5.9. Compute the area enclosed by the port ion of the cardioid 
p=a(l-coscp)lying inside the circle p=acoscp. 

7.5.10. Compute the area of the region enclosed by the curve 
p =a sin l{J cos2 cp, a> 0. 

7 .5.11. Compute the area of the region enclosed by the curn 
fJ =a cosa q (a> 0). 
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7.5.12. Compute the area of the portion (lying inside the circle 

p = 0) of the figure bounded by the Bernoulli's lemniscate p= 

=aVcos2qi. 

7.5.13. Passing over to polar coordinates, compute the area of 
the region enclosed by the curve (x2 + y2) 3 = 4a2x2y2. 

7.5.14. Passing over to polar coordinates, evaluate the area of 
the region enclosed by the curve x' + y' = a2 (x2 + y2). 

§ 7.6. Computing the Volume of a Solid 

The volume of a solid is expressed by the integral 

b 

V = ~ S (x)dx 
a 

where S (x) is the area of the section of the solid by a plane per­
pendicular to the x-axis at the point with abscissa x; a and b are 
the left and right boundaries of variation of x. The function S (x) 
is supposed to be known and continuously changing as x varies 
between a and b. 

The volume V x of a solid generated by revolution about the 
x-axis of the curvilinear trapezoid bounded by the curve y = f (x) 
(f (x) ~ 0), the x-axis and the straight lines x =a and x = b (a< b) 
is expressed by the integral 

b 

Vx=1t~!/dx. 
a 

The volume Vx of a solid obtained by revolving about the x-axis 
the figure bounded by the curves y =Yi (x) and y = y2 (x) [O ~Yi (x) ~ 
~y2 (x)J and the straight lines x=a, x=b is expressed by the 
integral 

b 

Vx = n ~ (yi-yi)dx. 
a 

If the curve is represented parametrically or in polar coordinates, 
the appropriate change of the variable should be made in the above 
formulas. 

7 .6.1. Find the volume of the ellipsoid 

x2 y2 z2 
az +{ii"+ C2 = 1. 



§ 7.6. Computing the Volume of a Solid 337 

Solution. The section of the ellipsoid by the plane x = const is 
an ellipse (Fig. 87) 

y2 z2 

( 2)+ ( 2)=1 
b2 I - ~2 c2 I - ~2 

with semi-axes b -{ 1 - ~: ; c -{q. Hence the area of the 

section (see Problem 7.4.1) 

-./~ -./-x2 ( x2) S(x)= nb V 1-112 x c V l - 112 =nbc 1-112 
Therefore the volume V of the ellipsoid is 

a 

S ( x2 ) l x3 ] a 4 V= nbc l-a2 dx=nbc x-3a2 -a= 3 nabc. 
-a 

In the particular case a= b = c the ellipsoid turns into a sphere, 

and we have V sphere = ~ :rta3 • 

!I 

Fig. 87 Fig. 88 

7.6.2. Compute the volume of the solid spherical segment of two 
bases cut out by the planes x = 2 and x = 3 from the sphere 
x2+y2+z2= 16. 

7.6.3. The axes of two identical cylinders with bases of radius a 
intersect at right angles. Find the volume of the solid constituting 
the common portion of the two cylinders. 

Solution. Take the axes of the cylinders to be the y- and z-axis 
(Fig. 88). The solid OABCD constitutes one-eighth of the sought­
for solid. 

Let us cut this solid by a plane rerpendicular to the x-axis at 
a distance x from 0. In the section we get a square EFKL with 
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0 

side EF= Va2 -x2 , therefore S(x)=a2 -x2 and V =85 (aa-x~)dx = 
0 

to 
- -(la - 3 . 

7.6.4. On all chords (parallel to one and the same direction) of 
a circle of radius R symmetrical parabolic segments of the same 
altitude h are constructed. The planes of the segments are perpen­
dicular to the plane of the circle. 

Find the volume of the solid thus obtained (Fig. 89). 

h ff 
' c ' 

10 
x 

I J; 
I _.JI,. a 

2 2 
Fig. 89 Fig. 90 

Solution. First compute the area of the parabolic segment with 
base a and altitude h. If we arrange the axes of coordinates as 
indicated in Fig. 90, then the equation of the parabola will be 
y=ax2 +h. 

Determine the parameter a. Substituting the coordinates of the 
. (a ) 0 a2 h 4/J point B 2 , 0 . we get =a 4 + h, w enct· a= - ai; hence the 

equation of the parabola is y= -~x2 +h. and the desired area a 
a o 
2 2 

S = 2 5 y dx = 2 5 ( - ~ x2 + h) dx = ~ah. 
0 0 

Now find the volume of the solid. If the axes of coordinates are 
arranged as indicated in Fig. 89, then in the section of the solid 
by a plane perpendicular to the x-axis at the point with abscissa x 

2 
we obtain a parabolic segment of area S = 3 ah, where a= 2y = 

= 21/ R2 -x2 • Hence, 
R R 

S (x) = j-V R2 -x2 hand V = 5 S (x) dx= ~ h 5 VR2-x2 dx = ~ nhR2 • 

-R 0 
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7.6.5. The plane of a moving triangle remains perpendicular to 
the fixed diameter of a circle of radius a: the base of the triangle 
is a chord of the circle, and its vertex lies on a straight line pa­
rallel to the fixed diameter at a distance h from the plane of the 
circle. Find the volume of the solid generated by the movement 
of this triangle from one end of the diameter to the other. 

7 .6.6. Compute the volume of the solid generated by revolving 
about the x-axis the area bounded by the axes of coordinates and 

I I I 

the parabola x'i + y2 =a'i · 
Solution. Let us find the points of intersection of the curve and 

the axes of coordinates: at x = 0 y =a, at y = 0 x =a. Thus, we 
have the interval of integration [O, a]. 

( 1 1 )2 
From the equation of the parabolawegety= a2-x2 ;there­

fore 
a a 1 14 a 31 

V = n 5 y2 dx = n 5 (a 2 -x 2 ) dx = n 5 ( a 2 - 4a 2 x 2 + 6ax-
o 0 0 

t 3 ) I 
-4a2x2 +x2 dx= 15 J"ta 3 • 

7.6.7. The figure bounded by an arc of the sinusoid y=sin x, 
the axis of ordinates and the straight line y = l revolves about 
the y-axis (Fig. 91). 

8 

........ ~~~-+-....,_~__._--.x 
0 1/2 2 

Fig. 91 Fig. 92 

Compute the volume V of the solid of revolution thus generated. 
Solution. The inverse function x =arc sin y is considered on the 

interval [O, l). Therefore 

Y2 1 

V=:n 5 x2 dy=n 5 (arcsiny)2 dy. 
y, 0 
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Apply the substitution arc siny=t. Hence 

it 

2 

y=sin t, 
dy=cost dt, 

y I t 
o I o 
1 n/2 

And so, V = n S t2 cost dt. Integrating by parts, we get v = ll (ll:-8> . 

0 

7 .6.8. Compute the volume of the solid generated by revolving 
about the x-axis the figure bounded by the parabola y = 0.25x2 + 2 
and the straight line 5x-8y+ 14=0. 

Solution. The solid is obtained by revolving the area ABCA 
(Fig. 92) about the x-axis. To find the abscissas of the points A 
and B solve the system of equations: 

I 
{ Y=4x2 +2, 

5x-8y+ 14==0. 
I I 

Whence xA = 2 ; x8= 2. In our case y1 (x)= 4 x2 + 2 and y2 (x) = 
= (5/8)x+ 7/4. Hence, 

7 .6.9. Compute the volume of the solid generated by revolving 
about the y-axis the figure bounded by the parabolas y = x2 and 
8x=y2 • 

Solution. It is obvious that x2 (y) =VY~ x1 (y) = ~ on the in­

terval from the origin of the coordinates to the point of intersec­
tion of the parabolas (Fig. 93). Let us find the ordinates of the 
points of intersection of the parabolas by excluding x from the sy­
stem of equations: 

4 

S( y') 24 We obtain y1 = 0, y2 = 4. Hence, V = n y - 64 dy = 5 n. 
0 

7 .6.10. Compute the volume of the solid torus. The torus is a 
solid generated by revolving a circle of radius a about an axis 
lying in its plane at a distance b from the centre (b;:: a). (A tire, 
for example, has the form of the torus.) 
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7 .6.11. Compute the volume of the solid obtained by revolving 
about the x-axis the figure bounded by two branches of the curve 
(y-x)2 = x3 and the straight line x = 1. 

7 .6.12. Find the volume of the solid generated by revolving 
about the line y = - 2a the figure bounded by the parabola y 2 = 4ax 
and the straight line x =a (Fig. 94). 

!f 

Fig. 93 Fig. 94 

Solution. If we transfer the origin of coordinates into the point 
O' (0, -2a) retaining the direction of the axes, then in the new 
system of coordinates the equation 
of the parabola will be 

(y' - 2a)2 = 4ax. 

a a 

V = n S (y~ - yi) dx = n S [ (2a + 
0 0 

!f 
a B 

-a 
Fig. 95 

7.6.13. Findthevolumeofthesolid generated by revolving about 
the x-axis the figure enclosed by the astroid: x =a cos3 t; y =a sin3 t. 

Solution. The sought-for volume V is equal to double the volume 
obtained by revolving the figure OAB (Fig. 95). Therefore, 
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Change the variable 

x=acos3 t, 

Hence, 
0 

dx= - 3acos2 t sin t dt, 
y =a sin 3 t, 

x I t 

0 n/2 
a 0 

V = 2n S a 2 sin6 t ( -3a cos2 t sin t) dt = 
:re 
2 

~ 6na{ J sin' tdt-1 sin' t di l 
Using the formula from Problem 6.6.9 for computing the above 
integrals, we get 

V - 6na3 (~ x ~ x ~-~ X ~ x ± x !) = ~ na3 
- 7 5 3 9 7 5 3 105 . 

7.6.14. Compute the volume of the solid generated by revolving 
one arc of the cycloid x =a (t -sin t), y =a ( 1-cos t) about the 
x-axis 

7 .6.15. Compute the volume of the solid obtained by revolving 
about the polar axis the cardioid p=a(l +coscp) shown in Fig. 81. 

Solution. The sought-for volume represents the difference between 
the volumes generated by revolving the figures MN KLO and OKLO 
about the x-axis (which is th2 polar axis at the same time). 

As in the preceding problem. let us pass over to the parametric 
representation of the curve with the polar angle <p as the parameter: 

x = p cos <p =a cos <p ( l +cos <p), 
y =P sin <p =a sin cp (l +cos cp). 

It is obvious that the abscissa of the point M equals 2a (the value 
of x at <p = 0), the abscissa of the point K being the minimum of 
the function x=a(l+coscp)cos<p. 

Let us find this minimum: 

~;=-a sin q1 (1 +2 cos<p) =0, 

2 
<pt = O; <p2 = 3 n. 
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Hence, the sought-for volume is equal to 
2a 0 

V = n 5 Yi dx-n 5 y~ dx. 
a a 

-4 -4 

Changing the variable x=acoscp(l +coscp), we get 

x I cp 

-a/4 2n/3 
y2 = a2 ( 1 +cos cp)2 sin2 cp, 

x I cp 

-a/412n/3 
0 n 

dx = -a sin cp ( 1+2 cos cp) dcp, 
2a 0 

Thus, 
0 

V = :n 5 a 2 (1 +coscp)2 sin2 cp [-a sin cp (l + 2 coscp)] dcp-
2 
3n 

:n 

-ZT 5 a2 (l + coscp)2 sin2 cp [-a sin cp (1+2 cos cp)] dcp = 
2 
3:n 

:n 

=:na3 5 sin3 cp(l +coscp)2 (1 +2coscp)dcp= 
0 
I 
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= na3 5 (l-u2 ) (1 + u)2 ( 1+2u) du= f :na3 (u =coscp). 
-1 

7 .6.16. Compute the volume of the solid bounded by: 
x2 y2 z2 

(a) the hyperboloid of one sheet 2 +-b2 - 2 =1 and the pla-a c 

nes z = - 1 and z = I; 
(b) the parabolic cylinder z =4-y2 , the planes of coordinates 

and the plane x=a; 

(c) the elliptic paraboloid z = ;: + ~; and the plane z = k (k > 0). 

7.6.17. A wedge is cut off from a right circular cylinder of radius 
a by a plane passing through the diameter of the cylinder base and 
inclined at an angle a to the base. Find the volume of the wedge. 

7 .6.18. Compute the volume of the solid generated by revolving 
the figure bounded by the following lines: 

(a) xy=4, X= 1, x=4, y=O about the x-axis; 
(b) y=2x-x2 , y=O :about the x-axis; 
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(c) y=x3 , y=O, x=2 about the y-axis; 
(d) y = siil x (one wave), y = 0 about the x-axis; 
(e) x2 -y2 = 4, y = ± 2 about the y-axis; 
(f) (y-a) 2 =ax, x=O, y=2a about the x-axis. 

7 .6.19. Find the volume of the solid obtained by revolving the 
ax3-x4 

curve y2 = --2 - about the x-axis. a 

7 .6.20. Compute the volume of the solid generated by revolving 
about the x-axis the figure bounded by the lines y =sin x and 

2 
y=-X. :n: 

7 .6.21. Compute the volume of the solid generated by revolving 
about the x-axis the curvilinear trapezoid bounded by the catenary 

y= ~ (e~ +e- ~)=a cos h ~ and the straight lines x1 = - c, x2 = 

= c (c > 0). 
7 .6.22. Compute the volume of the solid generated by revolving 

about the x-axis the figure bounded by the cosine line y =cos x and 
9 

the parabola y = 2:n:2 x2 • 

7 .6.23. Compute the volume of the solid generated by revolving 
about the x-axis the figure bounded by the circle x2 + y2 = 1 and 

3 
the parabola y2 = 2 x. 

7 .6.24. On the curve y = x3 take two points A and B, whose 
abscissas are a= 1 and b=2, respectively. 

Find the volume of the solid generated by revolving the curvi­
linear trapezoid aABb about the x-axis. 

7 .6.25. An arc of the evolute of the ellipse x =a cost; y = b sin t 
situated in the first quadrant revolves about the x-axis 

Find the volume of the solid thus generated. 

7 .6.26. Compute the volume of the solid generated by revolving 
( (I) the region enclosed by the loop of the curve x = at2 , y =a t --i"-

about the x-axis. 

7 .6.27. Compute the volumes of the solids generated by revolv­
ing the region enclosed by the lemniscate (x2 + y2 ) 2 = a2 (x2 -y2) 
about the x- and y-axes. 

7 .6.28. Compute the volume of the solid generated by revolving 
the region enclosed by the curve p =a cos2 cp about the polar axis. 
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§ 7.7. The Arc Length of a Plane Curve in Rectangular 
Coordinates 

If a plane curve is given by the equation y = y (x) and the 
derivative y' (x) is continuous, then the length of an arc of this 
curve is expressed by the integral 

b 

[ = ~ v 1 + lj 12 dX 
a 

where a and b are the abscissas of the end-points of the given arc. 

7 .7 .1. Compute the length of the arc of the !f M(4,8} 
semicubical parabola y2 = x3 between the points 
(0, 0) and (4, 8) (Fig. 96). 

Solution. The function y (x) is defined for 
x ~ 0. Since the given points lie in the first qu­

a 
adrant, y=x T. Hence, 

y' = ; Vx and V 1 + y' 2 = l/ 1 + ~ x. 

Consequently, Fig. 96 

4 3 4 

l = S Y 1 + ! x dx = : · ; ( 1 + ~ x) 2 1 = :7 ( 10V10 - 1 ). 
0 0 

7 .7 .2. Compute the length of the arc cut off from the curve 

y2 = x3 by the straight line X= -} . 

7 .7 .3. Compute the arc length of the curve y =In cos x between 

the points with the abscissas x = 0, x = ~ . 

Solution. Since y' = - tan x, then V 1+y'2 =V1 + tan2 x =sec x. 

Hence, 
n n 
T T ~ 

1= S secxdx=lntan( ~+~)I =lntan3 · 
0 0 

ex +1 
7 .7.4. Compute the arc length of the curve y =In ex_ 1 from 

x1 =a to x2 = b (b >a). 
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7.7.5. Find the arc length of the curve x={y2 - ~ lny between 

the points with the ordinates y = l and y = 2. 

Solution. Here it is convenient to adopt y as the independent 
variable; then 

, I I d v-1 -,2 _ .. /(_1_----r-)2 _ I I 
x =-2-Y-2y an +x - V 2Y+2y -2Y+2y· 

Hence, 

2 2 2 

7.7.6. Find the length of the astroid x3 + y3 = a3. 

Solution. As is known, the astroid is symmetrical about the axes 
of coordinates and the bisectors of the coordinate angles. Therefore, 
it is sufficient to compute the arc length of the astroid between 
the bisector y= x and the x-axis and multiply the result by 8. 

3 

In the first quadrant y= (a+ -x+ )2 and y=O at x=a, y=x 
a 

at t"=-,1-. 
~ ' 

Further, 

and 

V I + y 12 = { l + x - ~ (a ~ -x ~ ) = ( ~ ) T . 
Conseq Ut'.ntly, 

a I I 

l=8 ~ aTx-3 dx=6a. 
a 

2 •;, 

Note. If we compute the arc length of an astroid situated in 
the first quadrant, we get the integral 

a I I 

~ aTx-3 dx, 
0 

whose integrand increases infinitely as x --+ 0. 
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7.7.7. Compute the length of the path OABCO consisting of por­
tions of the curves y2 =2x3 and x2 +y2 =20 (Fig. 97). 

Solution. It is sufficient to compute the arc lengths li5A and /.AB 
since by symmetry of the figure about the 
x-axis 

/=2(/0A+/AB)· 

Solving the system of equations 

{ x2 + y2 = 20, 
y2 = 2xa, 

we find the point A (2, 4). 
Find liJA. Here 

3 

y =JI 2 x 2, y' = 

3 v­= 2 2x, 

Hence, 
2 

!f 

4 

D 

Fig. 97 

l iJA = \ -{ 1 + ; x dx = 2~ ( 10 VTO - 1 ) . 
b 

B 
2V5 JJ 

Since on the circle of radius v20 l AB is the length of an arc cor­
responding to the central angle arc tan 2, 

/AB= V 20 arc tan 2. 

Finally we have 

l = : 7 (10 VTO- 1) + 4 V5 arc tan 2. 

7.7.8. Compute the arc length of the curve: 
x~ 

(a) y = 2 - 1 cut off by the x-axis; 

(b) y =Jn (2 cos x) between the adjacent points of intersection with 
the x-axis. 

(c) 3y2 =x(x-l)2 between the adjacent points of intersection 
with the x-axis (half the loop length). 

7.7.9. Compute the arc length of the curve 

y = { l x V x2 - 1 - In (x + V x2 - 1)] 

between 
x= 1 and x=a+ 1. 



348 Ch. VII. Applications of the Definite Integral 

7.7.10. Find the arc length of the path consisting of portions of 
the curves x2 = (y + 1 )3 and y = 4. 

§ 7.8. The Arc Length of a Curive Represented 
Parametrically 

If a curve is given by the equations in the parametric form x=x(t), 
y = y (t) and the derivatives x' (t), y' (t) are continuous on the in­
terval [t1 , t2], then the arc length of the curve is expressed by the 
integral ,. 

l = ~ V x'2 (t) + y'2 (t) dt, 
t, 

where t1 and t2 are the values of the parameter t corresponding to 
the end-points of the arc (t1 < t2). 

7 .8.1. Compute the arc length of the involute of a circle x = 
=a(cost+tsint), y=a(sint-tcost) from t=O to t=2n. 

Solution. Differentiating with respect to t, we obtain 

x; =at cost, y; =at sin t, 

whence V xi 2 + y? =at. Hence, 
2n 

l = S at dt = a~2 j;n = 2an2 • 

0 

7 .8.2. Find the length of one arc of the cycloid: 

x=a(t-sint), y=a(l-cost). 

7.8.3. Compute the length of the astroid: x=acos3 t, y=asin3 t. 
Solution. Differentiating with respect to t, we obtain 

xi= -3a cos2 t sin t; 
Yi= 3a sin2 t cost. 

Hence 

V x?+ y?= V9a2 sin2 t cos2 t =3a I sin t cost I= ~al sin2t j. 

Since the function Ism 2t I has a period ~ , 
n 
2 

l = 4 X 32a S sin 2t dt = 6a. 
0 

Note. If we forget that we have to take the arithmetic value of 
the root and put V x? + y? = 3a sin t cost, we shall obtain the wrong 
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result, since 
2:rt 

3a S sin t cost dt = 3; sin2 t 1:n = 0. 
0 

7.8.4. Compute the length of the loop of the curve x= V3t 2 , 

y= t-t 3 • 

Solution. Let us find the limits of integration. Both functions 
x(t) and y (t) are defined for all values of t. Since the function 
x = Jl3t2 ~ 0, the curve lies in the right half-plane. Since with a 
change in sign of the parameter t, x (t) remains unchanged, while 
y (t) changes sign, the curve is symmetrical about the x-axis. Furth­
ermore, the function x(t) takes 
on one and the same value not 
more than twice. Hence, it follows 
that the points of self-intersection 
of the curve lie on the x-axis. i.e., o :r: 
at y = 0 (Fig. 98). 

The direction in which the mo-
ving point M (x, y) runs along the Fig. 98 
curve as t changes from - oo to oo 
is indicated by the arrows. 

But y=O at t1 =0, t 2 , 3 =±1. Since x(t2 )=x(t3 )=V3, the point 
(V3, 0) is the only point of self-intersection of the curve. Conse­
quently, we must integrate within the limits t 2 = -1 and t3 = 1. 

Differentiating the parametric equations of the curve with respect 
to t, we get x; = 2 V3t, y/ = l -3t2 , whence 

V xt2 + y? = 1 + 3t2• 

Consequently, 
I 

l = ~ (1 + 3t2) dt = 4. 
-1 

t6 t4 
7.8.5. Compute the arc length of the curve x= 6 , y = 2- 4 

between the points of intersection with the axes of coordinates. 
x2 y2 

7.8.6. Compute the arc length of the ellipse a2 +/j2= I. 
Solution. Let us pass over to the parametric representation of the 

ellipse 
x=acost, y=bsint, O~t~2n. 

Differentiating with respect to t, we obtain 

xi= - a sin t; yi = b cost, 
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whence 

V x; 2 + y? = V a2 sin2 t + b2 cos2 t = a V- I - e2 cos2 t 
where e is the eccentricity of the ellipse, 

c JI a2-b2 
e=-= . a a 

Thus 
:re 

2:rc 2 

l =a ~ JI l -c:2 cos2 t dt = 4a ~ V l -e2 cos2 t dt. 
0 0 
t 

The integral ~VI -e2 cos2 t dt is not taken in elementary func­
o 

tions; it is called the elliptic integral of the second kind. Putting 

t = ~ -•, we reduce the integral to the standard form: 
:re :re 
2 2 

~ Vl-e2 cos2 t dt = ~ Vl-e2 sin2 TdT= E (e), 
0 0 

where E (e) is the notation for the so-called complete elliptic inte­
gral of the second kind. 

Consequently, for the arc length ol an ellipse the formula 
I= 4aE (c:) holds good. 

It is usual practice to put e= sin a and to use the tables of va­
lues for the function 

£ 1 (a)= £ 1 (arcsine)= E (e). 

For instance, if a= 10 and b = 6, then 

JI 102 -62 • 0 e = 10 = 0.8 = sm 53 . 

Using the table of values of elliptic integrals of the second kind, 
we find l = 40£1 (53°) = 40 x 1.2776 ~ 51.1. 

7.8.7. Compute the arc length of the curve 

t 
x = t 2 , y =y (t 2 -3) 

between the points of intersection with the x-axis. 

7 .8.8. Find the arc length of the cardioid: 

x = a ( 2 cos t -- cos 2 t), 
y =a (2 sin t -sin 2t). 
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7.8.9. Find the length of the closed curve 

x = 4112 a sin t; 11= a sin 2!. 

7.8.10. Find the arc length of the evolute of the ellipse 

c2 c2 
X=-COS3 t, y=--sin3 t C2 =a2 -b2 • 

a b ' 

7 .8. l I. Compute the arc length of the curve 

x = (t2- 2) sin t + 2t cost, 

y = (2- t 2 ) cost+ 2t sin t 

betwPen t 1 = 0 and t2 =:rt. 

7.8.12. On the cycloid x=a(t-sint); y=a(l-cost) find the 
point which divides the length of the first arc of the cycloid in 
the ratio 1 :3. 

§ 7.9. The Arc Length of a Curve in Polar Coordinates 

If a smooth curve is given by the equation p =P (cp) in polar 
coordinates, then the arc length of the curve is expressed by the 
integral: 

qi, 

l = ~ { p2 + p~2 dcp, 
(j), 

where cp1 and cp2 are the values of the polar angle rp at t hE' end­
points of the arc (cp1 < cp2). 

7.9.1. Find the length of the first turn of the spiral ol Archi­
medes p = acp. 

Solution. The first turn of the spiral is tormed as the µola1 angle 
cp changes from 0 to 2n. Therefore 

2n 2n 

l = ~ V a2cp2 + a2 dc:p = a ~ V cp2 + l dcp = 
0 0 

=a [:rt V 4:rt2 + 1 + + Jn (2n + V 4n 2 + I) 1 . 
7 .9.2. Find the length of the logarithmic spira I p = aem'f between 

a certain poid (p0, cp0) and a moving point (p, cp). 
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Solution. In this case (no matter which of the magnitudes, p or 
p0 , is greater!) 

l = If V a2e2m'f + a2m2e2m'f dqi I = 

(jJ 

-- \ .r1+m2 =a VI+ m2 em-rdqi =a " I em~-em~ol= 
" m 

= VI+m2 I - I= vr+m2 I d I m P Po nz P , 

i. e. the length of the logarithmic spiral is proportional to the 
increment of the polar radius of the arc. 

7.9.3. Find the arc length of the cardioid p=a(I+cosqi) 
(a > 0, 0 ~ qi~ 2n). 

Solution. Here p~ =-a sin qi, 

v p'' + p2 = V2a2 (I+ cos qi)= v-4a-2-CO_S_2 -(qi-/2-) = 
!p 

=2alcos( /2)1={ 2acos(qi/2), O~qi~n 
qi -2a cos (qi/2), n ~qi~ 2n. 

Hence, by virtue of symmetry 
2n n 

l = 2a S j cos : J dqi = 4a S cos ~ dqi = 8a. 
0 0 

7 .9.4. Find the length of the lemniscate p2 = 2a2 cos 2qi between 
the right-hand vertex corresponding to qi= 0 and any point with a 

n 
polar angle qi < 4 . 

Solution. If 0 ~qi< T, then cos 2qi > 0. Therefore 

p=a V2cos2qi; p~= a V2sin2q>, 
Vcos 2q> ' 

VP2+p''= l/_2_a_2_(_c_o_s-2qi_+_si-n2_2_q>_) a V2 . 
!p cos 2q> v cos 2<p 

Hence, 
!p !p 

1-a 2 =a 2 . -s dq> v-s dq> - V Ycos2q> VI-2sin2q> 
0 0 

The latter integral is called the elliptic integral of the first kind. 
It can be reduced to a form convenient for computing with the 
aid of special tables. 
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7.9.5. Find the arc length of the curve p =a sins j . 
7.9.6. Compute the length of the segment of the straight line 

p = a sec ( cp - ~ ) between cp = 0 and cp = ~ . 

Solution. p~=asec ( cp- ~) tan ( cp-~); 

V p2 + p~ =a sec ( cp- ~) l/ 1 + tan2 ( cp- ~)=a sec2 (qi-~) . 

(The sign of the modulus in the function sec ( cp- ~) is omitted, 

since on the interval [ 0, ~ J this function !I 
is positive.) p=asin~!J 

:rt 

r ( 1t) 4 ¥3 l=a 1 sec2 cp-3 dcp =-3-a. 
'o 

7 .9. 7. Find the length of the closed 

curve p=asin4 ~. 

Solution. Since the function p = asin4 : 

is even, the given curve is symmetrical about 

the polar axis. Since the function sin4 : has 
Fig. 99 

a period fa, during half the period from 0 to 2n the polar radius 
increases from 0 to a, and will describe half the curve by virtue 
of its symmetry (Fig. 99). 

Further, P~'=asin 3 (cp/4)cos(cp/4) and 

V p2 + p~2 = V a2 sin8 ( cp/4) + a2 sin6 ( cp/4) cos2 ( cp/4) =a sin3 (cp/4), 
if 0 ~ cp ~ 2n. 

Hence, 
2.'t :rr/2 

l = 2a S sin3 (cp/4) dcp = 8a S sins t dt = 1
3
6 a (cp = 4t). 

0 0 

7.9.8. Find the length of the curve cp=f <P+ l/p) between p=2 

and p=4. 
Solution. The differential of the arc di is equal to 

dl = v p2 + p~ dcp = v p2 dcp2 + dp2 = v,r p2 ( :: ) 2 -f i dp. 
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From the equation of the curve we find :~ =f ( 1- : 2 ). Hence, 
4 4 

l = s v P2 . + ( 1-:2) 2 + 1 dp = s ll ~ ( p2 - 2 + pl2 + 4) dp = 
2 2 

4 

-= ~-s l/ (r + ~ r dp=f (~2+lnp)1: =3+ 1~2. 
2 

7 .9.9. Find the length of the hyperbolic spiral pqi = 1 between 
3 4 

qi1 = 4 and qi2 = 3 . 

7.9.10. Compute the length of the closed curve p=2a(sinqi+coscp). 

7.9.11. Compute the arc length of the curve p= i+P from 
COS(j) 

§ 7.10. Area of Surface of Re'Oolution 

The area of the surface generated by revolving about the x-axis 
the arc L of the curve y = y (x) (a~ x ~ b) is expressed by the 
integral 

b 

P = 2n ~ y V 1 + y' 2 dx. 
a 

It is more convenient to write this integral in the form P = 2n ~ ydl, 
L 

where di is the differential of the arc length. 
If a curve is represented parametrically or in polar coordinates, 

then it is sufficient to change the variable in the above formula, 
expressing appropriately the differential of the arc length (see §§ 7 .8 
and 7.9). 

7 .10.1. Find the area of the surface formed by revolving the 
2 2 2 

astroid xs+ya=as about the x-axis. 
Solution. Differentiating the equation of the astroid we get 

2 _...!_ 2 _2_ I 

3 x 3 -l--3 y 3 y = 0, 
whence 

...!... 
3 

Y, __ !f_ 
- 1 • 

xs 
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Then, V 1 + y'2 =-. r 1 + y ! = ·a+..!.. . Since the astrnid is sym-

JI xa lxla 
metrical about the y-axis, in computing the area of the surface we 
may first assume x ~ 0, and then double the result. In other words, 
the desired area P is equal to 

Make the substitution 
2 2 

as -xs =t2, 
2 _..!.. 

-3X 3 dx=2tdt, 

1 al/3 

Then P = 12na3 5 t' dt = ~2 na2 • 

0 

x 1 t 
1 

0 a 3 

a 0 

7 .10.2. Find the area of the surface generated 
the x-axis a closed contour OABCO formed 
by the curves y = x2 and x = y2 (Fig. 100). 9 

Solution. It is easy to check that the 1 
given parabolas intersect at the points 0 
(0, 0) and B (1, I). The sought-for area 
P = P1 + P2 , where the area P1 is formed 
by revolving the arc OCB, and P 2 by revol­
ving the arc OAB. 

by revolving about 

Compute the area P1 • From the equation 
I -,,.fli""""'------'--- ... 

1 ;-::- o· 1 ... x=y2 we get y=v x and y'= 2 Yx. 
Hence, Fig. 100 

Now compute the area P2 • We have y= x2, y' = 2x and 

I 

P2 = 2n ~ x2 Vt+ 4x2 dx. 
0 
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The substitution x =-} sinh t, dx = ~ cosh t dt gives 
Arsinh 2 

P.,. = ~ S sinh2 t cosh2 tdt =;; ( +sinh 4t-t) 1:rslnh 2 = 
0 

9 Y5n I ( v-) =-16--32 nln 2+ 5 . 

Thus, 

P=P1+P2= (5~-l)n + 9~5n 3~nln(2+V'5)= 

= 67 !:n -i In (2+ V5)- ~ . 
7 .10.3. Compute the area of the surface generated by revolving: 

(a) the portion of the curve y = ~2 
, cut off by the straight line 

y = ~ , about the y-axis; 

(b) the portion of the curve y2 = 4 + x, cut off by the straight 
line x= 2, about the x-axis. 

7 .10.4. Find the surface area of the ellipsoid formed by revolving 
x2 y2 

the ellipse az+b2= 1 about the x-axis (a> b). 
Solution. Solving the equation of the ellipse with respect to y 

for y ~ 0, we get 
bv-- I b X u=a: a2-x2; y =-a:· Ya2 x2; 

V·--,2 - /a""""'4,---(,_a2,,__-_..,..,b2"""") """""'x2 
1 +Y - J a2 (a2-x2) ' 

Hence 
a 

S b v-- va'-(a2-b2)x2 P = 2n - a2 - x2 2 ( 2 2) dx = a a a -x 
-a 

a 

= 4:b SVa2-e2x2dx=2nab (VI= e2+arc;ine)' 

0 

where the quantity e= ya2a2 b2 = ~ is the eccentricity of the 

ellipse. 
When b-+ a the eccentricity e tends to zero and 

1• arcsine 
1m---

e - 0 B 
1' 

since the ellipse turns into a circle, in the limit we get the surface 
area of the sphere: 
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7 .10.5. Compute the area of the surface obtained by revolving 
the ellipse 4x2 + y2 = 4 about the y-axis. 

7 .10.6. An arc of the catenary 

a ( .!.... -.!....) x y = 2 ea + e a =a cosh a ' 
whose end-points have abscissas 0 and x, respectively, revolves about 
the x-axis. 

Show that the surface area P and the volume V of the solid thµs 

generated are related by the formula P = 2V • 
a 

Solution. Since y' = sinh !.... , we have VI+ y' 2 =cash~. Therefore 
a a 

x x x 

P = 2n Sy V l + y' 2 dx = 2an S cosh2 ~ dx = ! n S a2 cosh2 ~ dx, 
0 0 0 

but 

2V 
hence, P =-. 

a 

x x 

:rr S a2 cosh2 ; dx = n S y2 dx = V, 
0 0 

7.10.7. Find the area of the surface obtained by revolving a loop 
of the curve 9ax2 = y (3a-y)2 about the y-axis. 

Solution. The loop is described by a moving point as y changes 
from 0 to 3a. Differentiate with respect to y both sides of the 
equation of the curve: 

l8axx' = (3a-y)2 -2y (3a-y) = 3 (3a-y) (a-y), 

whence xx'= (3a-~a(a-y). Using the formula for computing the 

area of the surface of a solid of revolution about the y-axis, we have 
Y2 112 

P=2n S xVI+x'2 dy=2n S Vx2 +(xx')2 dy= 
lJ1 IJ. 

3a 3a 

= 2n r -. / y (3a- y)2 + (3a-y)2 (a-y)2 d = ~ s (3a2 + 2a -.l V 9a 36a2 Y 3a Y 
6 0 

-y2 ) dy = 3na2 • 

7 .10.8. Compute the area of the surface generated by revolving 
the curve 8y2 = x2 -x4 about the x-axis. 

7 .10 .. 9. Compute the area of a surface generated by revolving 

about the x-axis an arc of the curve X= t2 ; y = ~ (t2 -3) between 

the points of intersection of the curve and the x-axis. 
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Solution. Putting y = 0, find t1 =0 and t2 , 3 = ±V3, and, hence, 
x1 =0 and x2 , 3 = 3. Whence it follows that the curve intersects 
with the x-axis at two points: (0, 0) and (3, 0). When the para­
meter t changes sign, the sign of the function (x) t remains unchan-

ged, and the function y (t) changes 
g its sign, which means that the curve 
1 is symmetrical about the x-axis 

(Fig. 101). 
-l.--l-1:...t---l+i-__:~:___-~ :c To find the area of the surface it 

is sufficient to confine ourselves to 
the lower portion of the curve OnB 

-f that corresponds to the variation 
of the parameter between 0 and 

Fig. 101 + V3. Differentiating with respect 
to t, we find 

xi =2t; Yt = t 2 - l 
and the linear element 

dl = Vx?+y; 2 dt =<I+ t2 )dt. 
Hence, 

t, 

P =2n ~I y(t) IV x?+u?dt = 
t, 
Y3 Y3 

=2tt s - ~ (t2 -3)(l+t2)dt=- ~ 3"t s (t 5-2t3 -3t)dt=3tt. 
0 0 

7.10.10. Compute the surface area of the torus generated by re­
volving the circle x2 + (y-b)2 = r2 (0 < r < b) about the x-axis. 

Solution. Let us represent the equation of the circle in parametric 
form: x= r cost; y=b+r sin t. 

Hence 
xi =-r sin t; yi =rcost. 

The desired area is 
2:rt 

P= 2n ~ (b+r sin t) V<- r sin t)2 +(r cost)2 dt = 
0 

2:rt 

= 2nr ~ (b + r sin t) dt = 4n2br. 
0 

7 .10.11. Compute the area of the surface formed by revolving 
the lemniscate p =a V cos 2qi about the polar axis. 

Solution. Real values for p are obtained for cos 2qi ~ 0, i. e. for 

- ~ ~ qi~ ~ (the right-hand branch of the lemniscate), or for 

! n ~ qi~ ! n (the left-hand branch of the lemniscate). 
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The linear element of the lemniscate is equal to 

di V 2 + ,2 d y 2 2 + ( a sin 2cp )2 d adcp = p p qi = a cos qi .r qi = .r · 
f cos 2cp f cos 2cp 

Besides, y = p sin qi= a sin qi V cos 2qi. 
The sought-for surface area P is equal to double the area of the 

surface generated by revolving the right-hand branch. Therefore 
1! 

4 

P=2x2nSydl =4na2 S YCOS2"CPsincpdcp 2na2 (2-V2). 
y cos 2cp 

L o 

7.10.12. Compute the area of the surface formed by revolving 
about the straight line x+y=a the quarter of the circle x2 +y2 =a2 

between A (a, 0) and B (0, a). 
Solution. Find the distance MN from the moving point M (x, y). 

lying on the circle x2 + y2 = a2 , to the straight line x + y =a: 

Ix+ Ya2-x2-a I x+ Y a2 x2-a 
MN= Y2 = V2 • 

since for the points of the circle that lie in the first quadrant 
x+ y ;;::=a. Further, 

di = V 1 + y'2 dx = .. / 1 + ( x . )2 dx = a dx . JI ya2-x2 ya2-x2 

Hence, 
a 

P= 2n . = J• x+ Va2 -x2 -a adx 
V2 ya2-x2 

0 

= V2 na [- Va2 -x2 +x-aarc sin :J: = ~~ (4-n). 

7.10.13. Compute the area of 
the surf ace formed by revolving 
one branch of the lemniscate p = 
=a V cos 2qi about the straight line _ 

:n: 
qi=4· 

Solution. From the triangle OMN 
(Fig. 102) we find the distance MN 

B :c 

Fig. 102 

of an arbitrary point M of the right-hand branch from the 

axis of revolution qi=~ : 

MN = p sin ( ~ - qi) =a V cos 2cp sin ( ~ - qi) ; 
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then 
dl = a dqi • v cos 2qi 

11/ 4 

Therefore P = 2n S aV cos 2qi sin (~-qi) Va dqi = 2na2 • 
cos 2cp 

-1!/ 4 

7 .10.14. Compute the area of the surface formed by revolving 
3 

about the x-axis the arc of the curve y=; between X=-2 and 

x=2. 

7.10.15. Compute the area of the surface generated by revolving 
one half-wave of the curve y =sin x about the x-axis. 

7 .10.16. Compute the area of the surface generated by revolving 
about the y-axis the arc of the parabola x2 = 4ay between the points 
<'lf intersection of the curve and the straight line y = 3a. 

7.10.17. Find the area d the surface formed by revolving about 
the x-axis the arc of the curve x = e1 sin t; y = e1 cost between 

:rt t =0 and t = 2 . 
7.10.18. Compute the area of the surface obtained by revolving 

[3 [2 
about the x-axis the arc of the curve x= 3 ; y=4-2 between 

the points of its intersection with the axes of coordinates. 

7 .10.19. Compute the area of the surface generated by revolving 
the curve p = 2a sin qi about the polar axis. 

7 .10.20. Compute the area of the surface formed by revolving 
about the x-axis the cardioid 

x =a (2 cost-cos 2t), 
y =a (2 sin t-sin 2t). 

§ 7.11. Geometrical Applications of the Definite Integral 

7.11.1. Given: the cycloid (Fig. 103) 

x=a(t-sint); y=a(l-cost); O~t~2n. 

Compute: 
(a) the areas of the surfaces formed by revolving the arc OBA 

abowt the x- and y-axes; 
(b) the volumes of the solids generated by revolving the figure OBAO 

about the y-axis and the axis BC; 
(c) the area of the surface generated by revolving the arc BA 

about the axis BC; 
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(d) the volume of the solid generated by revolving the figure 
ODBEABO about the tangent line DE touching the figure at the 

(e) the area of the surface formed by JJ B £ 
vertex B; t= 
revolving the arc of the cycloid [see I ~ 
item (d)J. \J 

Solution. (a) When revolving about ... :c 
the x-axis the arc OBA generates a sur- 0 c A 
face of area Fig. 103 

2:7t 

P" = 2n j' y dl = 2n S a ( 1- cost) 2a sin ~ dt = 
L o 

2:n: 

=8a2n s111 3 -dt =--S . t 64.rta2 
2 3 

When revolving about the y-axis the arc OBA generates a sur­
face of area ,., 

Py= 2n S xdl = 4na2 J (t-sin t) sin f dt + 
L o 

2:n: 2:n: 

+4na2 J (t-sin t) sin~ dt =4na2 J (t-5in t) sin~ dt = 16n2a2 • 

:7t 0 

(b) When revolving about the y-axis the figure OBAO generates 
a solid of volume 

2a 2a 2a 

v y = :rt ~ ( x~ - xn dy = :rt ~ x: dy-n ~ x~ dy. 
0 0 0 

where x=x1 (y) is the equation of the curve BA, and x=x2 (y) is 
the equation of the curve OB. 

Making the substitution y =a (1-cos t), take into consideration 
that for the first integral t varies between 2n and n, and for the 
second integral between 0 and n. Consequently, 

rr :n: 

Vy= n ~ a2 (t-sin t)2 a sin t dt-n ~ a2 (t-sin t)2 a sm t dt = 
~ 0 

0 

= na3 ~ (t-sin t) 2 sin t dt = 

=Jla3 [f t 2 sintdt 2~f t(l-cos2t)dt+f sin3 tdt]=6:rt 3a3 • 

_ 27 2n 2a 

for computing the volume of the solid obtained by revolving 
the figure OBAO about the axis BC it is convenient first to trans-
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fer the origin into the point C, which yields the following equa­
tions in the new system of coordinates 

x'=a(t-n-sint); y'=a(l-cost). 

Taking into account only the arc BA, we get 
2a n 

V=:rt ~ x'2 dy'=:rta3 ~ (t-n-sint)2 sintdt. 
O 2n 

Putting t-n=z, we obtain 
0 n 

V = - :rta3 ~ (z +sin z)2 sin z dz= :rta3 ~ (z +sin z)2 sin z dz= 
n o 

lla3 
=5 (9:rt2-}6). 

(c) Making the above-indicated shift of the origin, we get 

dl=2asin ~ ldtl=-2asin ~ dt. 
Therefore 

2a ll 

P=.f 2nxdl=-4na2 S (t-:rt-sint)sin ~ dt= 
0 2ll 

n 

=4:rta2 .f (z+sinz)cos; dz=4(2n-~) :rta2 • 

0 

(d) Transferring the origin into the point B and changing the 
direction of the y-axis, we get 

x'=a(t-n-sint), y'=a(l+cost). 

Putting t-:rt = z, we have 

x' =a (z +sin z), y' =a (I -cos z), 

z changing from -:rt to :rt for the arc OBA. Hence 
ll 

V=:rt ~ a3 (l-cosz)2(l+cosz)dz=:rt2a8 • 

-ll 
n ll 

(e) P=2:rt J ydl=4:rta2 S (1-cosz)cos ~dz =¥na2. 
-ll -ll 

7 .11._2. Find the volume of the solid bounded by the surfaces 
z2 =8 (2-x) and x2 + y2 = 2x. 

Solution. The first surface is a parabolic cylinder with generat­
rices parallel to the y-axis and the directrix z2 =8 (2-x) in the 
plane xOz, and the second is a circular cylinder with generatrices 
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parallel to the z-axis and the directrix x2 + y2 = 2x in the plane xOy. 
2 

The volume V is computed by the formula V = ~ S (x) dx. S (x) re­
o 

presents the area of a triangle whose base is equal to 2y and alti­
tude to 2z: 

S (x) =2y x2z = 4 V2x-x2 Jl8 (2-x). 
Hence, 

2 2 

V= ~ 4 Vx(2-x)8(2-x)dx=4 V8 ~ (2-x)Vx dx = 
0 0 

=4 V8 (~2 Vxa-~ V x&) 12 =256 
3 5 0 15 • 

7 .11.3. Prove that if the figure S is bounded by a simple con­
vex contour and is situated between the ordinates y1 and y2 (Fig. 104), 
then the volume of the solid ge- !I 
nerated by revolving this figure 
about the x-axis can be expressed !lz i-------==---
by the formula B 

y, !----''---+---~ 

V= 2n ~ yhdy, 
y, 

where 
h = X2 (y)-X1 (y), 

x = x1 (y) being the equation of the !11 

left portion of the contour and ~-----------,3- :c 
x = x2 (y) that of the right portion. O 

Solution. Let the generating fig- Fig. 104 
ure S be bounded by a simple 
convex contour and contained between the ordinates y1 and y2 • 

Subdivide the interval [y1, y2 ] into parts and pass through the 
points of division straight lines parallel to the axis of revolution, 
thus cutting the figure S into horizontal strips. Single out one 
strip and replace it by the rectangle ABCD, whose lower base is 
equal to the chord AD= h specified by the ordinate y, its altitude 
AB being equal to !J.y. The solid generated by revolving the rectangle 
ABCD about the x-axis is a hollow cylinder whose volume may 
be approximately taken for the element of volume 

!J.V ~ n (y + !J.y)2 h-ny2h = 2ny!J.yh + nh (!J.y)2 • 

Rejecting the infinitesimal of the second order with respect b !J.y, 
we get the principal part or the differential of volume 

dV =2ll yhdy. 

Knowing the differential of the volume, we get the volume proper 
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through integration: 
y, 

v =2:rt ~ yhdy. 
y, 

Thus, we obtain one more formula for computing the volume of 
the solid of revolution. 

7 .11.4. The planar region bounded by the parabola y = 2x2 + 3, 
the x-axis and the verticals x = 0 and x = 1 revolves about the 
y-axis. Compute the volume of the solid of revolution thus generated. 

Solution. Divide the area of the figure into elementary strips by 
straight lines parallel to the y-axis. The volume ~V of the elemen­
tary cylinder generated by revolving one strip is 

~V =:rt (x+ ~x)2 y-:rt x2 y = 2:rt xy ~x+ ny (~x)2 , 

where ~x is the width of the strip. 
Neglecting the infinitesimal of the second order with respect to ~x. 

we get the differential of the desired volume 

dV = 2rr. xy dx. 
Hence 

1 1 

V = ~ 2:rt xy dx = 2:rt ~ x (2x2 + 3) dx = 4:rt. 
0 0 

7.11.5. Compute the area of the portion of the cylinder surface 
z x2 + y2 =ax situated inside the 

sphere 
x2 + y2 + z2 = a2. 

Solution. The genera trices of the 
cylinder are parallel to the z-axis, 

the circle ( x- ~) 2 + y2 = ~2 
serving as directrix (Fig. 105 

'f--t--ttttttttr--r-~--:c shows a quarter of the sought­
for surf ace). 

Subdivide the portion of the 
circle shown in Fig. 105 into 
small arcs ~l. The generatrices 

!I passing through the points of di-
Fig. 105 vision cut the cylinder surface 

into strips. H _ infinitesimals of 
higher order are neglected, the area of the strip ABCD is equal to 
CD·~l. 

If p and cp are the polar coordinates of the point D, then 
p=acoscp and CD==V-a2 -p2 =asincp, and ~l=a·~qi. whence we 
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find the element of area: 

Hence, 
dP = a2 sin cp dcp. 

JI 

2 

P = 4 ~ a2 sin cp dcp o== 4a2 • 

0 

7.11.6. Find the area of the surface cut off from a right circular 
cylinder by a plane passing through the diameter of the base and 
inclined at an angle of 45° to z 
the base. 

Solution. Let the cylinder axis 
be the z-axis, and the given dia­
meter the x-axis. Then the equa­
tion of the cylindrical surface 
will be x2 + y2 = a2 , and that of 
the plane forming an angle of 45° 
with the coordinate plane xOy 
will be y=z. 

The area of the infinitely nar- x 
row strip ABCD (see Fig. 106) will 
be dP = zdl (accurate to infinite­

B 

Fig. 106 

c 

simals of a higher order), where dl is the length of the elemen­
tary arc of the circumference of the base. 

Introducing polar coordinates, we get 

z = y =a sin cp; dl =a dcp. 

Hence dP = a2 sin cp dcp and 
:rt 

P = a2 ~ sin cp dcp = a2 [-cos cp ]~ = 2a2 • 

0 

7.ll.7. The axes of two circular cylinders with equal bases inter­
sect at right angles. Compute the surface area of the solid constitu­
ting the part common to both cylinders. 

7. l 1.8. Compute the volume of the solid generated by revolving 
about the y-axis the figure bounded by the parabola x2 = y- 1, the 
axis of abscissas and the straight lines x = 0 and x = 1. 

7.11.9. Find the area S of the ellipse given by the equation 
Ax2 +2Bxy+Cy2 =1 (o=AC-B 2 > O; c > 0). 

Solution. Solving the equation with respect to y, we get 

-Bx-Vc=7Jii. -Bx+ Vc=bx2 
Yi= c • Y2 c= c • 

where the values of x must satisfy the inequality 
C-6x2 :;;:::o. 
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Solving this inequality, we obtain the limits of integration: 

-ll~~X~l/~. 
Consequently, the sought-for area is equal to 

-(~ f~ 
S = S (y2-y1) dx= ~ S VC-6x2 dx = Vif. 

-f ~ 0 

7 .11.10. Find the areas of the figures bounded by the curves rep­
resented parametrically: 

(a) X=2t-t 2; y=2t 2-t3; 

12 t (1-t2) 
(b) X = I + t2 ; Y = I + t2 

7 .11.11. Find the areas of the figures bounded by the curves given 
in polar coordinates: 

(a) p=asin3qi (a three-leaved rose); 

( b) p = I - :os cp [ ~ ~ qi ~ ~ ] ; 

(c) p =3 sin qi and p = V3 cos qi. 

7.11.12. Find the arc length of the curve y2 = .! (2--x)3 cut off 
9 

by the straight line x=-1. 
7.11.13. Find the length of the arc OA of the curve 

a2 
y=a ln-2--2 , a -x 

wher-e 0 (0, O); A ( ~ , a In : ) . 

2 
7.11.14. Compute the arc length of the curve y2 = 3 (x-1}3con-

tained inside the parabola y2 = ~ . 

7.11.15. Prove that the length of the ellipse 

x = V2 sin t; y= cost 
is equal to the wavelength of the sinusoid y =sin x. 

I 
7 .11.16. Prove that the arc of the parabola y = 2P x2 correspon-

ding to the interval 0 ~ x ~a has the same length as the arc of 
the spiral p=Pqi corresponding to the interval O~p~a. 

7.11.17. Find the ratio of the area enclosed by the loop of the 

curve y = + ( +- x) Vx to the area of a circle the circumference 

of which is equal to the length of the contour of this curve. 
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7.11.18. Find the volume of the segment cut off from the ellipti-
y2 z2 

cal paraboloid 2P + 2q = x by the plane x =a. 

7.11.19. Compute the volume of the solid bounded by the hyper-
xz y2 z2 

boloid 2 +2 - 2 = -1 and the planes z =C and Z= l > c. a o c 

7.11.20. Find the volume of the right elliptical cone whose base 
is an ellipse with semi-axes a and b, its altitude being equal to h. 

7.11.21. Find the volume of the solid generated by revolving 
about the x-axis the figure bounded by the straight lines y = x + I; 
y=2x+ I and x=2. 

7.11.22. Find the volume of the solid generated by revolving 
x2 y2 

about the x-axis the figure bounded by the hyperbola a2 - b2 = I, 

the straight line 2ay-bx=0 and tht' axis of abscissas. 

7.11.23. Find the volume of the solid generated by revolving the 
curve p =a cos2 qi about the polar axis. 

7 .11.24. Find the areas of the surfaces generated by revolving the 
following curves: 

(a) y=tanx(o~x~:) about the x-axis; 

(b) y=x ( ~ (O~x~a) about the x-axis; 

(c) x2 + y2 -2rx = 0 about the x-axis between 0 and h. 

§ 7.12. Computing Pressure, Work and Other Physical 
Quantities by the Definite Integrals 

I. To compute the force of liquid pressure we use Pascal's 
law, which states that the force of pressure of a liquid P on 
an area S at a depth of immersion h is P = yhS, where y is the 
specific weight of the liquid. 

II. If a variable force X = f (x) acts in the direction of the x-axis, 
then the work of this force over an interval [xtt x2 ] is expressed 
by the integral 

x, 

A=~ f (x) dx. 
x, 

Ill. The kinetic energy of a material point of mass m and velo­
city v is defined as 

mv2 

K=y· 
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IV. Electric charges repulse each other with a force F = e;~2 , 

where e1 and e2 are the values of the charges, and r is the distance 
between them. 

Note. When solving practical problems we assume that all the 
data are expressed in one and the same system of units and omit 
the dimensions of the corresponding quantities. 

7 .12. I. Compute the force of pressure experienced by a vertical 
triangle with base b and altitude h submerged base downwards in 
water so that its vertex touches the surface of the water. 

Solution. Introduce a system of coordinates as indicated ii;i Fig. 107 
and consider a horizontal strip of thickness dx located at an arbi­
trary depth x. 

Assuming this strip to be a rectangle, find the differential of area 
dS =MN dx. From the similarity of the triangles BMN and ABC 

MN x h ~ 
we have -b-=h' whence MN=h and dS=hdx. 

0 

c 

Fig. 107 Fig. 108 

The force of pressure experienced by this strip is equal to dP =xdS 
accurate to infinitesimals of higher order (taking into consideration 
that the specific weight of water is unity). Consequently, the entire 
force of water pressure experienced by the triangle is equal to 

h h 
• b r• I 

P = j x dS = h .\ x2 dx = 3 bh2 • 

0 II 

7.12.2. Find the force of pressure experienced by a semicircle of 
radius R submerged vertically in a liquid so that its diameter is 
flush with the liquid surface (the specific weight of the liquid is y). 

7 .12.3. A vertical dam has the form of a trapezoid whose upper 
base is 70 m Jong, the lower one 50 m, and the altitude 20 m. 
Find the force of water pressure experienced by the dam (Fig. 108). 

Solution. The differential (dS) of area of the hatched figure is 
approximately equal to dS =MN dx. Taking into consideration the 
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similarity of the triangles OML and OAE, we find ~OL = 20
2-;;-x; 

whence ML=20-x, MN=20-x+50=70-x. Thus, dS=MNx 
xdx= (70-x)dx and the differential of the force of water pressure is 
equal to 

dP = xdS = x (70-x) dx. 

Integrating with respect to x from 0 to 20, we get 
20 
~ l 

P = .\ (70x-x2 )dx= 11.333 3 . 
0 

7.12.4. Calculate the work performed in pumping the water out 
of a semispherical boiler of radius R. 

7.12.5. A rectangular vessel is filled with equal volumes of water 
and oi I; water is twice as t:eavy as oil. Show that the force of pres-
sure of the mixture on the wall will 0 z 
reduce by one fifth if the water is ;i.- !f 
replaced by oil. 

Solution. Let h be the depth of 
the vessel and l the length of the h 1---------t 
wall. Let us introduce a system of 2 
coordinates as shown in Fig. 109. x -------.... 
Since the oil is situated above the 
water and occupies the upper half of h J 
the vessel, the force of the oil pres- I 
sure experienced by the upper half m 
of the wall is equal to Fig. 109 

h 
2 

l s lh2 P,=2 xl dx=nr. 
0 

The pressure at a depth x > ~ is made up of the pressure of the 

oil column of height ~ and that of the water column of height 
h x - 2 , and therefore 

dP 2 = [ ~ x -} + ( x - ~ ) J l dx = ( x - ~ ) l dx. 

Consequently, the force of pressure of the mixture on the lower half 
of the wa II is 

h 

i' 2 = \' l ( x - ~ ) dx = 1~2 
• 

h 
2 
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The entire pressure of the mixture on the wall is equal to 

/h2 [h2 5 
p =pl+ p2 =4+T6=T6 lh2 • 

If the vessel were filled only with oil, the force of pressure Pon 
the same wall would be 

Hence, 
· I I 

P-P=T6lh2 = 5 P. 

7.12.6. The electric charge E concentrated at the origin of coor­
dinates repulses the charge e from the point (a, 0) to the point (b, 0). 
Find the work A of the repulsive force F. 

Solution. The differential of the work of the force over displace­
e£ 

ment dx is dA=Fdx= 2 dx. x 
Hence 

/) 

\ dx (I I\ A =eE 2 =eE --- J. 
• X Q b I 

a 

eE As b-+ oo the work A tends to - . 
a 

7.12.7. Calculate the work performed in launching a rocket of 
weight P from the ground vertically upwards to a height h. 

Solution. Let us denote the force of attraction of the rocket by 
the Earth by F, the mass of the rocket by mR, and the mass of 
the Earth by mE. According to Newton's law 

F-kmRmE 
- x2 , 

where x is the distance between the rocket and the centre of the 

Earth. Putting kmRmE=K, we get F(x)= ~, R~x~h+R, 
R being the radius of the Earth. At x= R the force F (R) will be 

the weight of the rocket P, i.e. F (R) = P = ~2 , whence K = P R2 

PR 2 
and F (x) = - 2- • 

x 
Thus, the differential of the work is 

PR 2 
dA = F (x) dx = X2dx. 
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Integrating, we obtain 
R+h R+h 

A = 5 F (x) dx = P R2 5 ~~ = : ~hh . 
R R 

The limit lim A (h) = lim RP+R~ =PR is equal to the work performed 
h- al h- (Z) 

by the rocket engine to achieve complete escape of the rocket from 
the Earth's gravity field (the Earth's motion is neglected). 

7 .12.8. Calculate the work that has to be done to stop an iron 
sphere of radius R rotating about its diameter with an angular ve­
locity ffi. 

Solution. The amount of required work is equal to the kinetic 
energy of the sphere. To calculate this energy divide the sphere 
into concentric hollow cylinders of thickness dx; the velocity of the 
points of such a cylinder of radius x is ffiX. 

The element of volume of such a cylinder is dV = 4nx V R2 -x2 dx, 
the element of mass dM=vdV, where'\' is the density of iron, and 
the differential of kinetic energy dK = 2Jt'\'ffi2X3 V R2 -x2 dx. 

Hence, 
R 

5 4nyRa w2R2 Mw2R2 
K=2nvffi2 x3VR2 -x2 dx=-3- • - 5-=-5-. 

0 

7 .12.9. Calculate the kinetic energy of a disk of mass M and ra­
dius R rotating with an angular velocity ffi about an axis passing: 
through its centre perpendicular to its plane. 

7 .12.10. Find the amount of heat released by an alternating si­
nu:soidal current 

I= / 11 sin (2; t-cp) 
during a cycle T in a conductor with resistance R. 

Solution. For direct current the amount of heat released during 
a unit time is determined by the Joule-Lenz law 

Q = 0.24 / 2R. 
For alternating current the differential of amount of heat is 

dQ=0.24/ 2 (t)Rdt, whence 
'• 

Q = 0.24R ~ 12 dt. 
t, 

In this case 
T 

Q = 0.24 Rn 5 sin 2 ( 
2; t - cp) dt = 

0 

sin c - t-cp 
[ 

. , ( 2n ) ] IT 
=0.I2RI~ t-;n ~ 0 =0.12RTI~. 
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7.12.11. Find the pressure of a liquid of specific weight don a 
vertical ellipse with axes 2a and 2b whose centre is submerged in 
the liquid to a level h (h ~ b). 

7.12.12. Find the pressure of a liquid of specific weight don the 
wall of a circular cylinder of base radius r and altitude h if the 
cylinder is full of liquid. 

7.12.13. Calculate the work performed to overcome the force of 
gravity in pumping the water out of a conical vessel with the vertex 
downwards; the radius of the cone base is R and its altitude is H. 

7.12.14. Compute the work required to stretch a spring by 6 cm, 
if a force of one kilogram is required to stretch it by 1 cm. 

§ 7.13. Computing Static Moments and Moments of 
Inertia. Determining Coordinates of the 
Centre of Gra'lJity 

In all problems of this paragraph we will assume that the mass 
is distributed uniformly in a body (linear, two- and three-dimensional) 
and that its density is equal to unity. 

1. For a plane curve L the static moments Mx and My about 
the x- and y-axis are expressed by the formulas 

Mx = ~ ydl, My=~ xdl. 
L L 

The moment of inertia about the origin of coordinates 

/ 0 =--= ~ (x2 + y2) di. 
L 

If the curve L is given by the explicit equation y = y (x) (a~ x ~ b), 
then di has to be replaced by V 1 + y' 2 dx in the above formulas. 

If the curve L is given by the parametric equations x = x (t), 
y = y (t) (t 1 ~ t ~ t 2), then dl should be replaced by V x'2 + y' 2 dt in 
these formulas. 

2. For the plane figure bounded by the curves y = y1 (x), y = y2 (x), 
y1 (x) ~ y2 (x) and the straight lines x =a, x = b (a~ x ~ b) the 
static moments are expressed by the formulas 

b h 

Mx =~ S (y:-yDdx; My= S x(y2-y1)dx. 
a a 

3. The centre of gravity of a plane curve has the following coor-
Mv Mx 

dinates: xc = l' Ye=-,-, where l is the length of the curve L. 



§ 7.13. Computing Static Moments and Moments of Inertia 373 

M 
The centre of gravity of a plane figure has the coordinates: xe = /• 

Ye=~', where S is the area of the figure. 

7.13.1. Find the static moment of the upper portion of the ellipse 

x2 1J2 
a·1 +Iii= l 

about the x-axis. 
Solution. For the ellipse 

ydl = y VI+ y' 2 dx = V y2 + (yy')" dx; 
b2 b" 

since y2 =b2 -li2x2 and yy'=-(ifx, we have 

Y dl = -. I b2 _!!:._ x2 + .!!_ x2 dx = .!!_ V a2 -e2x2 dx V a2 a4 a ' 

where e is the eccentricity of the ellipse, e = v~ 
a 

Integrating from -a to a, we find 
a a 

Mx=.!!_ \ Va2 -e2x2 dx= 2b5Va2 -e 2x2 dx= 
a u a 

-a 0 

= ~ (aVa 2 -e2a2 + ~2 arcsine) =b(b+'i- arcsinF). 

In the case of a circle, i. e. at a= b, we shall have Mx = 2a2 , 

. O d 1. arc sin e I smce e= an 1m --= . 
e ~ o e 

7.13.2. Find the moment of inertia of a rectangle with baseband 
altitude h about its base. 

Solution. Let us consider an elementary strip of width dy cut 
out from the rectangle and parallel to the base and situated at 
a distance y from it. The mass of the strip is equal to its area 
dS = b dy, the distances from all its points to the base being equal 
to y accurate to dy. Therefore, di x = by2 dy and 

h 

Ix = 5 by2 dy = b~l • 

0 

7 .13.3. Find the moment of inertia of an arc of the circle xz + yz = R 2 

lying in the first quadrant about the y-axis. 
7 .13.4. Calculate the moment of inertia about the y-axis of the 

figure bounded by the parabola y2 ~c 4ax and the straight line x, ·a. 
Solution. We have di x = x" dS, where dS is the area of a vertical 

strip situated at a distance x from the y-axis (Fig. 110): 

dS = 21 y I dx = 2 v· 4ax dx. 
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Hence, 
a a 5 

Ix= 5 4x2 Vax dx = 4 Va S x 2 dx = ~ a4 • 

0 0 

7 .13.5. In designing wooden girder bridges we often have to deal 
with logs flattened on two opposite sides. Figure 111 shows the 

X=a 

Fig. 110 

cross-section of such a log. Determine the 
moment of inertia of this cross-section 
about the horizontal centre line. 

!! 

__.... _______ ._...,,_a: 
0 x R 

Fig. 111 

Solution. Arrange the system of coordinates as is shown in the 
accompanying drawing. Then 

di x = y2 dS, where dS =MN dy = 2x dy = 2 V-R2-y2 dy. 
Whence 

h h 

lx=2 ~ y2VR2-y2dy=4 ~ y2VR2-.1;2dy. 
-h 0 

Substituting y = R sin t; dy = R cost dt; t 1 = O; t 2 =arc sin (h/R), 
wt ~et 

h arc sin (h/ R> 

lx=4 5 y~VR2 -y2 dy=4 5 R2sin 2 t·RcostRcostdt= 
a o 

arc sin (h/ R) arc sin (h/ Rl 

=4R4 5 sin2 t cos2 t dt = R4 
\ (1- cos 4t) dt = 

2 <I 

0 0 

R4 h h v---=T arc sin R+R (2h2-R2) R2-h2. 

When h= R, we obtain the moment of inertia of the circle 

about one of its diameters: Ix= l1~ 4 • 



§ 7.13. Computing Static Moments and Moments of Inertia 375 

7.13.6. Find the moment of inertia about the x-axis of the figure 
bounded by two parabolas with dimensions indicated in Fig. 112. 

Solution. Arrange the system of coordinates as shown in Fig. 112 
and write the equations of the para­
bolas. 

The equation of the left parabola is: 

y2 = ~: ( x+ ; ) , the equation of the 

right parabola, y2 = ~: ( ; - x). 
For the batched strip the moment b 

of inertia is 
dlx= y2 dS =y2 I MN ldy, 

where 

IM N I = X2 - X1 = 2 ( ; - ~~ y2 ) = 

Hence, 

_ 4a 2 
-a-b2 y. Fig. 112 

W2 ~2 

Ix = S y2 (a - !~ y2 ) dy = 2 S y2 (a - !~ y2) dy = a:~ . 
-~2 0 

7 .13.7. Find the static moments about the x- and y-axis of the 
arc of the parabola y2 = 2x between x = 0 and x = 2 (y > 0). 

7.13.8. Find the static moments about the axes of coordinates 

of the line segment : + ~ = 1 whose end-points lie on the coordi­

nate axes. 

7.13.9. Find the static moment about the x-axis of the arc of 

the curve y =cosx between x1 =- ~ and x2 = ~ . 

7 .13.10. Find the static moment about the x-axis of the figure 
bounded by the lint!s y = x2; y = Vx. 

7.13.11. Find the moments of inertia about the x- and y-axis of 

the triangle bounded by the lines x = 0, y = 0 and ~ + ~ = 1 (a> 0, 

b > 0). 
7.13.12. Find the moment of inertia of the trapezoid ABCD about 

its base AD if AD= a, BC= b and the altitude of the trapezoid 
is equal to h. 

7.13.13. Find the centre of gravity of the semicircle x2 + y2 =a2 

situated above the x-axis. 
Solution. Since the arc of the semicircle is symmetrical about the 

y-axis, the centre of gravity of the arc lies on the y-axis, i. e. Xe= 0. 
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To find the ordinate Ye• take advantage of the result of Problem 
7131·M-2 2·th f - 2a2

- 2a Th O 2a • • . x - a ' ere ore Ye - JIU - n . us, Xe= ' Ye= n. 
7.13.14. Find the coordinates of the centre of gravity of the ca­

tenary y = + (eX + e-x) = cosh x between A (0, 1) and B (a, cosh a). 

Solution. We have 

di= v I+ y'2 dx= Vl + sinh2 xdx =COSh xdx 

whence we find 
a 

l = ~ dl = ~ cosh x dx = sinh a. 
L 0 

Then 
a a 

MY= ~ x dl = ~ x cosh x dx = x sinh x I~ - ~ sinh x dx = 
L 0 0 

=a sinh a-cosh a+ I. 
Hence, 

asinha-(cosha-1) cosha-1 t ha 
Xe= sinha =a- sinha =a- an 2' 

Analogously, 
a a 

Mx =Sy dl = S cosh2 x dx = + S ( 1 + cosh 2x) dx = 
L 0 0 

= _!_ (x+ sinh 2x) la= ~+sinh 2a • 
2 2 0 2 4 • 

~+ sinh 2a 
2 4 a cash a 

Ye= sinha 2sinha+-2- · 

7.13.15. Find the centre of gravity of the first arc of the cycloid: 
x =a(t-sin t), y =a(l-cos t) (O~ t ~ 2n). 

Solution. The first arc of the cycloid is symmetrical about the 
straight line x = na, therefore the centre of gravity of the arc of 
the cycloid lies on this straight line and xe = na. Since the length 
of the first arc of the cycloid l = 8a, we have 

2n 2n 

Ye=+ S ydl= 8
1a2a2 S (I-cos t)sin ~ dt = ~ S sin3 ~ dt=: a. 

L 0 0 

7. ta.16. Determine the coordinates of the centre of gravity of the 
2 ! 2 

portion of the arc of the astroid x a+ ya= a~ situated in the first 
quadrant. 
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7 .13.17. Find the Cartesian coordinates of the centre of gravity of 
the arc of the cardioid p=a(l+coscp) between cp=O and cp=n. 

Solution. Let us represent the equation of the cardioid in para­
metric form: 

x = p cos cp = a (1 + cos cp) cos cp; 
y=psincp=a(l+coscp)sincp. 

As the parameter <p varies between 0 and n the running point describes 
the upper portion of the curve. Since the length of the entire car­
dioid equals 8a and 

di= V (x' ~) 2 + (y' '!')2 dcp = 2a cos ~' dcp (see Problem 7 .9.3), we have 

" 
= 2a S cos4 t sin ~ dcp = - ~ a cos5 ~ 1: = ~ a. 

0 

Analogously, 

" 
I (' I 5 Yc=4aj xdl =4a acoscp(l+coscp)2acos ~ dcp = 

L 0 

" ~ 

=a S cos qi cos3 ~ dcp =a S ( 2cos5 ~ - cos3 t) dcp. 
0 0 

Putting t = t we get (see Problem 6.6.9) 

" 2 r· 4. 2 2 4 
Ye= 2a j (2 cos" t-cos3 t) dt = 4ct 5.3-2a 3 = 5 a. 

0 

4a 
And so, Xc=Yc=5· 
It is interesting to note that the centre of gravity of the above­

considered half of the arc of the cardioid lies on the bisector of 
the first coordinate angle, though the arc itself is not symmetrical 
about this bisector. 

7 .13.18. Find the centre of gravity of the figure bounded by the 
ellipse 4x~ + 9y2 = 36 and the circle x 2 + y2 = 9 and situated in the 
first quadrant (Fig. 113). 
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Solution. Let us first calculate the static moments: 
3 3 

My= S x(y2-Y1)dx = J' x lV9-x2 - ~ V9-x2 ] dx = 
0 0 

3 

= ~ Jx V9-x2 dx=3; 
0 

3 3 

Mx = ~ S (y~-YD dx ={ .\' [<9-x2 ) - ! (9-x2) J dx = 
0 0 

!f 
3 

2 

3 

=i J ( 5- ~ x2 ) dx =5. 
0 

The area of a quarter of a circle of 

radius 3 is equal to 9
4:rc , and the area of a 

quarter of an ellipse with semi-axes a= 3 
1 3:rc 

-;o;-t------J.a-;~ x 
and b = 2 equa s 2 , therefore the area 

of the figure under consideration is 
Fig. 113 

Thus, 

S = 9:rc_ 3:rc= 3:rc 
4 2 4 . 

My 4 Mx 20 
Xc=s=n; Yc=s= 3:rc" 

7.rn.19. Find the centre of gravity of the figure bounded by the 
I I I 

parabola x 2 + y 2 = a 2 and the axes of coordinates. 

7 .13.20. Find the Cartesian coordinates of the centre of gravity 
of the figure enclosed by the curve p =a cos3 qi (a > 0). 

Solution. Since p ~ 0 in all cases, the given curve is traced 

when qi changes from - ~ to ~ . By virtue of evenness of the fun­

ction cos qi it is symmetrical about the polar axis and passes through 

the origin of coordinates at qi=+ ~. 

Compute the area S of the figure obtained: 

11 11 

2 2 
I 5 S 1 x3x5 :re 5 S = 2 x 2 p2 dqi = a2 cos6 qi dqi = a 2 2x 4x 6 x 2 = 32 na2 • 

0 0 
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Now arrange the axes of coordinates as shown in Fig. 114. Then 
the parametric equations of the curve are 

x= p cos cp = acos4 cp; 

y= p sin qi= a sin cp cos3qi. 

The centre of gravity of the figure lies on the x-axis, i.e. Ye= 0 
by virtue of symmetry about the x-axis. Finally, determine xe: 

saa ( 1 x3x5x7x9 
= (5/32) na2 2x4x6x8x 10 

lx3x5x7x9Xll)n 21 
2X4X6X8XIOX12 2=40a. 

Fig. 114 Fig. 115 

7.13.21. Find the coordinates of the centre of gravity of the 

figure bounded by the straight line y = ~ x and the sinusoid 

y= sin x (x ~ 0) (Fig. 115). 

Solution. The straight line y = _! x and the sine line y =sin x inter­n 

sect at the points (0, 0) and (-i-, 1) . The area of the figure 

bounded by these lines is 

:rt 

2 

S ( 2 ) 4-n S= sinx-n-x dx=-4-. 

0 
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Hence, 
n 
2 
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2 :rt2 2 
J_ 5 ( sin2 x - ~ x2) dx n 

x = 0 =-2-5 (sin2 x-_i_x2 ) dx= e 4-:rt 4-:rt n2 
-4- 0 

n 
2 

_ 2 [ I sin 2x 4 aJ I n • 
-4-:rt 2x--4--3n2 X =6(4-n)' 

0 
n 
2 

5 x (sin x- ! x) dx ~ 
0 4 5 . d Ye= 4 _n = 4 -n xsmx x-

-4- 0 

n 
2 

- 8 5x2dx=-4__ n~ = 12-nz 
n (4-n) 4- n 3 (4-n) 12-3n" 

0 

7.13.22. Prove the following theorems (Guldin's theorems). 
Theorem 1. The area of a surface obtained by revolving an arc 

of a plane curve about some axis lying in the plane of the curve and 
not intersecting it is equal to the product of the length of the curve 
by the circumference of the circle described by the centre of gravity 
of the arc of the curve. 

Theorem 2. The volume of a solid obtained by revolving a plane 
figure about some axis lying in the piane of the figure and not 
intersecting it is equal to the product of the area of this figure by 
the circumference of the circle described by the centre of gravity of 
the figure. 

Proof. (1) Compare the formula for the area of the surface of 
revolution of the curve L about the x-axis (see § 7.10) 

P= 2n ~ ydl 
L 

with that for the ordinate of the centre of gravity of this curve 

Ye= ~x=+ 5 ydl. 
L 

Hence we conclude that 
P = 2n lye= l·2nye, 

where l is the length of the revolving arc, and 2nye is the length 
of a circle of radius Ye• i.e. the length of the circle dt!scribed by 
the centre of gravity when revolving about the x-axis. 
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(2) Compare the formula for the volume of a solid generated 
by revolving a plane figure about the x-axis (see § 7.6) 

b 

v = n ~ (yi-yD dx 
a 

with that for the ordinate of the centre of gravity of this figure 
h 

Ye= ~x = 2
1
5 S (yi-yi) dx. 

a 
Hence we conclude that 

V=n-2Syc=S-2nye 

where S is the area of the revolving figure, and 2nyc is the length 
of the circumference described by the centre of gravity when revol­
ving about the x-axis. 

7.13.23. Using the first Guldin theorem, find the centre of gra­
vity of a semicircle of radius a. 

Solution. Arrange the coordinate axes as shown in Fig. 116. By 
virtue of symmetry xc = 0. Now it remains to find Ye· If the semi-
circle revolves about the x-axis, then !J 
the surface P of the solid of revo-
lution is equal to 4na2 , and the 
arc length l = na. Therefore, accor- C 
ding to the first Guldin theorem, 

4na2 = na · 2nye; Ye= 2 !!:.. • 
:rt 

7.13.24. Using the second Gul-
din theorem, find the coordinates 
of the centre of gravity of the 

-a 
-L-----1-----'----- x 

0 
Fig. 116 

figure bounded by the x-axis and one arc of the cycloid: x- = 
=a(t-sint); y=a(l-cost). 

Solution. By virtue of the symmetry of the figure about the 
straight line x = na its centre of gravity lies on this straight line; 
hence, xe = na. 

The volume V obtained by revolving this figure about the x-axis 
is equal to 5n2a3 (see Problem 7.6.14), the area S of the figure 
being equal to 3na2 (see Problem 7.4.3). Using the second Guldin 
theorem, we get 

V 5:n:2a3 5a 
Ye= 2:rtS = 2:rt· 3:rta2 = 6' 

7.13.25. An equilateral triangle with side a revolves about an 
axis parallel to the base and situated at a distance b >a from the base. 

Find the volume of the solid of revolution. 
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Solution. There are two possible ways of arranging the triangle 
with respect to the axis of revolution which are shown in Fig. 117, 
a and b. 

The altitude of the equilateral triangle is h = a ~3 , the area 

S= a
2r3 . The centre of gravity O' is situated at the point of 

intersection of the medians and at a distance of b-a ~3 from the 

axis of revolution in the first cas:, and b+ a~3 in the second. 

y y 

c 
(a} (IJ) 

c 
Fig. 117 

By the second Guldin theorem 

V =2:rca2 Jl3 (b- aV3) =n (a2bV3 -~) 
1 4 6 2 4 ' 

v2 = 2:rca:V3 (b+ a~3) = n ( a2br3 + ~3). 
7.13.26. Find the centre of gravity of the arc of a circle of radius 

R subtending a central angle 2a.. 
7.13.27. Find the centre of gravity of the figure bounded by 

the arc of the cosine line y =cos x between x = - ~ and x = ~ and 

the straight line y=-}. 
7 .13.28. Find the coordinates of the centre of gravity of the 

figure enclosed by line y2 = ax3 - x4 • 

7 .13.29. Find the Cartesian coordinates of the centre of gravity 

of the arc of the logarithmic spiral p = ae~ from <p1 = ; to <p2 = n. 

7 .13.30. A regular hexagon with side a revolves about one of 
its sides. Find the volume of the solid of revolution thus generated. 

7.13.31. Using Guldin's theorem, find the centre of gravity of 
a semicircle of radius R. 
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§ 7.14. Additional Problems 

7 .14.1. Find the area of the portion of the figure bounded by 
the curves ym = xn and yn = xm (m and n positive integers) situated 
in the first quadrant. Consider the area of the entire figure depen­
ding on whether the numbers m and n are even or odd. 

7 .14.2. (a) Prove that the area of the curvilinear trapezoid 
bounded by the x-axis, straight lines x=a, x=b and parabola 
y = Ax3 + Bx2 + Cx + D can be computed using Chebyshev's formula 

S=b--;a [Y Ctb-;f b-;a)+Y Ctb)+Y (atb + ;f b 2 a)]. 
(b) Prove that an analogous area for a parabola of the fifth order 

y=f (x) = Ax5 + Bx4 +Cx3 + Dx2 + Ex+F 

can be computed using the Gauss formula 

S=b 9 a [st (atb-y~b 2 a)+Bt(atb) + 

+st(atb + l/~ b-;a)J 

7 .14.3. Show that the area of a figure bounded by any two ra­
dius vectors of the logarithmic spiral p = aem< and its arc is pro­
portional to the difference of the squares of these radii. 

7.14.4. Prove that if two solids contained between parallel pla­
nes P and Q possess the property that on being cut by any plane 
R parallel to these planes equivalent figures are obtained in 
their section, then the volumes of these solids are equal (Cava­
lieri's principle). 

7.14.5. Prove that if the function S(x) (O~x~h) expressing 
the area of the section of a solid by a plane perpendicular to the 
x-axis is a polynomial of a degree not higher than three, then the 

volume of this solid is equal to V= ~ [s(0)+4S ( ~) +s (h)J. 

Using this formula, deduce formulas for computing the volume of 
a sphere, spherical segments of two and one bases, cone, frustrum 
of a cone, ellipsoid, and paraboloid of revolution. 

7 .14.6. Prove that the volume of a solid generated by revolving 
about the y-axis the figure a~ x ~ b, 0 ~ y ~ y (x), where y (x) is 
a single-valued continuous function, is equal to 

b 

V = 2:rt ~ xy (x) dx. 
a 
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7 .14.7. Prove that the volume of the solid formed by revolving, 
about the polar axis, a figure 0 ~a~ qi~~~ n, 0 ~ p ~ p (qi), 
is equal to 

0 

V = 2
3n 5 p3 (qi) sin qi dqi. 

a 

7. 14.8. Prove that the arc length of the curve given by the pa­
rametric equations 

x = f" ( t) cos t + f' (t) sin t, 

y = - f" (t) sin t + f' (t) cost 

is equal to [f(t)+f"(t)J::. 
7. 14.9. Find the arc length of the curve represented parametri­

cally 
I -5 cos z d X- -Z- Z, 

I 

I 

\ 
sinz y= -dz 

L z 
I 

between the origin and the nearest point from the vertical tan­
gent line. 

7. 14. 10. Deduce the formula for the arc length in polar coor­
dinates proceeding from the definition without passing over from 
Cartesian coordinates to polar ones. 

7.14.11. Prove that the arc length l(x) of the catenary y= 
= cosh x measured from the point (0, 1) is expressed by the for­
mula l (x) =sinh x and find parnmetric equations of this line, 
using the arc length as the parameter. 

7.14.12. A flexible thread is suspended at the points A and B 
located at one and the same height. The distance between the 
points is AB =2b, the deflection of the thread is f. Assuming the sus­
pended thread to be a parabola, show that the length of the thread 

( 2 f 2 ) l = 2b 1 + 3 iJ:l 

at a sufficiently small ~ . 

7.14.13. Find the ratio of the area enclosed by the loop of the 

curve y =+( f-x) Vx to the area of the circle, whose circum­

ference is equal in length to the contour of the curve. 

7.14.14. Compute the length of the arc formed by the intersection 
of the parabolic cylinder 

(y+ z) 2 = 4ax 



§ 7.14. Additional Problems 

and the elliptic cone 
; x2+y2-z2=0, 

between the origin and the point M (x, y, z). 

7.14.15. Prove that the area of the ellipse 

Ax2 +2Bxy+Cy2 +2Dx+2Ey+F =0 (AC-82 > 0) 

is equal to 
ABD 

where ~ = B C E . 
DEF 
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7.14.16. Find: (a) the area S of the figure bounded by the hy­
perbola x~-y2 =I, the positive part of the x-axis and the radius 
vector connecting the origin of coordinates and the point M (x, y) 
lying on this hyperbola. 

(b) The area of the circular sector Q bounded by the x-axis and 
the radius drawn from the centre to the point N (x, y) lying on 
the circle x2 + y2 == I. Prove that the coordinates of the points M 
and N are expressed respectively through the areas S and Q by 
the formulas 

x111 =cosh2S, y111 =sinh2S, xN=cos2Q, YN=sin2Q. 

7.14.17. Using Guldin's theorem, prove that the centre of gra­
vity of a triangle is one third of the altitude distant from its base. 

7 .14.18. Let 6 be the abscissa of the centre of gravity of a cur­
vilinear trapezoid bounded by the continuous curve y=f(x), the 
x-axis and the straight lines x '-'-a and x ~= b. Prove the validity 
of the following equality: 

b h 

~ (ax+ b) {(x) dx =(as+ b) ~ f (x)dx 
a a 

(Vereshchagin's rule). 

7.14.19. Let a curvilinear sector be bounded by two radius vec­
tors and a continuous curve p = f (cp). Prove that the coordinates 
of the centre of gravity of this sector are expressed by the follow­
ing formulas: 

tp, 

~ p3 cos cp dcp 

x =~<p'-"-'----
L' 3 "'' 

~ p2 dcp 
<p, 

"'' ~ p3 sin cp dcp 
2 <p I 

Ye = 3 -'-'-<r-.---

~ p2 dcp 
<p, 
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7 .14.20. Prove that the Cartesian coordinates of the centre of 
gravity of an arc of the curve p = f (cp) are expressed by the fol­
lowing formulas: 

<p, 

~ p cos 1' v p2 + p'2 drp 

Xe ='Pt 'Pt 

~ v p2+p'2drp 

'Pt 

'Pt 

~ p sin qi Jfp2+p'ldqi 

Ye = ---'<p'-'-'------­
<p, 

~ yp2 + p'2 drp 
cp, 


