Exercise 5A

Q. 1. Evaluate: (i) i¹⁹ (ii) i⁶² (ii) i³⁷³. **Answer :** We all know that $i = \sqrt{(-1)}$. And $i^{4n} = 1$ i^{4n+1} = i (where n is any positive integer) i⁴ⁿ⁺²_-1 i⁴ⁿ⁺³= -1 So, (i) L.H.S = i^{19} _ i^{4×4+3} _ i⁴ⁿ⁺³ Since it is of the form $\overset{i^{4n+3}}{\overset{}{}}$ so the solution would be simply – iHence the value of i^{19} is -i. (ii) $L.H.S = i^{62}$ $\Rightarrow i^{4 \times 15 + 2}$ $\Rightarrow i^{4n+2} \Rightarrow i^2 = -1$ so it is of the form i^{4n+2} so its solution would be -1

(iii) L.H.S. =
$$i^{373}$$

 $\Rightarrow i^{4 \times 93+1}$
 $\Rightarrow i^{4n+1}$

⇒i

So, it is of the form of i^{4n+1} so the solution would be i.

Q. 2. Evaluate:

(i)
$$(\sqrt{-1})^{192}$$

(ii) $(\sqrt{-1})^{93}$
(ii) $(\sqrt{-1})^{30}$
(iii) $(\sqrt{-1})^{30}$.

Answer : Since i =
$$\sqrt{-1}$$
 so

(i) L.H.S. =
$$\left(\sqrt{-1}\right)^{192}$$

 $\Rightarrow i^{192}$
 $\Rightarrow i^{4\times 48} = 1$

Since it is of the form i^{4n} = 1 so the solution would be 1

(ii) L.H.S.=
$$(\sqrt{-1})^{93}$$

 $\Rightarrow i^{4 \times 23 + 1}$
 $\Rightarrow i^{4n+1}$
 $\Rightarrow i^{1} = i$

Since it is of the form of i^{4n+1} = i so the solution would be simply i.

(iii) L.H.S = $\left(\sqrt{-1}\right)^{30}$ $\Rightarrow i^{4 \times 7 + 2}$ $\Rightarrow i^{4n+2}$ $\Rightarrow i^2 = -1$ Since it is of the form i^{4n+2} so the solution would be -1 Q. 3. Evaluate: (i) i⁻⁵⁰ (ii) i⁻⁹ (ii) i⁻¹³¹. Answer : (i) $L.H.S. = i^{-50}$ $\Rightarrow i^{-4 \times 13 + 2}$ $\Rightarrow i^{4n+2}$ ⇒ -1 Since it is of the form i^{4n+2} so the solution would be -1 (ii) L. H. S. = i^{-9} $\Rightarrow i^{-4 \times 3+3}$ $\Rightarrow i^{4n+3}$ $\Rightarrow i^3 = -i$ Since it is of the form of i^{4n+3} so the solution would be simply -i. (iii) L.H.S. = i^{-131}

$$\Rightarrow i^{-4 \times 33+1}$$
$$\Rightarrow i^{4n+1}$$
$$\Rightarrow i^{1} = i$$

Since it is of the form $i^{4n+1}. \ \mbox{so the solution would be } i$

Q. 4. Evaluate:

(i)
$$\left(i^{41} + \frac{1}{i^{71}}\right)$$

(i) $\left(i^{53} + \frac{1}{i^{53}}\right)$

Answer :

$$(i) \left(i^{41} + \frac{1}{i^{71}} \right)_{=i^{41} + i^{-71}}$$

$$\Rightarrow i^{4 \times 10 + 1} + i^{-4 \times 18 + 1} \text{ (Since } i^{4n + 1} = i)$$

$$\Rightarrow i^{1} + i^{1}$$

$$\Rightarrow _{2i}$$
Hence, $\left(i^{41} + \frac{1}{i^{71}} \right)_{=2i}$

$$(ii) \left(i^{53} + \frac{1}{i^{53}} \right)$$

 $\Rightarrow i^{53}+i^{-53}$

$$\Rightarrow i^{4 \times 13 + 1} + i^{-4 \times 14 + 3} \text{ (Since } i^{4n+1} = i$$

$$\Rightarrow i^{1} + i^{3} i^{4n+3} = -1)$$

$$\Rightarrow 0$$
Hence,
$$\left(i^{53} + \frac{1}{i^{53}}\right)_{=0}$$

- Q. 5. Prove that $1 + i^2 + i^4 + i^6 = 0$
- **Answer :** L.H.S.= $1 + i^2 + i^4 + i^6$
- To Prove: $1 + i^2 + i^4 + i^6 = 0$

$$\Rightarrow$$
 1 + (-1) +1 + i^2

Since, $i^{4n} = 1$

(Where n is any positive integer)

 $\Rightarrow i^{4n+2}$

 \Rightarrow $i^2 = -1$

⇒₁₊₋₁₊₁₊₋₁₌₀

 \Rightarrow L.H.S = R.H.S

Hence proved.

Q. 6. Prove that $6i^{50} + 5i^{33} - 2i^{15} + 6i^{48} = 7i$.

Answer : Given: $6i^{50} + 5i^{33} - 2i^{15} + 6i^{48}$

To prove: $6i^{50} + 5i^{33} - 2i^{15} + 6i^{48} = 7i$

$$\Rightarrow$$
 6i^{4×12+2} + 5i^{4×8+1} – 2i^{4×3+3} + 6i^{4×12}

 \Rightarrow -6+5i+2i+6

 \Rightarrow 7i

$$\Rightarrow$$
 L.H.S = R.H.S

Hence proved.

Q. 7. Prove that
$$\frac{1}{i} - \frac{1}{i^2} + \frac{1}{i^3} - \frac{1}{i^4} = 0$$

Answer :

 $\frac{1}{i} - \frac{1}{i^{2}} + \frac{1}{i^{3}} - \frac{1}{i^{4}}$ Given: $\frac{1}{i} - \frac{1}{i^{2}} + \frac{1}{i^{3}} - \frac{1}{i^{4}} = 0.$ $\Rightarrow L.H.S. = i^{-1} - i^{-2} + i^{-3} - i^{-4}$ $\Rightarrow i^{-4\times 1+3} - i^{-4\times 1+2} + i^{-4\times 1+3} - i^{-4\times 1}$ Since $i^{4n} = 1$ $\Rightarrow i^{4n+1} = i$ $\Rightarrow i^{4n+2} = -1$ $\Rightarrow i^{4n+3} = -1$ So, $\Rightarrow i^{1} - i^{2} + i^{3} - 1$

$$\Rightarrow_{i+1-i-1}$$
$$\Rightarrow_0$$

 \Rightarrow L.H.S = R.H.S

Hence Proved

Q. 8. Prove that $(1 + i^{10} + i^{20} + i^{30})$ is a real number.

```
Answer : L.H.S = (1 + i^{10} + i^{20} + i^{30})

= (1 + i^{4 \times 2 + 2} + i^{4 \times 5} + i^{4 \times 7 + 2})

Since \Rightarrow i^{4n} = 1

\Rightarrow i^{4n+1} = i

\Rightarrow i^{4n+2} = -1

\Rightarrow i^{4n+3} = -1

= 1 + i^2 + 1 + i^2

= 1 + -1 + 1 + -1

= 0, which is a real no.
```

Hence, $(1 + i^{10} + i^{20} + i^{30})$ is a real number.

Q. 9. Prove that
$$\left\{i^{21} - \left(\frac{1}{i}\right)^{46}\right\}^2 = 2i$$

Answer : L.H.S.=
$$\left\{i^{21} - \left(\frac{1}{i}\right)^{46}\right\}^2$$

$$= \left\{ i^{4\times5+1} - i^{-4\times12+2} \right\}^{2}$$
Since $i^{4n} = 1$
 $i^{4n+1} = i$
 $i^{4n+2} = i^{2} = -1$
 $i^{4n+3} = i^{3} = -1$
 $= \left\{ i^{1} - i^{2} \right\}^{2}$
 $= \left\{ i + 1 \right\}^{2}$

Now, applying the formula $(a+b)^2 = a^2 + b^2 + 2ab$

$$= i^{2} + 1 + 2i$$
.
= -1 + 1 + 2i

= 2i

L.H.S = R.H.S

Hence proved.

Q. 10.
$$\left\{ i^{18} + \frac{1}{i^{25}} \right\}^3 = 2(1 - i).$$

Answer : L.H.S =
$$\left\{ i^{18} + \frac{1}{i^{25}} \right\}^3$$

$\Rightarrow \left\{ i^{4\times 4+2} + \ i^{-4\times 7+3} \right\}^3$
Since $i^{4n} = 1$
$i^{4n+1} = i$
$i^{4n+2} = -1$
$i^{4n+3} = -1$
$= \left\{ i^2 + i^3 \right\}^3$
$(-1-i)^{3}$.

Applying the formula $(a+b)^3 = a^3 + b^3 + 3ab(a+b)$

We have,

+ $3i^2 + 3i + 1$) i + 3 - 3i - 1 = 2(1-i)

L.H.S = R.H.S

Hence proved.

Q. 11. Prove that
$$(1 - i)^n \left(1 - \frac{1}{i}\right)^n = 2^n$$
 for all values of n N

$$= (1-i)^{n} (1+i)^{n}$$
Applying $a^{n}b^{n} = (ab)^{n}$

$$= ((1-i)(1+i))^{n}$$

$$= (1-i^{2})^{n}$$

$$= 2^{n}$$
L.H.S = R.H.S
Q. 12. Prove that $\sqrt{-16} + 3\sqrt{-25} + \sqrt{-36} - \sqrt{-625} = 0$.
Answer : L.H.S = $\sqrt{-16} + 3\sqrt{-25} + \sqrt{-36} - \sqrt{-625}$
Since we know that $i = \sqrt{-1}$.
So,

$$= \sqrt{16} + 3\sqrt{25} + \sqrt{36} - \sqrt{-625} = 0$$

Since, $i^{4n+3} = -1$

Answer : L.H.S =
$$(1 - i)^n \left(1 - \frac{1}{i}\right)^n$$

= $(1 - i)^n \left(1 - i^{-4*1+3}\right)^n$
= $(1 - i)^n \left(1 - i^3\right)^n$

=4i + 15i + 6i - 25i

= 0

L.H.S = R.H.S

Hence proved.

Q. 13. Prove that $(1 + i^2 + i^4 + i^6 + i^8 + ... + i^{20}) = 1$.

Answer : L.H.S = $(1 + i^2 + i^4 + i^6 + i^8 + ... + i^{20})$

$$\sum_{n=0}^{n=20} i^{n}$$

= 1 + -1 +1 + -1 + + 1

As there are 11 times 1 and 6 times it is with positive sign as $i^0 = 1$ as this is the extra term and there are 5 times 1 with negative sign.

So, these 5 cancel out the positive one leaving one positive value i.e. 1

$$\sum_{n=0}^{20} i^n = 1$$

L.H.S = R.H.S

Hence proved.

Q. 14. Prove that $i^{53} + i^{72} + i^{93} + i^{102} = 2i$.

Answer : L.H.S = $i^{53} + i^{72} + i^{93} + i^{102}$

$$= i^{4 \times 13+1} + i^{4 \times 18} + i^{4 \times 23+1} + i^{4 \times 25+2}$$

Since $i^{4n} = 1$

 $\Rightarrow i^{4n+1} = i$ (where n is any positive integer)

$$\Rightarrow i^{4n+2} = -1$$
$$\Rightarrow i^{4n+3} = -1$$
$$= i + 1 + i + i^{2}$$
$$= i + 1 + i - 1$$
$$= 2i$$

L.H.S = R.H.S

Hence proved.

$$\sum_{n=1}^{13} \Bigl(i^n\ +\ i^{n+1}\Bigr) = \Bigl(-1+\ i\Bigr),$$
 Q. 15. Prove that $^{n=1}$ \qquad n N.

$$\sum_{i=1}^{13} \Bigl(i^n \ + \ i^{n+1} \Bigr)$$
 Answer : L.H.S = $^{n=1}$

$$= i^{1} + i^{2} + i^{3} + i^{4} + i^{5} + i^{6} + \dots + i^{13} + i^{14}$$

Since $i^{4n} = 1$
 $\Rightarrow i^{4n+1} = i$
 $\Rightarrow i^{4n+2} = -1$
 $\Rightarrow i^{4n+3} = -1$
 $= i - 1 - i + 1 + i - 1 \dots + i - 1$

As, all terms will get cancel out consecutively except the first two terms. So that will get remained will be the answer.

= i - 1

L.H.S = R.H.S

Hence proved.

Exercise 5B

Q. 1. A. Simplify each of the following and express it in the form a + ib :

2(3 + 4i) + i(5 - 6i)

Answer : Given: 2(3 + 4i) + i(5 - 6i)

Firstly, we open the brackets

```
2 \times 3 + 2 \times 4i + i \times 5 - i \times 6i
```

- $= 6 + 8i + 5i 6i^2$
- = 6 + 13i − 6(-1) [∵, i² = -1]
- = 6 + 13i + 6
- = 12 + 13i

Real Imaginary part part

Q. 1. B. Simplify each of the following and express it in the form a + ib :

$$\left(3+\sqrt{-16}\right)-\left(4-\sqrt{-9}\right)$$

Answer : Given: $(3 + \sqrt{-16}) - (4 - \sqrt{-9})$

We re – write the above equation

$$(3 + \sqrt{(-1) \times 16})(-1)(4 - \sqrt{(-1) \times 9})$$
$$= (3 + \sqrt{16i^2}) - (4 - \sqrt{9i^2})_{[\because i^2 = -1]}$$

= (3 + 4i) - (4 - 3i)

Now, we open the brackets, we get

3 + 4i – 4 + 3i = -1 + 7i

Q. 1. C. Simplify each of the following and express it in the form a + ib :

(-5 + 6i) - (-2 + i)

Answer : Given: (-5 + 6i) - (-2 + i)

Firstly, we open the brackets

-5 + 6i + 2 – i

= -3 + 5i

Real Imaginary part part

Q. 1. D. Simplify each of the following and express it in the form a + ib :

(8 - 4i) - (-3 + 5i)

Answer : Given: (8 – 4i) – (- 3 + 5i)

Firstly, we open the brackets

8 - 4i + 3 - 5i

= 11 – 9i

لمب لمب Real Imaginary part part Q. 1. E. Simplify each of the following and express it in the form a + ib :

$$(1 - i)^{2} (1 + i) - (3 - 4i)^{2}$$
Answer : Given: $(1 - i)^{2} (1 + i) - (3 - 4i)^{2}$

$$= (1 + i^{2} - 2i)(1 + i) - (9 + 16i^{2} - 24i)$$

$$[\because (a - b)^{2} = a^{2} + b^{2} - 2ab]$$

$$= (1 - 1 - 2i)(1 + i) - (9 - 16 - 24i) [\because i^{2} = -1]$$

$$= (-2i)(1 + i) - (-7 - 24i)$$
Now, we open the brackets

$$-2i \times 1 - 2i \times i + 7 + 24i$$

$$= -2i - 2i^{2} + 7 + 24i$$

$$= -2(-1) + 7 + 22i [\because, i^{2} = -1]$$

$$= 2 + 7 + 22i$$

$$= 9 + 22i$$
Real Imaginary

part part

Q. 1. F. Simplify each of the following and express it in the form a + ib :

$$(5+\sqrt{-3})(5-\sqrt{-3})$$
Answer : Given: $(5+\sqrt{-3})(5-\sqrt{-3})$
We re – write the above equation
$$(5+\sqrt{(-1)\times 3})(5-\sqrt{(-1)\times 3})$$

$$= (5+\sqrt{3i^2})(5-\sqrt{3i^2})$$
[::, i² = -1]

$$=(5+i\sqrt{3})(5-i\sqrt{3})$$

Now, we know that,

 $(a + b)(a - b) = (a^2 - b^2)$ Here, a = 5 and $b = i\sqrt{3}$ $= (5)^2 - (i\sqrt{3})^2$ $= 25 - (3i^2)$ $= 25 - [3 \times (-1)]$ = 25 + 3 = 28 + 0 = 28 + 0iReal Imaginary part part

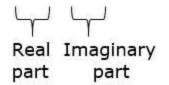
Q. 1. G. Simplify each of the following and express it in the form a + ib :

Answer : Given: (3 + 4i) (2 - 3i)

Firstly, we open the brackets

 $3 \times 2 + 3 \times (-3i) + 4i \times 2 - 4i \times 3i$ = 6 - 9i + 8i - 12i² = 6 - i - 12(-1) [::, i² = -1] = 6 - i + 12

= 18 – i



Q. 1. H. Simplify each of the following and express it in the form a + ib :

$$\left(-2+\sqrt{-3}\right)\left(-3+2\sqrt{-3}\right)$$

Answer : Given: $(-2 + \sqrt{-3})(-3 + 2\sqrt{-3})$

We re - write the above equation

 $(-2 + \sqrt{(-1) \times 3})(-3 + 2\sqrt{(-1) \times 3})$ $= (-2 + \sqrt{3i^2})(-3 + 2\sqrt{3i^2})_{[::, i^2 = -1]}$ $= (-2 + i\sqrt{3})(-3 + 2i\sqrt{3})$

Now, open the brackets,

part part

Q. 2. A. Simplify each of the following and express it in the form (a + ib) : $\left(2+\sqrt{-3}\right)^2$

Answer : Given: $(2 - \sqrt{-3})^2$

We know that,

 $(a - b)^2 = a^2 + b^2 - 2ab ...(i)$

So, on replacing a by 2 and b by $\sqrt{-3}$ in eq. (i), we get

```
(2)^{2} + (\sqrt{-3})^{2} - 2(2)(\sqrt{-3})
= 4 + (-3) - 4\forall - 3
= 4 - 3 - 4\forall - 3
= 1 - 4\sqrt{3}^{2} [\dots i^{2} = -1]
= 1 - 4i\sqrt{3}
Real Imaginary
part part
```

Q. 2. B. Simplify each of the following and express it in the form (a + ib) :

(5 – 2i)²

Answer : Given: $(5 - 2i)^2$

We know that,

 $(a - b)^2 = a^2 + b^2 - 2ab \dots(i)$

So, on replacing a by 5 and b by 2i in eq. (i), we get

```
(5)^{2} + (2i)^{2} - 2(5)(2i)
= 25 + 4i<sup>2</sup> - 20i
```

```
= 25 – 4 – 20i [∵ i<sup>2</sup> = -1]
```

لہا لہا Real Imaginary part part

Q. 2. C. Simplify each of the following and express it in the form (a + ib) :

(-3 + 5i)³

Answer : Given: $(-3 + 5i)^3$

We know that,

 $(-a + b)^3 = -a^3 + 3a^2b - 3ab^2 + b^3 \dots(i)$

So, on replacing a by 3 and b by 5i in eq. (i), we get

Q. 2. D. Simplify each of the following and express it in the form (a + ib) :

 $\left(-2-\frac{1}{3}i\right)^{\!\!3}$

Answer : Given: $\left(-2-\frac{1}{3}i\right)^3$

We know that,

$$(-a - b)^3 = -a^3 - 3a^2b - 3ab^2 - b^3 \dots (i)$$

So, on replacing a by 2 and b by 1/3i in eq. (i), we get

$$-(2)^{3} - 3(2)^{2} \left(\frac{1}{3}i\right) - 3(2) \left(\frac{1}{3}i\right)^{2} - \left(\frac{1}{3}i\right)^{3}$$

$$= -8 - 4i - 6 \left(\frac{1}{9}i^{2}\right) - \left(\frac{1}{27}i^{3}\right)$$

$$= -8 - 4i - \frac{2}{3}i^{2} - \frac{1}{27}i(i^{2})$$

$$= -8 - 4i - \frac{2}{3}(-1) - \frac{1}{27}i(-1) \qquad [\because i^{2} = -1]$$

$$= -8 - 4i + \frac{2}{3} + \frac{1}{27}i$$

$$= \left(-8 + \frac{2}{3}\right) + \left(-4i + \frac{1}{27}i\right)$$

$$= \left(\frac{-24 + 2}{3}\right) + \left(\frac{-108i + i}{27}\right)$$

$$= -\frac{22}{3} + \left(-\frac{107}{27}i\right)$$

$$= -\frac{22}{3} - \frac{107}{27}i$$
Real Imaginary part

Q. 2. E. Simplify each of the following and express it in the form (a + ib) :

(4 – 3i)⁻¹

Answer : Given: (4 – 3i)⁻¹

We can re- write the above equation as

$$=\frac{1}{4-3i}$$

Now, rationalizing

$$= \frac{1}{4-3i} \times \frac{4+3i}{4+3i}$$
$$= \frac{\frac{4+3i}{(4-3i)(4+3i)}}{\dots(i)}$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{4+3i}{(4)^2 - (3i)^2}$$

= $\frac{4+3i}{16-9i^2}$
= $\frac{4+3i}{16-9(-1)} [\because i^2 = -1]$
= $\frac{4+3i}{16+9}$
= $\frac{4+3i}{16+9}$
= $\frac{4+3i}{25}$
Real Imaginary
part part

Q. 2. F. Simplify each of the following and express it in the form (a + ib) : $\left(-2+\sqrt{-3}\right)^{-1}$

Answer : Given: $(-2 + \sqrt{-3})^{-1}$

We can re- write the above equation as

$$= \frac{1}{-2 + \sqrt{-3}}$$
$$= \frac{1}{-2 + \sqrt{3i^2}} [\because i^2 = -1]$$
$$= \frac{1}{-2 + i\sqrt{3}}$$

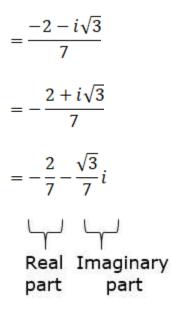
Now, rationalizing

$$= \frac{1}{-2 + i\sqrt{3}} \times \frac{-2 - i\sqrt{3}}{-2 - i\sqrt{3}}$$
$$= \frac{\frac{-2 - i\sqrt{3}}{(-2 + i\sqrt{3})(-2 - i\sqrt{3})}}{(-2 + i\sqrt{3})(-2 - i\sqrt{3})} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

$$= \frac{-2 - i\sqrt{3}}{(-2)^2 - (i\sqrt{3})^2}$$
$$= \frac{-2 - i\sqrt{3}}{4 - (3i^2)}$$
$$= \frac{-2 - i\sqrt{3}}{4 - 3}$$
$$= \frac{-2 - i\sqrt{3}}{4 - 3}$$



Q. 2. G. Simplify each of the following and express it in the form (a + ib) :

$$(2 + i)^{-2}$$

Answer : Given: (2 + i)⁻²

Above equation can be re - written as

$$=\frac{1}{(2+i)^2}$$

Now, rationalizing

$$= \frac{1}{(2+i)^2} \times \frac{(2-i)^2}{(2-i)^2}$$

= $\frac{(2-i)^2}{(2+i)^2(2-i)^2}$
= $\frac{4+i^2-4i}{(4+i^2+4i)(4+i^2-4i)}$ [:: $(a-b)^2 = a^2 + b^2 - 2ab$]
= $\frac{4-1-4i}{(4-1+4i)(4-1-4i)}$ [:: $i^2 = -1$]
= $\frac{3-4i}{(3+4i)(3-4i)}$...(i)

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{3-4i}{(3)^2 - (4i)^2}$$

$$= \frac{3-4i}{9-16i^2}$$

$$= \frac{3-4i}{9-16(-1)}$$

$$= \frac{3-4i}{25}$$

$$ightarrow = \frac{3}{25} - \frac{4}{25}i$$
Real Imaginary
part part

Q. 2. H. Simplify each of the following and express it in the form (a + ib) :

(1 + 2i)^{−3}

Answer : Given: (1 + 2i)⁻³

Above equation can be re – written as

$$=\frac{1}{(1+2i)^3}$$

Now, rationalizing

$$= \frac{1}{(1+2i)^3} \times \frac{(1-2i)^3}{(1-2i)^3}$$
$$= \frac{(1-2i)^3}{(1+2i)^3(1-2i)^3}$$

We know that,

Q. 2. I. Simplify each of the following and express it in the form (a + ib) :

$$(1 + i)^{3} - (1 - i)^{3}$$
Answer : Given: $(1 + i)^{3} - (1 - i)^{3} ...(i)$
We know that,

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a - b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$
By applying the formulas in eq. (i), we get

$$(1)^{3} + 3(1)^{2}(i) + 3(1)(i)^{2} + (i)^{3} - [(1)^{3} - 3(1)^{2}(i) + 3(1)(i)^{2} - (i)^{3}]$$

$$= 1 + 3i + 3i^{2} + i^{3} - [1 - 3i + 3i^{2} - i^{3}]$$

$$= 1 + 3i + 3i^{2} + i^{3} - 1 + 3i - 3i^{2} + i^{3}$$

$$= 6i + 2i^{3}$$

$$= 6i + 2i(i^{2})$$

$$= 6i + 2i(-1) [\because i^{2} = -1]$$

$$= 6i - 2i$$

$$= 4i$$

$$= 0 + 4i$$
Keal Imaginary part

Q. 3. A. Express each of the following in the form (a + ib):

 $\frac{1}{\left(4+3i\right)}$

Answer : Given: $\frac{1}{4+3i}$

Now, rationalizing

$$= \frac{1}{4+3i} \times \frac{4-3i}{4-3i}$$
$$= \frac{4-3i}{(4+3i)(4-3i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{4 - 3i}{(4)^2 - (3i)^2}$$

= $\frac{4 - 3i}{16 - 9i^2}$
= $\frac{4 - 3i}{16 - 9(-1)} [\because i^2 = -1]$
= $\frac{4 - 3i}{16 + 9}$
= $\frac{4 - 3i}{25}$
 $ightarrow = \frac{4}{25} - \frac{3}{25}i$
Real Imaginary
part part

Q. 3. B. Express each of the following in the form (a + ib):

$$\frac{(3+4i)}{(4+5i)}$$

Answer : Given: $\frac{3+4i}{4+5i}$

Now, rationalizing

$$= \frac{3+4i}{4+5i} \times \frac{4-5i}{4-5i}$$
$$= \frac{(3+4i)(4-5i)}{(4+5i)(4-5i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{(3+4i)(4-5i)}{(4)^2 - (5i)^2}$$

= $\frac{3(4) + 3(-5i) + 4i(4) + 4i(-5i)}{16 - 25i^2}$
= $\frac{12-15i+16i-20i^2}{16-25(-1)}$ [: i² = -1]
= $\frac{12+i-20(-1)}{16+25}$
= $\frac{12+i+20}{41}$
= $\frac{32+i}{41}$
 $rac{32+i}{41}$
Real Imaginary
part part

Q. 3. C. Express each of the following in the form (a + ib): $\frac{\left(5+\sqrt{2}i\right)}{\left(1-\sqrt{2}i\right)}$

Answer : Given:
$$\frac{5+\sqrt{2}i}{1-\sqrt{2}i}$$

Now, rationalizing

$$= \frac{5 + \sqrt{2}i}{1 - \sqrt{2}i} \times \frac{1 + \sqrt{2}i}{1 + \sqrt{2}i}$$
$$= \frac{(5 + \sqrt{2}i)(1 + \sqrt{2}i)}{(1 - \sqrt{2}i)(1 + \sqrt{2}i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

$$= \frac{(5 + \sqrt{2}i)(1 + \sqrt{2}i)}{(1)^2 - (\sqrt{2}i)^2}$$

= $\frac{5(1) + 5(\sqrt{2}i) + \sqrt{2}i(1) + \sqrt{2}i(\sqrt{2}i)}{1 - 2i^2}$
= $\frac{5 + 5\sqrt{2}i + \sqrt{2}i + 2i^2}{1 - 2(-1)}$
[:: i² = -1]
= $\frac{5 + 6i\sqrt{2} + 2(-1)}{1 + 2}$
= $\frac{3 + 6i\sqrt{2}}{3}$
= $\frac{3(1 + 2i\sqrt{2})}{3}$
 $\downarrow \neg \downarrow \qquad = 1 + 2i\sqrt{2}$
Real Imaginary
part part

Q. 3. D. Express each of the following in the form (a + ib): $\frac{\left(-2+5i\right)}{\left(3-5i\right)}$

Answer : Given:
$$\frac{-2+5i}{3-5i}$$

Now, rationalizing

$$= \frac{-2+5i}{3-5i} \times \frac{3+5i}{3+5i}$$
$$= \frac{(-2+5i)(3+5i)}{(3-5i)(3+5i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

Q. 3. E. Express each of the following in the form (a + ib):

$$\frac{\bigl(3-4i\bigr)}{\bigl(4-2i\bigr)\bigl(1+i\bigr)}$$

Answer : Given: $\frac{3-4i}{(4-2i)(1+i)}$

Solving the denominator, we get

$$\frac{3-4i}{(4-2i)(1+i)} = \frac{3-4i}{4(1)+4(i)-2i(1)-2i(i)}$$
$$= \frac{3-4i}{4+4i-2i-2i^2}$$
$$= \frac{3-4i}{4+2i-2(-1)}$$
$$= \frac{3-4i}{6+2i}$$

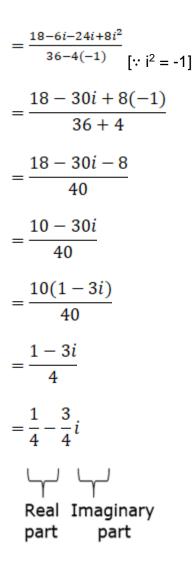
Now, we rationalize the above by multiplying and divide by the conjugate of 6 + 2i

$$= \frac{3-4i}{6+2i} \times \frac{6-2i}{6-2i}$$
$$= \frac{(3-4i)(6-2i)}{(6+2i)(6-2i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

$$= \frac{(3-4i)(6-2i)}{(6)^2 - (2i)^2}$$
$$= \frac{3(6) + 3(-2i) + (-4i)(6) + (-4i)(-2i)}{36 - 4i^2}$$



Q. 3. F. Express each of the following in the form (a + ib):

$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$

Answer : Given: $\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$

Firstly, we solve the given equation

$$=\frac{3(2)+3(3i)-2i(2)+(-2i)(3i)}{(1)(2)+1(-i)+2i(2)+2i(-i)}$$

$$= \frac{6+9i-4i-6i^2}{2-i+4i-2i^2}$$
$$= \frac{6+5i-6(-1)}{2+3i-2(-1)}$$
$$= \frac{6+6+5i}{2+3i+2}$$
$$= \frac{12+5i}{4+3i}$$

Now, we rationalize the above by multiplying and divide by the conjugate of 4 + 3i

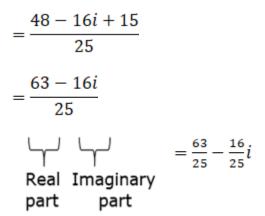
$$=\frac{12+5i}{4+3i} \times \frac{4-3i}{4-3i}$$

$$=\frac{(12+5i)(4-3i)}{(4+3i)(4-3i)}\dots(i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

$$= \frac{(12+5i)(4-3i)}{(4)^2 - (3i)^2}$$
$$= \frac{12(4) + 12(-3i) + 5i(4) + 5i(-3i)}{16 - 9i^2}$$
$$= \frac{48 - 36i + 20i - 15i^2}{19 - 9(-1)} [\because i^2 = -1]$$
$$= \frac{48 - 16i - 15(-1)}{16 + 9} [\because i^2 = -1]$$



Q. 3. G. Express each of the following in the form (a + ib):

$$\frac{\left(2+3i\right)^2}{\left(2-i\right)}$$

Answer : Given:
$$\frac{(2+3i)^2}{(2-i)}$$

Now, we rationalize the above equation by multiply and divide by the conjugate of (2 - i)

$$= \frac{(2+3i)^2}{(2-i)} \times \frac{(2+i)}{(2+i)}$$

$$= \frac{(2+3i)^2(2+i)}{(2-i)(2+i)}$$

$$= \frac{(4+9i^2+12i)(2+i)}{(2)^2-(i)^2}$$

$$[\because(a+b)(a-b) = (a^2-b^2)]$$

$$= \frac{[4+9(-1)+12i](2+i)}{4-i^2} [\because i^2 = -1]$$

$$= \frac{[4-9+12i](2+i)}{4-(-1)}$$

$$= \frac{(-5+12i)(2+i)}{5}$$

$$= \frac{-10 - 5i + 24i + 12i^{2}}{5}$$

$$= \frac{-10 + 19i + 12(-1)}{5}$$

$$= \frac{-10 - 12 + 19i}{5}$$

$$= \frac{-22 + 19i}{5}$$

$$= \frac{-22 + 19i}{5}$$
Real Imaginary
part part

Q. 3. H. Express each of the following in the form (a + ib):

$$\frac{\left(1-i\right)^{3}}{\left(1-i^{3}\right)}$$

Answer : Given:
$$\frac{(1-i)^3}{(1-i^3)}$$

The above equation can be re-written as

$$= \frac{(1)^{3} - (i)^{3} - 3(1)^{2}(i) + 3(1)(i)^{2}}{(1 - i \times i^{2})}$$

[::(a - b)^{3} = a^{3} - b^{3} - 3a^{2}b + 3ab^{2}]
$$= \frac{1 - i^{3} - 3i + 3i^{2}}{[1 - i(-1)]}$$
[::i^{2} = -1]
$$= \frac{1 - i \times i^{2} - 3i + 3(-1)}{(1 + i)}$$

$$= \frac{1 - i(-1) - 3i - 3}{1 + i}$$

$$= \frac{-2 + i - 3i}{1 + i}$$
$$= \frac{-2 - 2i}{1 + i}$$
$$= \frac{-2(1 + i)}{1 + i}$$

Real Imaginary = -2 + 0i part part

Q. 3. I. Express each of the following in the form (a + ib):

$$\frac{\left(1+2i\right)^3}{\left(1+i\right)\left(2-i\right)}$$

Answer : Given: $\frac{(1+2i)^3}{(1+i)(2-i)}$

We solve the above equation by using the formula

$$(a + b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2}$$

$$= \frac{(1)^{3} + (2i)^{3} + 3(1)^{2}(2i) + 3(1)(2i)^{2}}{1(2) + 1(-i) + i(2) + i(-i)}$$

$$= \frac{1 + 8i^{3} + 6i + 12i^{2}}{2 - i + 2i - i^{2}}$$

$$= \frac{1 + 8i^{2} + 6i + 12(-1)}{2 + i - (-1)} [\because i^{2} = -1]$$

$$= \frac{1 + 8i(-1) + 6i - 12}{2 + i + 1}$$

$$= \frac{1 - 8i + 6i - 12}{3 + i}$$

$$=\frac{-11-2i}{3+i}$$

Now, we rationalize the above by multiplying and divide by the conjugate of 3 + i

$$= \frac{-11 - 2i}{3 + i} \times \frac{3 - i}{3 - i}$$
$$= \frac{(-11 - 2i)(3 - i)}{(3 + i)(3 - i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{(-11-2i)(3-i)}{(3)^2 - (i)^2}$$

= $\frac{-11(3) + (-11)(-i) + (-2i)(3) + (-2i)(-i)}{9 - i^2}$
= $\frac{-33+11i-6i+2i^2}{9-(-1)}$ [:: i² = -1]
= $\frac{-33+5i+2(-1)}{9+1}$ [:: i² = -1]
= $\frac{-33+5i-2}{10}$
= $\frac{-35+5i}{10}$
= $\frac{5(-7+i)}{10}$
= $\frac{-7+i}{2}$

Q. 4. Simplify each of the following and express it in the form (a + ib):

(i)
$$\left(\frac{5}{-3+2i} + \frac{2}{1-i}\right) \left(\frac{4-5i}{3+2i}\right) \left(\frac{1}{3+2i}\right) \left(\frac{1}{1+4i} - \frac{2}{1+i}\right) \left(\frac{1-i}{5+3i}\right)$$
(ii) $\left(\frac{1}{1+4i} - \frac{2}{1+i}\right) \left(\frac{1-i}{5+3i}\right)$

Answer : Given:

$$\begin{aligned} \left(\frac{5}{-3+2i} + \frac{2}{1-i}\right) \left(\frac{4-5i}{3+2i}\right) \\ &= \left[\frac{5(1-i)+2(-3+2i)}{(-3+2i)(1-i)}\right] \left(\frac{4-5i}{3+2i}\right) \text{ [Taking the LCM]} \\ &= \left[\frac{5-5i-6+4i}{(-3)(1-i)+2i(1-i)}\right] \left(\frac{4-5i}{3+2i}\right) \\ &= \left[\frac{-1-i}{(-3+3i+2i-2i^2)}\right] \left(\frac{4-5i}{3+2i}\right) \\ &= \left[\frac{-(1+i)}{-3+5i-2(-1)}\right] \left(\frac{4-5i}{3+2i}\right) \\ &= \left(\frac{-(1+i)}{-1+5i}\right) \left(\frac{4-5i}{3+2i}\right) \\ &= \left(\frac{-1(4-5i)-i(4-5i)}{-1(3+2i)+5i(3+2i)}\right) \\ &= \frac{-4+5i-4i+5i^2}{-3-2i+15i+10i^2} \end{aligned}$$

$$= \frac{-4+i+5(-1)}{-3+13i+10(-1)}$$
 [Putting i² = -1]
$$= \frac{-9+i}{-13+13i}$$
$$= \frac{-(9-i)}{-(13-13i)}$$
$$= \frac{9-i}{13-13i}$$

Now, rationalizing by multiply and divide by the conjugate of (13 - 13i)

$$= \frac{9-i}{13-13i} \times \frac{13+13i}{13+13i}$$

$$= \frac{(9-i)(13+13i)}{(13-13i)(13+13i)}$$

$$= \frac{117+117i-13i-13i^{2}}{(13)^{2}-(13i)^{2}} [\because (a-b)(a+b) = (a^{2}-b^{2})]$$

$$= \frac{117+104i-13(-1)}{169-169i^{2}} [\because i^{2} = -1]$$

$$= \frac{130+104i}{169(1-i^{2})}$$

$$= \frac{13(10+8i)}{169[1-(-1)]} [Taking 13 \text{ common}]$$

$$= \frac{10+8i}{13\times 2}$$

$$= \frac{5+4i}{13}$$

$$= \frac{5}{13} + \frac{4}{13}i$$

(ii) Given:

$$\begin{split} &\left(\frac{1}{1+4i} - \frac{2}{1+i}\right) \left(\frac{1-i}{5+3i}\right) \\ &= \left[\frac{1(1+i)-2(1+4i)}{(1+4i)(1+i)}\right] \left(\frac{1-i}{5+3i}\right)_{\text{[Taking the LCM]}} \\ &= \left[\frac{1+i-2-8i}{(1)(1+i)+4i(1+i)}\right] \left(\frac{1-i}{5+3i}\right) \\ &= \left[\frac{-1-7i}{1+i+4i+4i^2}\right] \left(\frac{1-i}{5+3i}\right) \\ &= \left[\frac{-1-7i}{1+5i+4(-1)}\right] \left(\frac{1-i}{5+3i}\right) \\ &= \left(\frac{-1-7i}{-3+5i}\right) \left(\frac{1-i}{5+3i}\right) \\ &= \frac{-1(1-i)-7i(1-i)}{-3(5+3i)+5i(5+3i)} \\ &= \frac{-1+i-7i+7i^2}{-15-9i+25i+15i^2} \\ &= \frac{-1-6i+7(-1)}{-15+16i+15(-1)} \\ &= \frac{-6i-8}{16i-30} \\ &= \frac{-2(4+3i)}{-2(15-8i)} \\ &= \frac{4+3i}{15-8i} \end{split}$$

Now, rationalizing by multiply and divide by the conjugate of (15 + 8i)

$$= \frac{4+3i}{15-8i} \times \frac{15+8i}{15+8i}$$

$$= \frac{(4+3i)(15+8i)}{(15)^2 - (8i)^2} [: (a-b)(a+b) = (a^2 - b^2)]$$

$$= \frac{4(15+8i) + 3i(15+8i)}{225-64i^2}$$

$$= \frac{60+32i+45i+24i^2}{225-64(-1)} [: i^2 = -1]$$

$$= \frac{60+77i+24(-1)}{225+64}$$

$$= \frac{36+77i}{289}$$

$$= \frac{36}{289} + \frac{77}{289}i$$

Q. 5. Show that

(i)
$$\begin{cases} \frac{(3+2i)}{(2-3i)} + \frac{(3-2i)}{(2+3i)} \\ \text{ is purely real,} \\ \\ \frac{\left\{ \frac{(\sqrt{7}+i\sqrt{3})}{(\sqrt{7}-i\sqrt{3})} + \frac{(\sqrt{7}-i\sqrt{3})}{(\sqrt{7}+i\sqrt{3})} \right\}}{(\sqrt{7}+i\sqrt{3})} \\ \end{cases}$$
(ii) is purely real.

Answer : Given: $\frac{3+2i}{2-3i} + \frac{3-2i}{2+3i}$

Taking the L.C.M, we get

$$=\frac{(3+2i)(2+3i)+(3-2i)(2-3i)}{(2-3i)(2+3i)}$$

$$= \frac{3(2) + 3(3i) + 2i(2) + 2i(3i) + 3(2) + 3(-3i) - 2i(2) + (-2i)(-3i)}{(2)^2 - (3i)^2}$$

[:: (a + b)(a - b) = (a² - b²)]
$$= \frac{6 + 9i + 4i + 6i^2 + 6 - 9i - 4i + 6i^2}{4 - 9i^2}$$

= $\frac{12 + 12i^2}{4 - 9i^2}$
Putting i² = -1
= $\frac{12 + 12(-1)}{4 - 9(-1)}$
= $\frac{12 - 12}{4 + 9}$
= 0 + 0i
Hence, the given equation is purely real as there is no imaginary part.

(ii) Given:
$$\frac{\sqrt{7}+i\sqrt{3}}{\sqrt{7}-i\sqrt{3}} + \frac{\sqrt{7}-i\sqrt{3}}{\sqrt{7}+i\sqrt{3}}$$

Taking the L.C.M, we get

$$=\frac{(\sqrt{7}+i\sqrt{3})(\sqrt{7}+i\sqrt{3})+(\sqrt{7}-i\sqrt{3})(\sqrt{7}-i\sqrt{3})}{(\sqrt{7}-i\sqrt{3})(\sqrt{7}+i\sqrt{3})}$$

$$=\frac{(\sqrt{7}+i\sqrt{3})^{2}+(\sqrt{7}-i\sqrt{3})^{2}}{(\sqrt{7})^{2}-(i\sqrt{3})^{2}}\dots(i)$$

$$[:: (a + b)(a - b) = (a^2 - b^2)]$$

Now, we know that,

$$(a + b)^2 + (a - b)^2 = 2(a^2 + b^2)$$

So, by applying the formula in eq. (i), we get

$$= \frac{2\left[\left(\sqrt{7}\right)^{2} + \left(i\sqrt{3}\right)^{2}\right]}{7 - 3i^{2}}$$
$$= \frac{2[7 + 3i^{2}]}{7 - 3(-1)}$$
Putting i² = -1
$$= \frac{2[7 + 3(-1)]}{7 + 3}$$
$$= \frac{2[7 - 3]}{10}$$
$$= \frac{8}{10} + 0i$$
$$= \frac{8}{10} + 0i$$

Hence, the given equation is purely real as there is no imaginary part.

Q. 6. Find the real values of θ for which $\frac{1+i\,\cos\theta}{1-2i\cos\theta}$ is purely real.

Answer : Since $\frac{1+i\cos\theta}{1-2i\cos\theta}$ is purely real

Firstly, we need to solve the given equation and then take the imaginary part as 0

 $\frac{1+i\cos\theta}{1-2i\cos\theta}$

We rationalize the above by multiply and divide by the conjugate of $(1 - 2i \cos \theta)$

$$= \frac{1+i\cos\theta}{1-2i\cos\theta} \times \frac{1+2i\cos\theta}{1+2i\cos\theta}$$
$$= \frac{(1+i\cos\theta)(1+2i\cos\theta)}{(1-2i\cos\theta)(1+2i\cos\theta)}$$

We know that,

$$(a - b)(a + b) = (a^{2} - b^{2})$$

$$= \frac{1(1) + 1(2i\cos\theta) + i\cos\theta(1) + i\cos\theta(2i\cos\theta)}{(1)^{2} - (2i\cos\theta)^{2}}$$

$$= \frac{1 + 2i\cos\theta + i\cos\theta + 2i^{2}\cos^{2}\theta}{1 - 4i^{2}\cos^{2}\theta}$$

$$= \frac{1 + 3i\cos\theta + 2(-1)\cos^{2}\theta}{1 - 4(-1)\cos^{2}\theta} [\because i^{2} = -1]$$

$$= \frac{1 + 3i\cos\theta - 2\cos^{2}\theta}{1 + 4\cos^{2}\theta}$$

$$= \frac{1 - 2\cos^{2}\theta}{1 + 4\cos^{2}\theta} + i\frac{3\cos\theta}{1 + 4\cos^{2}\theta}$$

Since $\frac{1+i\cos\theta}{1-2i\cos\theta}$ is purely real [given]

Hence, imaginary part is equal to 0

$$\frac{3\cos\theta}{1+4\cos^2\theta} = 0$$

$$\Rightarrow 3\cos\theta = 0 \times (1+4\cos^2\theta)$$

$$\Rightarrow 3\cos\theta = 0$$

$$\Rightarrow \cos\theta = 0$$

$$\Rightarrow \cos\theta = \cos0$$

Since, $\cos\theta = \cos y$
Then $\theta = (2n + 1)\frac{\pi}{2} \pm y$ where n $\in \mathbb{Z}$
Putting y = 0

$$\theta = (2n + 1)\frac{\pi}{2} \pm 0$$
$$\theta = (2n + 1)\frac{\pi}{2} \text{ where n } \in \mathbb{Z}$$

Hence, for $\theta = (2n + 1)\frac{\pi}{2}$. where $n \in \mathbb{Z} \frac{1+i\cos\theta}{1-2i\cos\theta}$ is purely real.

Q. 7. If |z + i| = |z - i|, prove that z is real.

Answer : Let
$$z = x + iy$$

Consider, $|z + i| = |z - i|$
 $\Rightarrow |x + iy + i| = |x + iy - i|$
 $\Rightarrow |x + i(y + 1)| = |x + i(y - 1)|$
 $\Rightarrow \sqrt{(x)^2 + (y + 1)^2} = \sqrt{(x)^2 + (y - 1)^2}$
 $[\because |z| = modulus = \sqrt{a^2 + b^2}]$
 $\Rightarrow \sqrt{x^2 + y^2 + 1 + 2y} = \sqrt{x^2 + y^2 + 1 - 2y}$
Squaring both the sides, we get
 $\Rightarrow x^2 + y^2 + 1 + 2y = x^2 + y^2 + 1 - 2y$
 $\Rightarrow x^2 + y^2 + 1 + 2y - x^2 - y^2 - 1 + 2y = 0$
 $\Rightarrow 2y + 2y = 0$
 $\Rightarrow 4y = 0$

Putting the value of y in eq. (i), we get

z = x + i(0)

$$\Rightarrow$$
 z = x

Hence, z is purely real.

Q. 8. Give an example of two complex numbers z_1 and z_2 such that $z_1 \neq z_2$ and $|z_1| = |z_2|$.

Answer : Let $z_1 = 3 - 4i$ and $z_2 = 4 - 3i$

Here, $z_1 \neq z_2$

Now, calculating the modulus, we get,

$$|z_1| = \sqrt{3^2 + (4)^2} = \sqrt{25} = 5$$

 $|z_2| = \sqrt{4^2 + (3)^2} = \sqrt{25} = 5$

Q. 9. A. Find the conjugate of each of the following:

(–5 – 2i)

Answer : Given: z = (-5 - 2i)

Here, we have to find the conjugate of (-5 - 2i)

So, the conjugate of (-5 - 2i) is (-5 + 2i)

Q. 9. B. Find the conjugate of each of the following:

$$\frac{1}{(4+3i)}$$

Answer : Given: $\frac{1}{4+3i}$

First, we calculate $\frac{1}{4+3i}$ and then find its conjugate

Now, rationalizing

$$= \frac{1}{4+3i} \times \frac{4-3i}{4-3i}$$
$$= \frac{4-3i}{(4+3i)(4-3i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{4 - 3i}{(4)^2 - (3i)^2}$$
$$= \frac{4 - 3i}{16 - 9i^2}$$
$$= \frac{4 - 3i}{16 - 9(-1)} [::i^2 = -1]$$
$$= \frac{4 - 3i}{16 + 9}$$
$$= \frac{4 - 3i}{25}$$
$$= \frac{4 - 3i}{25}i$$

 $\frac{1}{\text{Hence}}, \frac{1}{4+3i} = \frac{4}{25} - \frac{3}{25}i$

So, a conjugate of $\frac{1}{4+3i}$ is $\frac{4}{25} + \frac{3}{25}i$

Q. 9. C. Find the conjugate of each of the following:

$$\frac{\left(1+i\right)^2}{\left(3-i\right)}$$

Answer : Given: $\frac{(1+i)^2}{(3-i)}$

Firstly, we calculate $\frac{(1+i)^2}{(3-i)}$ and then find its conjugate

$$\frac{(1+i)^2}{(3-i)} = \frac{1+i^2+2i}{(3-i)} [\because (a+b)^2 = a^2 + b^2 + 2ab]$$

$$= \frac{1 + (-1) + 2i}{3 - i} [\because i^2 = -1]$$
$$= \frac{2i}{3 - i}$$

Now, we rationalize the above by multiplying and divide by the conjugate of 3 - i

$$= \frac{2i}{3-i} \times \frac{3+i}{3+i}$$
$$= \frac{(2i)(3+i)}{(3+i)(3-i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{(2i)(3+i)}{(3)^2 - (i)^2}$$

$$= \frac{2i(3) + 2i(i)}{9 - i^2}$$

$$= \frac{6i + 2i^2}{9 - (-1)} [\because i^2 = -1]$$

$$= \frac{6i + 2(-1)}{9 + 1} [\because i^2 = -1]$$

$$= \frac{6i - 2}{10}$$

$$= \frac{2(3i - 1)}{10}$$

$$= \frac{(-1 + 3i)}{5}$$

$$= -\frac{1}{5} + \frac{3}{5}i$$

Hence, $\frac{(1+i)^2}{(3-i)} = -\frac{1}{5} + \frac{3}{5}i$

So, the conjugate of $\frac{(1+i)^2}{(3-i)}$ is $-\frac{1}{5} - \frac{3}{5}i$

Q. 9. D. Find the conjugate of each of the following:

$$\frac{(1+i)(2+i)}{(3+i)}$$

Answer : Given: $\frac{(1+i)(2+i)}{(3+i)}$

Firstly, we calculate $\frac{(1+i)(2+i)}{(3+i)}$ and then find its conjugate

$$\frac{(1+i)(2+i)}{(3+i)} = \frac{1(2)+1(i)+i(2)+i(i)}{(3+i)}$$
$$= \frac{2+i+2i+i^2}{3+i}$$
$$= \frac{2+3i-1}{3+i} [::i^2 = -1]$$
$$= \frac{1+3i}{3+i}$$

Now, we rationalize the above by multiplying and divide by the conjugate of 3 + i

$$= \frac{1+3i}{3+i} \times \frac{3-i}{3-i}$$
$$= \frac{(1+3i)(3-i)}{(3+i)(3-i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{(1+3i)(3-i)}{(3)^2 - (i)^2}$$

$$= \frac{1(3) + 1(-i) + 3i(3) + 3i(-i)}{9 - i^2}$$

$$= \frac{3-i+9i-3i^2}{9 - (-1)} [\because i^2 = -1]$$

$$= \frac{3+8i-3(-1)}{9+1} [\because i^2 = -1]$$

$$= \frac{3+8i+3}{10}$$

$$= \frac{6+8i}{10}$$

$$= \frac{6+8i}{10}$$

$$= \frac{3+4i}{5}$$

$$= \frac{3}{5} + \frac{4}{5}i$$
Hence, $\frac{(1+i)(2+i)}{(3+i)} = \frac{3}{5} + \frac{4}{5}i$
Hence, $\frac{(1+i)^2}{(3+i)} = \frac{3}{5} - \frac{4}{5}i$

So, the conjugate of $\frac{(1+i)^2}{(3-i)}$ is $\frac{3}{5} - \frac{4}{5}i$

Q. 9. E. Find the conjugate of each of the following:

$$\sqrt{-3}$$

Answer : Given: $z = \sqrt{-3}$

The above can be re – written as

$$z = \sqrt{(-1) \times 3}$$
$$z = \sqrt{3i^2} [:: i^2 = -1]$$
$$z = 0 + i\sqrt{3}$$

So, the conjugate of $z = 0 + i\sqrt{3}$ is

 $\bar{z} = 0 - i\sqrt{3}$

 $\operatorname{Or} \bar{z} = -i\sqrt{3} = -\sqrt{-3}$

Q. 9. F. Find the conjugate of each of the following:

$$\sqrt{2}$$

Answer : Given: $z = \sqrt{2}$

The above can be re – written as

 $z = \sqrt{2} + 0i$

Here, the imaginary part is zero

So, the conjugate of $z = \sqrt{2} + 0i$ is

$$\bar{z} = \sqrt{2} - 0i$$

Or
$$\bar{z} = \sqrt{2}$$

Q. 9. G. Find the conjugate of each of the following:

$$-\sqrt{-1}$$

Answer : Given: $z = -\sqrt{-1}$

The above can be re – written as

$$z = -\sqrt{i^2} [\because i^2 = -1]$$

z = 0 - i

So, the conjugate of z = (0 - i) is

$$\bar{z} = 0 + i$$

Or $\overline{z} = i$

Q. 9. H. Find the conjugate of each of the following:

 $(2 - 5i)^2$

Answer : Given: $z = (2 - 5i)^2$

First we calculate $(2 - 5i)^2$ and then we find the conjugate

$$(2-5i)^2 = (2)^2 + (5i)^2 - 2(2)(5i)$$

= 4 + 25i² - 20i
= 4 + 25(-1) - 20i [:: i² = -1]
= 4 - 25 - 20i
= -21 - 20i
Now, we have to find the conjugate of (-21 - 20i)

So, the conjugate of (- 21 – 20i) is (-21 + 20i)

Q. 10. A. Find the modulus of each of the following:

$$(3+\sqrt{-5})$$

Answer : Given: $z = (3 + \sqrt{-5})$

The above can be re - written as

$$z = 3 + \sqrt{(-1) \times 5}$$

 $z = 3 + i\sqrt{5} [\because i^2 = -1]$

Now, we have to find the modulus of $(3 + i\sqrt{5})$

So,
$$|z| = |3 + i\sqrt{5}| = \sqrt{(3)^2 + (\sqrt{5})^2} = \sqrt{9+5} = \sqrt{14}$$

Hence, the modulus of $(3 + \sqrt{-5})$ is $\sqrt{14}$

Q. 10. B. Find the modulus of each of the following:

Answer : Given: z = (-3 - 4i)

Now, we have to find the modulus of (-3 - 4i)

So,
$$|z| = |-3 - 4i| = \sqrt{(-3)^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$$

Hence, the modulus of (-3 - 4i) is 5

Q. 10. C. Find the modulus of each of the following:

Answer : Given: z = (7 + 24i)

Now, we have to find the modulus of (7 + 24i)

So,
$$|z| = |7 + 24i| = \sqrt{(7)^2 + (24)^2} = \sqrt{49 + 576} = \sqrt{625} = 25$$

Hence, the modulus of (7 + 24i) is 25

Q. 10. D. Find the modulus of each of the following:

3i

Answer : Given: z = 3i

The above equation can be re – written as

Now, we have to find the modulus of (0 + 3i)

So,
$$|z| = |0 + 3i| = \sqrt{(0)^2 + (3)^2} = \sqrt{9} = 3$$

Hence, the modulus of (3i) is 3

Q. 10. E. Find the modulus of each of the following:

$$\frac{(3+2i)^2}{(4-3i)}$$

$$\frac{(3+2i)^2}{(4-3i)}$$

Answer: Given: (4-3i)

Firstly, we calculate $\frac{(3+2i)^2}{(4-3i)}$ and then find its modulus

$$\frac{(3+2i)^2}{(4-3i)} = \frac{9+4i^2+12i}{(4-3i)} [\because (a+b)^2 = a^2 + b^2 + 2ab]$$
$$= \frac{9+4(-1)+12i}{4-3i} [\because i^2 = -1]$$
$$= \frac{5+12i}{4-3i}$$

Now, we rationalize the above by multiplying and divide by the conjugate of 4 + 3i

$$= \frac{5+12i}{4-3i} \times \frac{4+3i}{4+3i}$$
$$= \frac{(5+12i)(4+3i)}{(4-3i)(4+3i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$=\frac{5(4)+(5)(3i)+12i(4)+12i(3i)}{(4)^2-(3i)^2}$$

$$= \frac{20 + 15i + 48i + 36i^2}{16 - 9i^2}$$
$$= \frac{20 + 63i + 36(-1)}{16 - 9(-1)} [\because i^2 = -1]$$
$$= \frac{20 - 36 + 63i}{16 + 9} [\because i^2 = -1]$$
$$= \frac{-16 + 63i}{25}$$
$$= -\frac{16}{25} + \frac{63}{25}i$$

Now, we have to find the modulus of $\left(-\frac{16}{25} + \frac{63}{25}i\right)$

So,
$$|z| = \left| -\frac{16}{25} + \frac{63}{25}i \right| = \sqrt{\left(-\frac{16}{25}\right)^2 + \left(\frac{63}{25}\right)^2}$$

$$= \sqrt{\frac{256}{625} + \frac{3969}{625}}$$
$$= \sqrt{\frac{4225}{625}}$$
$$= \frac{65}{25}$$
$$= \frac{13}{5}$$

Hence, the modulus of $\frac{(3+2i)^2}{(4-3i)}$ is $\frac{13}{5}$

Q. 10. F. Find the modulus of each of the following:

$$\frac{(2-i)(1+i)}{(1+i)}$$

Answer : Given: $\frac{(2-i)(1+i)}{(1+i)}$

Firstly, we calculate
$$\frac{(2-i)(1+i)}{(1+i)}$$
 and then find its modulus

$$\frac{(2-i)(1+i)}{(1+i)} = \frac{2(1)+2(i)+(-i)(1)+(-i)(i)}{(1+i)}$$
$$= \frac{2+2i-i-i^2}{1+i}$$
$$= \frac{2+i-(-1)}{1+i} [::i^2 = -1]$$
$$= \frac{3+i}{1+i}$$

Now, we rationalize the above by multiplying and divide by the conjugate of 1 + i

$$= \frac{3+i}{1+i} \times \frac{1-i}{1-i}$$
$$= \frac{(3+i)(1-i)}{(1+i)(1-i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$=\frac{3(1-i)+i(1-i)}{(1)^2-(i)^2}$$

$$= \frac{3(1) + 3(-i) + i(1) + i(-i)}{1 - i^{2}}$$

$$= \frac{3 - 3i + i - i^{2}}{1 - (-1)} [\because i^{2} = -1]$$

$$= \frac{3 - 2i - (-1)}{1 + 1} [\because i^{2} = -1]$$

$$= \frac{3 - 2i + 1}{2}$$

$$= \frac{4 - 2i}{2}$$

$$= 2 - i$$

Now, we have to find the modulus of (2 - i)

So,
$$|z| = |2 - i| = |2 + (-1)i| = \sqrt{(2)^2 + (-1)^2} = \sqrt{4 + 1} = \sqrt{5}$$

Q. 10. G. Find the modulus of each of the following:

5

Answer : Given: z = 5

The above equation can be re – written as

Now, we have to find the modulus of (5 + 0i)

So,
$$|z| = |5 + 0i| = \sqrt{(5)^2 + (0)^2} = 5$$

Q. 10. H. Find the modulus of each of the following:

Answer : Given: z = (1 + 2i)(i - 1)

Firstly, we calculate the (1 + 2i)(i - 1) and then find the modulus

So, we open the brackets,

$$1(i - 1) + 2i(i - 1)$$

= 1(i) + (1)(-1) + 2i(i) + 2i(-1)
= i - 1 + 2i² - 2i
= - i - 1 + 2(-1) [:: i² = - 1]
= - i - 1 - 2
= - i - 3

Now, we have to find the modulus of (-3 - i)

So,
$$|z| = |-3 - i| = |-3 + (-1)i| = \sqrt{(-3)^2 + (-1)^2} = \sqrt{9 + 1} = \sqrt{10}$$

Q. 11. A. Find the multiplicative inverse of each of the following:

$$(1-\sqrt{3}i)$$

Answer : Given: $(1 - i\sqrt{3})$

To find: Multiplicative inverse

We know that,

Multiplicative Inverse of $z = z^{-1}$

$$=\frac{1}{z}$$

Putting $z = 1 - i\sqrt{3}$

So, Multiplicative inverse of $1 - i\sqrt{3} = \frac{1}{1 - i\sqrt{3}}$

Now, rationalizing by multiply and divide by the conjugate of $(1 - i\sqrt{3})$

$$=\frac{1}{1-i\sqrt{3}}\times\frac{1+i\sqrt{3}}{1+i\sqrt{3}}$$

$$=\frac{1+i\sqrt{3}}{(1-i\sqrt{3})(1+i\sqrt{3})}$$

Using $(a - b)(a + b) = (a^2 - b^2)$

$$= \frac{1+i\sqrt{3}}{(1)^2 - (i\sqrt{3})^2}$$
$$= \frac{1+i\sqrt{3}}{1-3i^2}$$
$$= \frac{1+i\sqrt{3}}{1-3(-1)} [::i^2 = -1]$$
$$= \frac{1+i\sqrt{3}}{1+3}$$
$$= \frac{1+i\sqrt{3}}{4}$$
$$= \frac{1+i\sqrt{3}}{4}i$$

Hence, Multiplicative Inverse of $(1 - i\sqrt{3})$ is $\frac{1}{4} + \frac{\sqrt{3}}{4}i$

Q. 11. B. Find the multiplicative inverse of each of the following:

(2 + 5i)

Answer: Given: 2 + 5i

To find: Multiplicative inverse

We know that,

Multiplicative Inverse of $z = z^{-1}$

$$=\frac{1}{z}$$

Putting z = 2 + 5i

So, Multiplicative inverse of $2 + 5i = \frac{1}{2 + 5i}$

Now, rationalizing by multiply and divide by the conjugate of (2+5i)

$$= \frac{1}{2+5i} \times \frac{2-5i}{2-5i}$$

$$= \frac{2-5i}{(2+5i)(2-5i)}$$
Using (a - b)(a + b) = (a² - b²)

$$= \frac{2-5i}{(2)^2 - (5i)^2}$$

$$= \frac{2-5i}{4-25i^2}$$

$$= \frac{2-5i}{4-25(-1)} [\because i^2 = -1]$$

$$= \frac{2-5i}{4+25}$$

$$= \frac{2-5i}{29}$$

$$= \frac{2}{29} - \frac{5}{29}i$$

Hence, Multiplicative Inverse of (2+5i) is $\frac{2}{29} - \frac{5}{29}i$

Q. 11. C. Find the multiplicative inverse of each of the following:

$$\frac{(2+3i)}{(1+i)}$$

Answer : Given: $\frac{2+3i}{1+i}$

To find: Multiplicative inverse

We know that,

Multiplicative Inverse of $z = z^{-1}$

 $=\frac{1}{z}$

Putting $z = \frac{2+3i}{1+i}$

So, Multiplicative inverse of $\frac{2+3i}{1+i} = \frac{1}{\frac{2+3i}{1+i}} = \frac{1+i}{2+3i}$

Now, rationalizing by multiply and divide by the conjugate of (2+3i)

$$= \frac{1+i}{2+3i} \times \frac{2-3i}{2-3i}$$
$$= \frac{(1+i)(2-3i)}{(2+3i)(2-3i)}$$

Using $(a - b)(a + b) = (a^2 - b^2)$

$$= \frac{1(2-3i) + i(2-3i)}{(2)^2 - (3i)^2}$$
$$= \frac{2-3i+2i-3i^2}{4-9i^2}$$
$$= \frac{2-i-3(-1)}{4-9(-1)} [\because i^2 = -1]$$
$$= \frac{5-i}{4+9}$$

$$=\frac{5-i}{13}$$
$$=\frac{5}{13}-\frac{1}{13}i$$

Hence, Multiplicative Inverse of $\frac{(2+3i)}{1+i}$ is $\frac{5}{13} - \frac{1}{13}i$

Q. 11. D. Find the multiplicative inverse of each of the following:

$$\frac{(1+i)(1+2i)}{(1+3i)}$$

Answer : Given: $\frac{(1+i)(1+2i)}{(1+3i)}$

To find: Multiplicative inverse

We know that,

Multiplicative Inverse of $z = z^{-1}$

$$=\frac{1}{z}$$

Putting z = $\frac{(1+i)(1+2i)}{(1+3i)}$

So, Multiplicative inverse of
$$\frac{(1+i)(1+2i)}{(1+3i)} = \frac{1}{\frac{(1+i)(1+2i)}{(1+3i)}}$$
$$= \frac{(1+3i)}{(1+i)(1+2i)}$$

We solve the above equation

 $=\frac{1+3i}{1(1)+1(2i)+i(1)+i(2i)}$

$$= \frac{1+3i}{1+2i+i+2i^2}$$
$$= \frac{1+3i}{1+3i+2(-1)} [\because i^2 = -1]$$
$$= \frac{1+3i}{-1+3i}$$

Now, we rationalize the above by multiplying and divide by the conjugate of (-1 + 3i)

$$= \frac{1+3i}{-1+3i} \times \frac{-1-3i}{-1-3i}$$
$$= \frac{(1+3i)(-1-3i)}{(-1+3i)(-1-3i)} \dots (i)$$

Now, we know that,

$$(a + b)(a - b) = (a^2 - b^2)$$

So, eq. (i) become

$$= \frac{1(-1-3i)+3i(-1-3i)}{(-1)^2 - (3i)^2}$$
$$= \frac{-1-3i-3i-9i^2}{1-9i^2}$$
$$= \frac{-1-6i-9(-1)}{1-9(-1)} [::i^2 = -1]$$
$$= \frac{-1-6i+9}{1+9}$$
$$= \frac{8-6i}{10}$$
$$= \frac{2(4-3i)}{10}$$

$$=\frac{4-3i}{5}$$
$$=\frac{4}{5}-\frac{3}{5}i$$

Hence, Multiplicative inverse of $\frac{(1+i)(1+2i)}{(1+3i)} = \frac{4}{5} - \frac{3}{5}i$

Q. 12. If $\left(\frac{1-i}{1+i}\right)^{100}$ = (a + ib), find the values of a and b.

Answer : Given:
$$a + ib = \left(\frac{1-i}{1+i}\right)^{100}$$

Consider the given equation,

$$a+ib = \left(\frac{1-i}{1+i}\right)^{100}$$

Now, we rationalize

$$= \left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)^{100}$$

[Here, we multiply and divide by the conjugate of 1 + i]

$$= \left(\frac{(1-i)^2}{(1+i)(1-i)}\right)^{100}$$
$$= \left(\frac{1+i^2-2i}{(1+i)(1-i)}\right)^{100}$$

Using $(a + b)(a - b) = (a^2 - b^2)$

$$= \left(\frac{1+(-1)-2i}{(1)^2-(i)^2}\right)^{100}$$

$$= \left(\frac{-2i}{1-i^{2}}\right)^{100}$$

$$= \left(\frac{-2i}{1-(-1)}\right)^{100} [\because i^{2} = -1]$$

$$= \left(\frac{-2i}{2}\right)^{100}$$

$$= (-i)^{100}$$

$$= [(-i)^{4}]^{25}$$

$$= (i^{4})^{25}$$

$$= (1)^{25}$$

$$[\because i^{4} = i^{2} \times i^{2} = -1 \times -1 = 1]$$

$$(a + ib) = 1 + 0i$$

On comparing both the sides, we get

$$a = 1 and b = 0$$

Hence, the value of a is 1 and b is 0

Q. 13. If
$$\left(\frac{1+i}{1-i}\right)^{93} - \left(\frac{1-i}{1+i}\right)^3 = x + iy$$
, find x and y.

Answer : Consider,

$$x + iy = \left(\frac{1+i}{1-i}\right)^{93} - \left(\frac{1-i}{1+i}\right)^3$$

Now, rationalizing

$$x + iy = \left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{93} - \left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)^3$$

$$= \left(\frac{(1+i)^2}{(1-i)(1+i)}\right)^{93} - \left(\frac{(1-i)^2}{(1+i)(1-i)}\right)^3$$

In denominator, we use the identity

$$(a - b)(a + b) = a^{2} - b^{2}$$

$$= \left(\frac{1 + i^{2} + 2i}{(1)^{2} - (i)^{2}}\right)^{93} - \left(\frac{1 + i^{2} - 2i}{(1)^{2} - (i)^{2}}\right)^{3}$$

$$= \left(\frac{1 + (-1) + 2i}{1 - i^{2}}\right)^{93} - \left(\frac{1 + (-1) - 2i}{1 - i^{2}}\right)^{3}$$

$$= \left(\frac{2i}{1 - (-1)}\right)^{93} - \left(\frac{-2i}{1 - (-1)}\right)^{3}$$

$$= \left(\frac{2i}{2}\right)^{93} - \left(\frac{-2i}{2}\right)^{3}$$

$$= (i)^{93} - (-i)^{3}$$

$$= (i)^{92+1} - [-(i)^{3}]$$

$$= [(i)^{92}(i)] - [-(i^{2} \times i)]$$

$$= [(i^{4})^{23}(i)] - [-(-i)]$$

$$= [(1)^{23}(i)] - i$$

$$= i - i$$

$$x + iy = 0$$

$$\therefore x = 0 \text{ and } y = 0$$
Q. 14. If $x + iy = \frac{a + ib}{a - ib}$, prove that $x^{2} + y^{2} = 1$.

Answer : Consider the given equation,

$$x + iy = \frac{a + ib}{a - ib}$$

Now, rationalizing

$$x + iy = \frac{a + ib}{a - ib} \times \frac{a + ib}{a + ib}$$

$$= \frac{(a + ib)(a + ib)}{(a - ib)(a + ib)}$$

$$= \frac{a(a + ib) + ib(a + ib)}{(a)^2 - (ib)^2}$$

$$[(a - b)(a + b) = a^2 - b^2]$$

$$= \frac{a^2 + iab + iab + i^2b^2}{a^2 - i^2b^2}$$

$$= \frac{a^2 + iab + iab + (-1)b^2}{a^2 - (-1)b^2} [i^2 = -1]$$

$$x + iy = \frac{a^2 + 2iab - b^2}{a^2 + b^2}$$

$$x + iy = \frac{(a^2 - b^2)}{a^2 + b^2} + i\frac{2ab}{a^2 + b^2}$$

On comparing both the sides, we get

$$x = \frac{(a^2 - b^2)}{a^2 + b^2} \& y = \frac{2ab}{a^2 + b^2}$$

Now, we have to prove that $x^2 + y^2 = 1$

Taking LHS,

Putting the value of x and y, we get

$$\begin{aligned} \left[\frac{(a^2 - b^2)}{a^2 + b^2}\right]^2 + \left[\frac{2ab}{a^2 + b^2}\right]^2 \\ &= \frac{1}{(a^2 + b^2)^2} \left[(a^2 - b^2)^2 + (2ab)^2\right] \\ &= \frac{1}{(a^2 + b^2)^2} \left[a^4 + b^4 - 2a^2b^2 + 4a^2b^2\right] \\ &= \frac{1}{(a^2 + b^2)^2} \left[a^4 + b^4 + 2a^2b^2\right] \\ &= \frac{1}{(a^2 + b^2)^2} \left[(a^2 + b^2)^2\right] \\ &= 1 \end{aligned}$$

= RHS

Q. 15. If $(a + ib) = \frac{c + i}{c - i}$, where c is real, prove that $a^2 + b^2 = 1$ and $\frac{b}{a} = \frac{2c}{c^2 - 1}$.

Answer : Consider the given equation,

$$a+ib = \frac{c+i}{c-i}$$

Now, rationalizing

$$a + ib = \frac{c+i}{c-i} \times \frac{c+i}{c+i}$$
$$= \frac{(c+i)(c+i)}{(c-i)(c+i)}$$
$$= \frac{(c+i)^2}{(c)^2 - (i)^2}$$
$$[(a-b)(a+b) = a^2 - b^2]$$

$$= \frac{c^{2} + 2ic + i^{2}}{c^{2} - i^{2}}$$

$$a + ib = \frac{c^{2} + 2ic + (-1)}{c^{2} - (-1)} [i^{2} = -1]$$

$$a + ib = \frac{c^{2} + 2ic - 1}{c^{2} + 1}$$

$$a + ib = \frac{(c^{2} - 1)}{c^{2} + 1} + i\frac{2c}{c^{2} + 1}$$

On comparing both the sides, we get

$$a = \frac{(c^2 - 1)}{c^2 + 1} \& b = \frac{2c}{c^2 + 1}$$

Now, we have to prove that $a^2 + b^2 = 1$

Taking LHS,

$$a^2 + b^2$$

Putting the value of a and b, we get

$$\begin{aligned} \left[\frac{(c^2-1)}{c^2+1}\right]^2 + \left[\frac{2c}{c^2+1}\right]^2 \\ &= \frac{1}{(c^2+1)^2} [(c^2-1)^2 + (2c)^2] \\ &= \frac{1}{(c^2+1)^2} [c^4+1-2c^2+4c^2] \\ &= \frac{1}{(c^2+1)^2} [c^4+1+2c^2] \\ &= \frac{1}{(c^2+1)^2} [(c^2+1)^2] \end{aligned}$$

= 1

= RHS

Now, we have to prove $\frac{b}{a} = \frac{2c}{c^2 - 1}$

Taking LHS, ^{*b*}/_{*a*}

Putting the value of a and b, we get

$$\frac{b}{a} = \frac{\frac{2c}{c^2 + 1}}{\frac{(c^2 - 1)}{c^2 + 1}} = \frac{2c}{c^2 + 1} \times \frac{c^2 + 1}{c^2 - 1} = \frac{2c}{c^2 - 1} = RHS$$

Hence Proved

$$(1-i)^n \left(1-\frac{1}{i}\right)^n = 2^n$$
 for all

Q. 16. Show that

for all n N.

Answer : To show: $(1-i)^n (1-\frac{1}{i})^n = 2^n$

Taking LHS,

$$(1-i)^{n} \left(1-\frac{1}{i}\right)^{n}$$

= $(1-i)^{n} \left(1-\frac{1}{i} \times \frac{i}{i}\right)^{n}$ [rationalize]
= $(1-i)^{n} \left(1-\frac{i}{i^{2}}\right)^{n}$
= $(1-i)^{n} \left(1-\frac{i}{-1}\right)^{n}$ [:: $i^{2} = -1$]
= $(1-i)^{n}(1+i)^{n}$
= $[(1-i)(1+i)]^{n}$

 $= [(1)^{2} - (i)^{2}]^{n} [(a + b)(a - b) = a^{2} - b^{2}]$ = $(1 - i^{2})^{n}$ = $[1 - (-1)]^{n}[\because i^{2} = -1]$ = $(2)^{n}$ = 2^{n} = RHS

Hence Proved

Q. 17. Find the smallest positive integer n for which $(1 + i)^{2n} = (1 - i)^{2n}$.

Answer :

Given: $(1 + i)^{2n} = (1 - i)^{2n}$

Consider the given equation,

$$(1+i)^{2n} = (1-i)^{2n}$$
$$\Rightarrow \frac{(1+i)^{2n}}{(1-i)^{2n}} = 1$$
$$\Rightarrow \left(\frac{1+i}{1-i}\right)^{2n} = 1$$

Now, rationalizing by multiply and divide by the conjugate of (1 - i)

$$\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{2n} = 1$$

$$\Rightarrow \left(\frac{(1+i)^2}{(1-i)(1+i)}\right)^{2n} = 1$$

$$\Rightarrow \left[\frac{1+i^2+2i}{(1)^2-(i)^2}\right]^{2n} = 1$$

$$[(a+b)^2 = a^2 + b^2 + 2ab \& (a-b)(a+b) = (a^2 - b^2)]$$

$$\Rightarrow \left[\frac{1+(-1)+2i}{1-(-1)}\right]^{2n} = 1$$

$$[i^2 = -1]$$

$$\Rightarrow \left[\frac{2i}{2}\right]^{2n} = 1$$

$$\Rightarrow (i)^{2n} = 1$$

Now, $i^{2n} = 1$ is possible if n = 2 because $(i)^{2(2)} = i^4 = (-1)^4 = 1$

So, the smallest positive integer n = 2

Q. 18. Prove that $(x + 1 + i) (x + 1 - i) (x - 1 - i) (x - 1 - i) = (x^4 + 4)$.

Answer : To Prove:

 $(x + 1 + i) (x + 1 - i) (x - 1 + i) (x - 1 - i) = (x^4 + 4)$

Taking LHS

$$(x + 1 + i) (x + 1 - i) (x - 1 + i) (x - 1 - i)$$

$$= [(x + 1) + i][(x + 1) - i][(x - 1) + i][(x - 1) - i]$$
Using (a - b)(a + b) = a² - b²

$$[(x + 1) + i][(x + 1) - i][(x - 1) + i][(x - 1) - i]$$
a = x + 1 & b = i
a = x - 1 & b = i
$$= [(x + 1)2 - (i)2] [(x - 1)2 - (i)2]$$

$$= [x2 + 1 + 2x - i2](x2 + 1 - 2x - i2]$$

$$= [x2 + 1 + 2x - (-1)](x2 + 1 - 2x - (-1)] [\because i2 = -1]$$

$$= [x2 + 2 + 2x][x2 + 2 - 2x]$$
Again, using (a - b)(a + b) = a² - b²

Now, $a = x^2 + 2$ and b = 2x

$$= [(x^{2} + 2)^{2} - (2x)^{2}]$$

$$= [x^{4} + 4 + 2(x^{2})(2) - 4x^{2}] [\because (a + b)^{2} = a^{2} + b^{2} + 2ab]$$

$$= [x^{4} + 4 + 4x^{2} - 4x^{2}]$$

$$= x^{4} + 4$$

$$= RHS$$

$$\therefore LHS = RHS$$

Hence Proved

Q. 19. If a = (cos
$$\theta$$
 + i sin θ), prove that $\frac{1+a}{1-a} = \left(\cot \frac{\theta}{2} \right) i$.

Answer : Given: $a = cos\theta + isin\theta$

To prove: $\frac{1+a}{1-a} = \left(\cot\frac{\theta}{2}\right)i$

Taking LHS,

$$\frac{1+a}{1-a}$$

Putting the value of a, we get

$$= \frac{1 + \cos \theta + i \sin \theta}{1 - (\cos \theta + i \sin \theta)}$$
$$= \frac{1 + \cos \theta + i \sin \theta}{1 - \cos \theta - i \sin \theta}$$

We know that,

1 + cos2
$$\theta$$
 = 2cos² θ
Or
 $1 + cos \theta = 2 cos2 \frac{\theta}{2}$

And
$$1 - \cos \theta = 2 \sin^2 \frac{\theta}{2}$$

Using the above two formulas

$$=\frac{2\cos^2\frac{\theta}{2}+i\sin\theta}{2\sin^2\frac{\theta}{2}-i\sin\theta}$$

Using, $\sin\theta = 2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$

$$= \frac{2\cos^2\frac{\theta}{2} + i2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{2\sin^2\frac{\theta}{2} - 2i\sin\frac{\theta}{2}\cos\frac{\theta}{2}}$$
$$= \frac{2\cos\frac{\theta}{2}\left[\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right]}{2\sin\frac{\theta}{2}\left[\sin\frac{\theta}{2} - i\cos\frac{\theta}{2}\right]}$$
$$= \cot\frac{\theta}{2}\left[\frac{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}}{\sin\frac{\theta}{2} - i\cos\frac{\theta}{2}}\right] \left[\because \frac{\cos\theta}{\sin\theta} = \cot\theta\right]$$

Rationalizing by multiply and divide by the conjugate of $\frac{\sin \frac{\theta}{2} - i \cos \frac{\theta}{2}}{\sin \frac{\theta}{2}}$

$$= \left(\cot\frac{\theta}{2}\right) \left[\frac{\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}}{\sin\frac{\theta}{2} - i\cos\frac{\theta}{2}} \times \frac{\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}}{\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}}\right]$$
$$= \left(\cot\frac{\theta}{2}\right) \frac{\left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)\left(\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}\right)}{\left(\sin\frac{\theta}{2} - i\cos\frac{\theta}{2}\right)\left(\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}\right)}$$
$$= \left(\cot\frac{\theta}{2}\right) \frac{\left(\cos\frac{\theta}{2}\right)\left(\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}\right) + i\sin\frac{\theta}{2}\left(\sin\frac{\theta}{2} + i\cos\frac{\theta}{2}\right)}{\left(\sin\frac{\theta}{2}\right)^{2} - \left(i\cos\frac{\theta}{2}\right)^{2}}$$

$$= \left(\cot\frac{\theta}{2}\right) \frac{\cos\frac{\theta}{2}\sin\frac{\theta}{2} + i\cos^2\frac{\theta}{2} + i\sin^2\frac{\theta}{2} + i^2\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{\sin^2\frac{\theta}{2} - i^2\cos^2\frac{\theta}{2}}$$

Putting $i^2 = -1$, we get

$$= \left(\cot\frac{\theta}{2}\right) \frac{\cos\frac{\theta}{2}\sin\frac{\theta}{2} + i\cos^2\frac{\theta}{2} + i\sin^2\frac{\theta}{2} + (-1)\sin\frac{\theta}{2}\cos\frac{\theta}{2}}{\sin^2\frac{\theta}{2} - (-1)\cos^2\frac{\theta}{2}}$$

$$= \left(\cot\frac{\theta}{2}\right) \frac{\cos\frac{\theta}{2}\sin\frac{\theta}{2} + i\left(\cos^{2}\frac{\theta}{2} + \sin^{2}\frac{\theta}{2}\right) - \sin\frac{\theta}{2}\cos\frac{\theta}{2}}{\sin^{2}\frac{\theta}{2} + \cos^{2}\frac{\theta}{2}}$$

We know that,

 $\cos^2 \theta + \sin^2 \theta = 1$

$$= \left(\cot\frac{\theta}{2}\right) \left[\frac{i\left(\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2}\right)}{1}\right]$$
$$= \cot\frac{\theta}{2}(i)$$

= RHS

Hence Proved

Q. 20. If
$$z_1 = (2 - i)$$
 and $z_2 = (1 + i)$, find $\begin{vmatrix} z_1 + z_2 + 1 \\ z_1 - z_2 + i \end{vmatrix}$.

Answer :

Given: $z_1 = (2 - i)$ and $z_2 = (1 + i)$

To find: $\left| \frac{z_1 + z_2 + 1}{z_1 - z_2 + i} \right|$

Consider,

$$\frac{|z_1 + z_2 + 1|}{|z_1 - z_2 + i|}$$

Putting the value of z_1 and z_2 , we get

$$= \left| \frac{2 - i + 1 + i + 1}{2 - i - (1 + i) + i} \right|$$
$$= \left| \frac{4}{2 - i - 1 - i + i} \right|$$
$$= \left| \frac{4}{1 - i} \right|$$

Now, rationalizing by multiply and divide by the conjugate of $1-i\,$

$$= \left| \frac{4}{1-i} \times \frac{1+i}{1+i} \right|$$

= $\left| \frac{4(1+i)}{(1-i)(1+i)} \right|$
= $\left| \frac{4(1+i)}{(1)^2 - (i)^2} \right|_{[(a-b)(a+b) = a^2 - b^2]}$
= $\left| \frac{4(1+i)}{1-i^2} \right|$
= $\left| \frac{4(1+i)}{1-(-1)} \right|_{[Putting i^2 = -1]}$
= $\left| \frac{4(1+i)}{2} \right|$
= $|2(1+i)|$
= $|2 + 2i|$
Now, we have to find the modulus of $(2 + 2i)$

So,
$$|z| = |2 + 2i| = \sqrt{(2)^2 + (2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}$$

Hence, the value of $\left|\frac{z_1+z_2+1}{z_1-z_2+i}\right|=2\sqrt{2}$

Q. 21. A. Find the real values of x and y for which:

(1 - i) x + (1 + i) y = 1 - 3i

Answer :

$$(1 - i) x + (1 + i) y = 1 - 3i$$

$$\Rightarrow$$
 x - ix + y + iy = 1 - 3i

$$\Rightarrow (x + y) - i(x - y) = 1 - 3i$$

Comparing the real parts, we get

$$x + y = 1 ...(i)$$

Comparing the imaginary parts, we get

$$x - y = -3 ...(ii)$$

Solving eq. (i) and (ii) to find the value of x and y

Adding eq. (i) and (ii), we get

$$x + y + x - y = 1 + (-3)$$

 $\Rightarrow 2x = 1 - 3$

 $\Rightarrow 2x = -2$

Putting the value of x = -1 in eq. (i), we get

$$(-1) + y = 1$$
$$\Rightarrow y = 1 + 1$$

Q. 21. B. Find the real values of x and y for which:

$$(x + iy) (3 - 2i) = (12 + 5i)$$

Answer : x(3 - 2i) + iy(3 - 2i) = 12 + 5i

 \Rightarrow 3x - 2ix + 3iy - 2i²y = 12 + 5i

$$\Rightarrow$$
 3x + i(-2x + 3y) - 2(-1)y = 12 + 5i [: i² = -1]

 \Rightarrow 3x + i(-2x + 3y) + 2y = 12 + 5i

 $\Rightarrow (3x + 2y) + i(-2x + 3y) = 12 + 5i$

Comparing the real parts, we get

Comparing the imaginary parts, we get

$$-2x + 3y = 5 \dots$$
(ii)

Solving eq. (i) and (ii) to find the value of x and y

Multiply eq. (i) by 2 and eq. (ii) by 3, we get

$$6x + 4y = 24 \dots (iii)$$

 $-6x + 9y = 15 \dots (iv)$

Adding eq. (iii) and (iv), we get

6x + 4y - 6x + 9y = 24 + 15

 \Rightarrow 13y = 39

$$\Rightarrow$$
 y = 3

Putting the value of y = 3 in eq. (i), we get

3x + 2(3) = 12 $\Rightarrow 3x + 6 = 12$ $\Rightarrow 3x = 12 - 6$ $\Rightarrow 3x = 6$

 $\Rightarrow x = 2$

Hence, the value of x = 2 and y = 3

Q. 21. A. Find the real values of x and y for which:

(1 - i) x + (1 + i) y = 1 - 3i

Answer : (1 - i) x + (1 + i) y = 1 - 3i

x - ix + y + iy = 1 - 3i

$$\Rightarrow (x + y) - i(x - y) = 1 - 3i$$

Comparing the real parts, we get

x + y = 1 ...(i)

Comparing the imaginary parts, we get

$$x - y = -3 ...(ii)$$

Solving eq. (i) and (ii) to find the value of x and y

Adding eq. (i) and (ii), we get

$$x + y + x - y = 1 + (-3)$$

 $\Rightarrow 2x = 1 - 3$

Putting the value of x = -1 in eq. (i), we get

$$(-1) + y = 1$$
$$\Rightarrow y = 1 + 1$$
$$\Rightarrow y = 2$$

Q. 21. B. Find the real values of x and y for which:

$$(x + iy) (3 - 2i) = (12 + 5i)$$

Answer : x(3 - 2i) + iy(3 - 2i) = 12 + 5i

 \Rightarrow 3x - 2ix + 3iy - 2i²y = 12 + 5i

$$\Rightarrow$$
 3x + i(-2x + 3y) - 2(-1)y = 12 + 5i [: i² = -1]

 \Rightarrow 3x + i(-2x + 3y) + 2y = 12 + 5i

 $\Rightarrow (3x + 2y) + i(-2x + 3y) = 12 + 5i$

Comparing the real parts, we get

Comparing the imaginary parts, we get

$$-2x + 3y = 5 \dots$$
(ii)

Solving eq. (i) and (ii) to find the value of x and y

Multiply eq. (i) by 2 and eq. (ii) by 3, we get

$$6x + 4y = 24 \dots (iii)$$

 $-6x + 9y = 15 \dots (iv)$

Adding eq. (iii) and (iv), we get

6x + 4y - 6x + 9y = 24 + 15

 \Rightarrow 13y = 39

$$\Rightarrow$$
 y = 3

Putting the value of y = 3 in eq. (i), we get

3x + 2(3) = 12 $\Rightarrow 3x + 6 = 12$ $\Rightarrow 3x = 12 - 6$ $\Rightarrow 3x = 6$

 $\Rightarrow x = 2$

Hence, the value of x = 2 and y = 3

Q. 21. C. Find the real values of x and y for which:

x + 4yi = ix + y + 3

Answer : Given: x + 4yi = ix + y + 3

or x + 4yi = ix + (y + 3)

Comparing the real parts, we get

x = y + 3

Or x - y = 3 ...(i)

Comparing the imaginary parts, we get

4y = x ...(ii)

Putting the value of x = 4y in eq. (i), we get

4y - y = 3

 \Rightarrow 3y = 3

 \Rightarrow y = 1

Putting the value of y = 1 in eq. (ii), we get

$$x = 4(1) = 4$$

Hence, the value of x = 4 and y = 1

Q. 21. D. Find the real values of x and y for which:

 $(1 + i) y^2 + (6 + i) = (2 + i)x$

Answer : Given: $(1 + i) y^2 + (6 + i) = (2 + i)x$

Consider, $(1 + i) y^2 + (6 + i) = (2 + i)x$

$$\Rightarrow y^2 + iy^2 + 6 + i = 2x + ix$$

 $\Rightarrow (y^2 + 6) + i(y^2 + 1) = 2x + ix$

Comparing the real parts, we get

$$y^2 + 6 = 2x$$

$$\Rightarrow 2x - y^2 - 6 = 0 \dots (i)$$

Comparing the imaginary parts, we get

$$y^2 + 1 = x$$

⇒ $x - y^2 - 1 = 0$...(ii)

Subtracting the eq. (ii) from (i), we get

$$2x - y^{2} - 6 - (x - y^{2} - 1) = 0$$

$$\Rightarrow 2x - y^{2} - 6 - x + y^{2} + 1 = 0$$

$$\Rightarrow x - 5 = 0$$

$$\Rightarrow x = 5$$

Putting the value of x = 5 in eq. (i), we get

$$2(5) - y^{2} - 6 = 0$$

$$\Rightarrow 10 - y^{2} - 6 = 0$$

$$\Rightarrow -y^{2} + 4 = 0$$

$$\Rightarrow - y^{2} = -4$$

$$\Rightarrow y^{2} = 4$$

$$\Rightarrow y = \sqrt{4}$$

$$\Rightarrow y = \pm 2$$

Hence, the value of x = 5 and $y = \pm 2$

Q. 21. E. Find the real values of x and y for which:

$$\frac{(x+3i)}{(2+iy)} = (1-i)$$

Answer : Given:

$$\frac{x+3i}{2+iy} = (1-i)$$

$$\Rightarrow x + 3i = (1-i)(2+iy)$$

$$\Rightarrow x + 3i = 1(2+iy) - i(2+iy)$$

$$\Rightarrow x + 3i = 2+iy - 2i - i^{2}y$$

$$\Rightarrow x + 3i = 2 + i(y - 2) - (-1)y [i^{2} = -1]$$

$$\Rightarrow x + 3i = 2 + i(y - 2) + y$$

$$\Rightarrow x + 3i = (2+y) + i(y - 2)$$

Comparing the real parts, we get

$$x = 2 + y$$

$$\Rightarrow x - y = 2 \dots (i)$$

Comparing the imaginary parts, we get

3 = y - 2 $\Rightarrow y = 3 + 2$ $\Rightarrow y = 5$ Putting the value of y = 5 in eq. (i), we get x - 5 = 2

 \Rightarrow x = 2 + 5

Hence, the value of x = 7 and y = 5

Q. 21. F. Find the real values of x and y for which:

$$\frac{(1+i)x - 2i}{(3+i)} + \frac{(2-3i)y + i}{(3-i)} = i$$

Answer : Consider,

$$\frac{(1+i)x-2i}{3+i} + \frac{(2-3i)y+i}{3-i} = i$$
$$= \frac{x+xi-2i}{3+i} + \frac{2y-3iy+i}{3-i} = i$$

Taking LCM

$$\Rightarrow \frac{(x+xi-2i)(3-i) + (2y-3iy+i)(3+i)}{(3+i)(3-i)} = i$$

$$\Rightarrow \frac{3x+3xi-6i-xi-xi^2+2i^2+6y-9iy+3i+2iy-3i^2y+i^2}{(3)^2-(i)^2} = i$$

Putting
$$i^{2} = -1$$

$$\Rightarrow \frac{3x + 2xi - 6i - x(-1) + 2(-1) + 6y - 7iy + 3i - 3(-1)y + (-1)}{9 - (-1)} = i$$

$$\Rightarrow \frac{3x + 2xi - 6i + x - 2 + 6y - 7iy + 3i + 3y - 1}{9 + 1} = i$$

$$\Rightarrow \frac{4x + 2xi - 3i - 3 + 9y - 7iy}{10} = i$$

$$\Rightarrow 4x + 2xi - 3i - 3 + 9y - 7iy = 10i$$

$$\Rightarrow (4x - 3 + 9y) + i(2x - 3 - 7y) = 10i$$
Comparing the real parts, we get
$$4x - 3 + 9y = 0$$

 \Rightarrow 4x + 9y = 3 ...(i)

Comparing the imaginary parts, we get

2x - 3 - 7y = 10 $\Rightarrow 2x - 7y = 10 + 3$ $\Rightarrow 2x - 7y = 13 \dots$ (ii) Multiply the eq. (ii) by 2, we get $4x - 14y = 26 \dots (iii)$ Subtracting eq. (i) from (iii), we get 4x - 14y - (4x + 9y) = 26 - 3 \Rightarrow 4x - 14y - 4x - 9y = 23 $\Rightarrow -23v = 23$ \Rightarrow y = -1 Putting the value of y = -1 in eq. (i), we get 4x + 9(-1) = 3 $\Rightarrow 4x - 9 = 3$ $\Rightarrow 4x = 12$ $\Rightarrow x = 3$ Hence, the value of x = 3 and y = -1Q. 22

Find the real values of x and y for which (x - iy) (3 + 5i) is the conjugate of (-6 - 24i).

Answer : Given: (x - iy) (3 + 5i) is the conjugate of (-6 - 24i)

We know that,

Conjugate of -6 - 24i = -6 + 24i

 \therefore According to the given condition,

$$(x - iy) (3 + 5i) = -6 + 24i$$

 $\Rightarrow x(3 + 5i) - iy(3 + 5i) = -6 + 24i$
 $\Rightarrow 3x + 5ix - 3iy - 5i^2y = -6 + 24i$
 $\Rightarrow 3x + i(5x - 3y) - 5(-1)y = -6 + 24i [\because i^2 = -1]$
 $\Rightarrow 3x + i(5x - 3y) + 5y = -6 + 24i$
 $\Rightarrow (3x + 5y) + i(5x - 3y) = -6 + 24i$
Comparing the real parts, we get
 $3x + 5y = -6 ...(i)$
Comparing the imaginary parts, we get
 $5x - 3y = 24 ...(ii)$
Solving eq. (i) and (ii) to find the value of x and y
Multiply eq. (i) by 5 and eq. (ii) by 3, we get
 $15x + 25y = -30 ...(iii)$
 $15x - 9y = 72 ...(iv)$
Subtracting eq. (iii) from (iv), we get
 $15x - 9y - 15x - 25y = 72 - (-30)$

⇒ -34y = 72 + 30

 \Rightarrow -34y = 102

Putting the value of y = -3 in eq. (i), we get

3x + 5(-3) = -6

 $\Rightarrow 3x - 15 = -6$

 $\Rightarrow 3x = -6 + 15$ $\Rightarrow 3x = 9$ $\Rightarrow x = 3$

Hence, the value of x = 3 and y = -3

Q. 23. Find the real values of x and y for which the complex number $(-3 + iyx^2)$ and $(x^2 + y + 4i)$ are conjugates of each other.

Answer : Let $z_1 = -3 + iyx^2$

So, the conjugate of z_1 is

 $\bar{z_1} = -3 - iyx^2$

And $z_2 = x^2 + y + 4i$

So, the conjugate of z_2 is

$$\bar{z}_2 = x^2 + y - 4i$$

Given that: $\overline{z_1} = z_2 \& z_1 = \overline{z_2}$

- Firstly, consider $\overline{z_1} = z_2$
- $-3 iyx^2 = x^2 + y + 4i$

$$\Rightarrow x^2 + y + 4i + iyx^2 = -3$$

$$\Rightarrow x^2 + y + i(4 + yx^2) = -3 + 0i$$

Comparing the real parts, we get

$$x^2 + y = -3 \dots(i)$$

Comparing the imaginary parts, we get

$$4 + yx^2 = 0$$
$$\Rightarrow x^2y = -4 \dots (ii)$$

Now, consider
$$\overline{z_1} = \overline{z_2}$$

-3 + iyx² = x² + y - 4i
 $\Rightarrow x^2 + y - 4i - iyx^2 = -3$
 $\Rightarrow x^2 + y + i(-4i - yx^2) = -3 + 0i$

Comparing the real parts, we get

$$x^2 + y = -3$$

Comparing the imaginary parts, we get

$$-4 - yx^2 = 0$$

$$\Rightarrow x^2y = -4$$

Now, we will solve the equations to find the value of x and y

$$x^2 = -3 - y$$

Putting the value of x^2 in eq. (ii), we get

$$(-3 - y)(y) = -4$$

$$\Rightarrow -3y - y^{2} = -4$$

$$\Rightarrow y^{2} + 3y = 4$$

$$\Rightarrow y^{2} + 3y - 4 = 0$$

$$\Rightarrow y^{2} + 4y - y - 4 = 0$$

$$\Rightarrow y(y + 4) - 1(y + 4) = 0$$

$$\Rightarrow (y - 1)(y + 4) = 0$$

$$\Rightarrow y - 1 = 0 \text{ or } y + 4 = 0$$

$$\Rightarrow y = 1 \text{ or } y = -4$$

When y = 1, then

 $x^{2} = -3 - 1$ = -4 [It is not possible] When y = -4, then $x^{2} = -3 - (-4)$ = -3 + 4 $\Rightarrow x^{2} = 1$ $\Rightarrow x = \sqrt{1}$ $\Rightarrow x = \pm 1$

Hence, the values of $x = \pm 1$ and y = -4

Q. 24. If z = (2 - 3i), prove that $z^2 - 4z + 13 = 0$ and hence deduce that $4z^3 - 3z^2 + 169 = 0$.

Answer : Given: z = 2 - 3iTo Prove: $z^2 - 4z + 13 = 0$ Taking LHS, $z^2 - 4z + 13$ Putting the value of z = 2 - 3i, we get $(2 - 3i)^2 - 4(2 - 3i) + 13$ $= 4 + 9i^2 - 12i - 8 + 12i + 13$ = 9(-1) + 9 = -9 + 9 = 0 = RHSHence, $z^2 - 4z + 13 = 0 ...(i)$ Now, we have to deduce $4z^3 - 3z^2 + 169$ Now, we will expand $4z^3 - 3z^2 + 169$ in this way so that we can use the above equation i.e. $z^2 - 4z + 13$ = $4z^3 - 16z^2 + 13z^2 + 52z - 52z + 169$ Re - arrange the terms, = $4z^3 - 16z^2 + 52z + 13z^2 - 52z + 169$ = $4z(z^2 - 4z + 13) + 13(z^2 - 4z + 13)$ = 4z(0) + 13(0) [from eq. (i)] = 0= RHS Hence Proved Q. 25. If $(1 + i)z = (1 - i)^{\overline{z}}$ then prove that $z = -i\overline{z}$. Answer : Let z = x + iy

Then,

 $\bar{z} = x - iy$

Now, Given: $(1 + i)z = (1 - i)^{\vec{Z}}$

Therefore,

$$(1 + i)(x + iy) = (1 - i)(x - iy)$$

x + iy + xi + i²y = x - iy - xi + i²y
We know that i² = -1, therefore,
x + iy + ix - y = x - iy - ix - y
2xi + 2yi = 0
x = -y
Now, as x = -y

$$z = -\frac{\overline{z}}{\overline{z}}$$

Hence, Proved.

Q. 26. If
$$\left(\frac{z-1}{z+1}\right)$$
 is purely an imaginary number and $z \neq -1$ then find the value of $|z|$.

Answer : Given: $\frac{z-1}{z+1}$ is purely imaginary number

Let z = x + iySo, $\frac{z-1}{z+1} = \frac{x+iy-1}{x+iy+1}$ $= \frac{(x-1) + iy}{(x+1) + iy}$

Now, rationalizing the above by multiply and divide by the conjugate of [(x + 1) + iy]

$$= \frac{(x-1) + iy}{(x+1) + iy} \times \frac{(x+1) - iy}{(x+1) - iy}$$

$$= \frac{[(x-1) + iy][(x+1) - iy]}{[(x+1) + iy][(x+1) - iy]}$$
Using (a - b)(a + b) = (a² - b²)

$$= \frac{(x-1)[(x+1) - iy] + iy[(x+1) - iy]}{(x+1)^2 - (iy)^2}$$

$$= \frac{(x-1)(x+1) + (x-1)(-iy) + iy(x+1) + (iy)(-iy)}{x^2 + 1 + 2x - i^2y^2}$$

$$= \frac{x^2 - 1 - ixy + iy + ixy + iy - i^2y^2}{x^2 + 1 + 2x - i^2y^2}$$

Putting $i^2 = -1$

$$= \frac{x^2 - 1 + 2iy - (-1)y^2}{x^2 + 1 + 2x - (-1)y^2}$$
$$= \frac{x^2 - 1 + 2iy + y^2}{x^2 + 1 + 2x + y^2}$$
$$= \frac{x^2 - 1 + y^2}{x^2 + 1 + 2x + y^2} + i\frac{2y}{x^2 + 1 + 2x + y^2}$$

Since, the number is purely imaginary it means real part is 0

$$\therefore \frac{x^2 - 1 + y^2}{x^2 + 1 + 2x + y^2} = 0$$

$$\Rightarrow x^2 + y^2 - 1 = 0$$

$$\Rightarrow x^2 + y^2 = 1$$

$$\Rightarrow \sqrt{x^2 + y^2} = \sqrt{1}$$

$$\Rightarrow \sqrt{x^2 + y^2} = 1$$

$$\therefore |z| = 1$$

Q. 27. Solve the system of equations, $\text{Re}(z^2) = 0$, |z| = 2.

Answer : Given: $Re(z^2) = 0$ and |z| = 2

Let z = x + iy

 $\therefore |z| = \sqrt{x^2 + y^2}$

 $\Rightarrow 2 = \sqrt{x^2 + y^2}$ [Given]

Squaring both the sides, we get

 $x^{2} + y^{2} = 4 \dots(i)$ Since, z = x + iy $\Rightarrow z^{2} = (x + iy)^{2}$

$$\Rightarrow z^{2} = x^{2} + i^{2}y^{2} + 2ixy$$

$$\Rightarrow z^{2} = x^{2} + (-1)y^{2} + 2ixy$$

$$\Rightarrow z^{2} = x^{2} - y^{2} + 2ixy$$
It is given that Re(z²) = 0
$$\Rightarrow x^{2} - y^{2} = 0 \dots (ii)$$
Adding eq. (i) and (ii), we get
$$x^{2} + y^{2} + x^{2} - y^{2} = 4 + 0$$

$$\Rightarrow 2x^{2} = 4$$

$$\Rightarrow x^{2} = 2$$

$$\Rightarrow x = \pm \sqrt{2}$$
Putting the value of $x^{2} = 2$ in eq. (i), we get

 $2 + y^2 = 4$ $\Rightarrow y^2 = 2$

Hence, $z = \sqrt{2} \pm i\sqrt{2}$, $-\sqrt{2} \pm i\sqrt{2}$

Q. 28. Find the complex number z for which |z| = z + 1 + 2i.

Answer : Given: |z| = z + 1 + 2i

Consider,

$$|z| = (z + 1) + 2i$$

Squaring both the sides, we get

$$|z|^{2} = [(z + 1) + (2i)]^{2}$$

$$\Rightarrow |z|^{2} = |z + 1|^{2} + 4i^{2} + 2(2i)(z + 1)$$

$$\Rightarrow |z|^{2} = |z|^{2} + 1 + 2z + 4(-1) + 4i(z + 1)$$

$$\Rightarrow 0 = 1 + 2z - 4 + 4i(z + 1)$$

$$\Rightarrow 2z - 3 + 4i(z + 1) = 0$$

Let $z = x + iy$

$$\Rightarrow 2(x + iy) - 3 + 4i(x + iy + 1) = 0$$

$$\Rightarrow 2x + 2iy - 3 + 4ix + 4i^{2}y + 4i = 0$$

$$\Rightarrow 2x + 2iy - 3 + 4ix + 4(-1)y + 4i = 0$$

$$\Rightarrow 2x - 3 - 4y + i(4x + 2y + 4) = 0$$

Comparing the real part, we get
 $2x - 3 - 4y = 0$

$$\Rightarrow 2x - 4y = 3 ...(i)$$

Comparing the imaginary part, we get
 $4x + 2y + 4 = 0$

$$\Rightarrow 2x + y + 2 = 0$$

$$\Rightarrow 2x + y - 2 ...(ii)$$

Subtracting eq. (ii) from (i), we get
 $2x - 4y - (2x + y) = 3 - (-2)$

$$\Rightarrow 2x - 4y - 2x - y = 3 + 2$$

$$\Rightarrow -5y = 5$$

$$\Rightarrow y = -1$$

Putting the value of $y = -1$ in eq. (i), we get

2x - 4(-1) = 3 $\Rightarrow 2x + 4 = 3$ $\Rightarrow 2x = 3 - 4$

$$\Rightarrow 2x = -1$$
$$\Rightarrow x = -\frac{1}{2}$$

Hence, the value of z = x + iy

$$= -\frac{1}{2} + i(-1)$$
$$z = -\frac{1}{2} - i$$

Exercise 5C

Q. 1. Express each of the following in the form (a + ib) and find its conjugate.

$$(i) \frac{1}{(4+3i)}$$

$$(ii) (2+3i)^{2}$$

$$(iii) \frac{(2-i)}{(1-2i)^{2}}$$

$$(iii) \frac{(1+i)(1+2i)}{(1+3i)}$$

$$(iv) \frac{(1+2i)(1+2i)}{(1+3i)}^{2}$$

$$(v) \frac{(2+i)}{(3-i)(1+2i)}$$

(i) Let $Z = \frac{1}{4+3i} = \frac{1}{4+3i} \times \frac{4-3i}{4-3i}$ $=\frac{4-3i}{16+9}=\frac{4}{25}-\frac{3}{25}i$ $\vec{z} = \frac{4}{25} + \frac{3}{25}i$ (ii) Let $z = (2 + 3i)^2 = (2 + 3i)(2 + 3i)$ $= 4 + 6i + 6i + 9i^{2}$ $= 4 + 12i + 9i^{2}$ = 4 + 12i - 9= - 5 + 12i $\bar{z} = -5 - 12i$ (iii) Let $Z = \frac{(2-i)}{(1-2i)^2} = \frac{(2-i)}{1+4i^2-4i}$ $=\frac{(2-i)}{1-4i-4}=\frac{2-i}{-3-4i}$ $\frac{2-i}{-3-4i} \times \frac{-3+4i}{-3+4i} = \frac{(2-i)(-3+4i)}{9+16}$ $=\frac{-6+11i-4i^2}{25}=\frac{-2+11i}{25}$ $=\frac{-2}{25}+\frac{11}{25}i$ $\bar{z} = \frac{-2}{25} - \frac{11}{25}i$ (iv) Let $Z = \frac{(1+i)(1+2i)}{(1+3i)} = \frac{1+i+2i+2i^2}{(1+3i)}$

$=\frac{1+3i-2}{1+3i}=\frac{-1+3i}{1+3i}$
$= \frac{-1+3i}{1+3i} \times \frac{1-3i}{1-3i} = \frac{-1+3i+3i-9i^2}{1-9i^2} = \frac{-1+6i+9}{1+9} = \frac{8+6i}{10}$
$=\frac{8}{10}+\frac{6}{10}i$
$\bar{z} = \frac{8}{10} - \frac{6}{10}i$
(v) Let $Z = \left(\frac{1+2i}{2+i}\right)^2 = \frac{1+4i^2+2i}{4+i^2+4i} = \frac{1-4+2i}{4-1+4i} = \frac{-3+2i}{3+4i}$
$= \frac{-3 + 2i}{3 + 4i} \times \frac{3 - 4i}{3 - 4i}$
$=\frac{-9+12i+6i-8i^2}{9+16}=\frac{-9+18i+8}{25}=\frac{-1+18i}{25}$
$=\frac{-1}{25}+\frac{18}{25}i$
$\bar{z} = \frac{-1}{25} - \frac{18}{25}i$
(vi) Let $Z = \frac{(2+i)}{(3-i)(1+2i)} = \frac{2+i}{3+6i-1-2i^2}$
$=\frac{2+i}{3+6i-1+2}=\frac{2+i}{4+6i}$
$= \frac{2+i}{4+6i} \times \frac{4-6i}{4-6i}$
$=\frac{8-12i+4i-6i^2}{16+36}$

$$= \frac{8 - 8i + 6}{52}$$
$$= \frac{14 - 8i}{52}$$
$$= \frac{14}{52} - \frac{8}{52}i$$
$$\bar{z} = \frac{14}{52} + \frac{8}{52}i$$

Q. 2. Express each of the following in the form (a + ib) and find its multiplicative inverse:

(i)
$$\frac{1+2i}{1-3i}$$

(i) $\frac{(1+7i)}{(2-i)^2}$
(ii) $\frac{-4}{(1+i\sqrt{3})}$

Answer :

(i) Let
$$Z = \frac{1+2i}{1-3i}$$

 $= \frac{1+2i}{1-3i} \times \frac{1+3i}{1+3i} = \frac{1+3i+2i+6i^2}{1-9i^2}$
 $= \frac{1+5i+6i^2}{1+9} = \frac{-5+5i}{10}$
 $Z = \frac{-1}{2} + \frac{1}{2}i$

$$\Rightarrow \bar{z} = \frac{-1}{2} - \frac{1}{2}i$$
$$\Rightarrow |z|^2 = \left(\frac{-1}{2}\right)^2 + \left(\frac{1}{2}\right)^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

 $\therefore \text{ The multiplicative inverse of } \frac{1+2i}{1-3i}$

$$z^{-1} = \frac{\bar{z}}{|z|^2} = \frac{\frac{-1}{2} - \frac{1}{2}i}{\frac{1}{2}} = -1 - i$$

(ii) Let $z = \frac{1+7i}{(2-i)^2}$
 $= \frac{1+7i}{4+i^2-4i} = \frac{1+7i}{4-1-4i} = \frac{1+7i}{3-4i}$
 $= \frac{1+7i}{3-4i} \times \frac{3+4i}{3+4i}$
 $= \frac{3+4i+21i+28i^2}{9+16} = \frac{3+25i-28}{25} = \frac{-25+25i}{25}$
 $z = -1+i$
 $\Rightarrow \bar{z} = -1-i$
 $\Rightarrow |z|^2 = (-1)^2 + (1)^2 = 1 + 1 = 2$
 \therefore The multiplicative inverse of $\frac{1+7i}{(2-i)^2}$
 $z^{-1} = \frac{\bar{z}}{|z|^2} = \frac{-1-i}{2} = \frac{-1}{2} - \frac{1}{2}i$
(iii) Let $z = \frac{-4}{(1+i\sqrt{3})}$

$$= \frac{-4}{1 + i\sqrt{3}} \times \frac{1 - i\sqrt{3}}{1 - i\sqrt{3}}$$

$$= \frac{-4 + i4\sqrt{3}}{1 + 3} = \frac{-4 + i4\sqrt{3}}{4}$$

$$= -1 + i\sqrt{3}$$

$$Z = -1 + i\sqrt{3}$$

$$\Rightarrow \overline{z} = -1 - i\sqrt{3}$$

$$\Rightarrow |z|^{2} = (-1)^{2} + (\sqrt{3})^{2} = 1 + 3 = 4$$

$$\therefore \text{ The multiplicative inverse of } \frac{-4}{(1 + i\sqrt{3})}$$

$$z^{-1} = \frac{\overline{z}}{|z|^{2}} = \frac{-1 + i\sqrt{3}}{4} = \frac{-1}{4} + \frac{i\sqrt{3}}{4}$$

$$Q. 3. \text{ If } (x + iy)^{3} = (u + iv) \text{ then prove that } \left(\frac{u}{x} + \frac{v}{y}\right) = 4 (x^{2} - y^{2}).$$
Answer : Given that, $(x + iy)^{3} = (u + iv)$

$$\Rightarrow x^{3} + (iy)^{3} + 3x^{2}iy + 3xi^{2}y^{2} = u + iv$$

$$\Rightarrow x^{3} - iy^{3} + 3x^{2}iy - 3xy^{2} = u + iv$$
On equating real and imaginary parts, we get
$$U = x^{3} - 3xy^{2} \text{ and } v = 3x^{2}y - y^{3}$$

Now, $\frac{u}{x} + \frac{v}{y} = \frac{x^3 - 3xy^2}{x} + \frac{3x^2y - y^3}{y}$ = $\frac{x(x^2 - 3y^2)}{x} + \frac{y(3x^2 - y^2)}{y}$

$$= x^{2} - 3y^{2} + 3x^{2} - y^{2}$$

= 4x² - 4y²
= 4(x² - y²)
$$\frac{u}{x} + \frac{v}{y} = 4(x^{2} - y^{2})$$

Hence, x = y Hence, x = y

Q. 4. If $(x + iy)^{1/3} = (a + ib)$ then prove that $\left(\frac{x}{a} + \frac{y}{b}\right) = 4 (a^2 - b^2)$.

Answer : Given that, $(x + iy)^{1/3} = (a + ib)$ $\Rightarrow (x + iy) = (a + ib)^3$

$$\Rightarrow (a + ib)^{3} = x + iy$$

$$\Rightarrow a^{3} + (ib)^{3} + 3a^{2}ib + 3ai^{2}b^{2} = x + iy$$

$$\Rightarrow a^{3} - ib^{3} + 3a^{2}ib - 3ab^{2} = x + iy$$

$$\Rightarrow a^{3} - 3ab^{2} + i(3a^{2}b - b^{3}) = x + iy$$

On equating real and imaginary parts, we get

$$x = a^{3} - 3ab^{2} \text{ and } y = 3a^{2}b - b^{3}$$
Now, $\frac{x}{a} + \frac{y}{b} = \frac{a^{3} - 3ab^{2}}{a} + \frac{3a^{2}b - b^{3}}{b}$

$$= \frac{a(a^{2} - 3b^{2})}{a} + \frac{b(3a^{2} - b^{2})}{b}$$

$$= a^{2} - 3b^{2} + 3a^{2} - b^{2}$$

$$= 4a^{2} - 4b^{2}$$

$$= 4(a^{2} - b^{2})$$

$$\frac{x}{a} + \frac{y}{b} = 4(a^{2} - b^{2})$$

Hence, $\frac{x}{a} + \frac{y}{b} = 4(a^2 - b^2)$

Q. 5. Express $(1 - 2i)^{-3}$ in the form (a + ib).

Answer : We have, $(1 - 2i)^{-3}$

$$\Rightarrow \frac{1}{(1-2i)^3} = \frac{1}{1-8i^3-6i+12i^2} = \frac{1}{1+8i-6i-12} = \frac{1}{2i-11}$$

$$\Rightarrow \frac{1}{-11+2i}$$

$$= \frac{1}{-11+2i} \times \frac{-11-2i}{-11-2i}$$

$$= \frac{-11-2i}{(-11)^2-(2i)^2} = \frac{-11-2i}{121+4}$$

$$= \frac{-11-2i}{125}$$

$$= \frac{-11}{125} - \frac{2i}{125}$$

Q. 6. Find real values of x and y for which

 $(x^4 + 2xi) - (3x^2 + iy) = (3 - 5i) + (1 + 2iy).$

Answer : We have, $(x^4 + 2xi) - (3x^2 + iy) = (3 - 5i) + (1 + 2iy)$.

$$\Rightarrow x^4 + 2xi - 3x^2 + iy = 3 - 5i + 1 + 2iy$$

 \Rightarrow (x⁴ - 3x²) + i(2x - y) = 4 + i(2y - 5)

On equating real and imaginary parts, we get

$$x^4 - 3x^2 = 4$$
 and $2x - y = 2y - 5$

$$\Rightarrow x^4 - 3x^2 - 4 = 0$$
 eq(i) and $2x - y - 2y + 5 = 0$ eq(ii)

Now from eq (i), $x^4 - 3x^2 - 4 = 0$

$$\Rightarrow x^4 - 4x^2 + x^2 - 4 = 0$$

$$\Rightarrow x^2 (x^2 - 4) + 1(x^2 - 4) = 0$$

$$\Rightarrow (x^2 - 4)(x^2 + 1) = 0$$

 \Rightarrow x² - 4 = 0 and x² + 1 = 0 \Rightarrow x = ±2 and x = $\sqrt{-1}$ Real value of $x = \pm 2$ Putting x = 2 in eq (ii), we get 2x - 3y + 5 = 0 \Rightarrow 2x2 - 3y + 5 = 0 \Rightarrow 4 - 3y + 5 = 0 = 9 - 3y = 0 \Rightarrow y = 3 Putting x = -2 in eq (ii), we get 2x - 3y + 5 = 0 \Rightarrow 2x - 2 - 3y + 5 = 0 \Rightarrow - 4 - 3y + 5 = 0 = 1 - 3y = 0 $y = \frac{1}{3}$ - 0 show that z is 1-12

Q. 7. If
$$z^2 + |z|^2 = 0$$
, show that z is purely imaginary.

$$\Rightarrow |z| = \sqrt{a^2 + b^2}$$

Now, $z^2 + |z|^2 = 0$

$$\Rightarrow (a + ib)^2 + a^2 + b^2 = 0$$

$$\Rightarrow a^2 + 2abi + i^2b^2 + a^2 + b^2 = 0$$

$$\Rightarrow a^2 + 2abi - b^2 + a^2 + b^2 = 0$$

$$\Rightarrow 2a^2 + 2abi = 0$$

$$\Rightarrow 2a(a + ib) = 0$$

Either $a = 0$ or $z = 0$

Answer : Let z= a + ib

Since z≠ 0

 $a = 0 \Rightarrow z$ is purely imaginary.

Q. 8. If
$$\frac{z-1}{z+1}$$
 is purely imaginary and $z = -1$, show that $|z| = 1$.

Answer : Let z= a + ib

Now, $\frac{z-1}{z+1} = \frac{a+ib-1}{a+ib+1}$

$$= \frac{(a-1) + ib}{(a+1) + ib}$$

$$\Rightarrow \frac{(a-1) + ib}{(a+1) + ib} \times \frac{(a+1) - ib}{(a+1) - ib}$$

$$= \frac{a^2 + a - iab - a - 1 + ib + iab + ib - i^2b^2}{(a+1)^2 + b^2}$$

$$= \frac{a^2 + -1 + ib + ib + b^2}{(a+1)^2 + b^2} = \frac{a^2 + b^2 - 1 + 2ib}{(a+1)^2 + b^2}$$

Given that $\frac{z}{z+1}$ is purely imaginary \Rightarrow real part = 0

$$\Rightarrow \frac{a^2 + b^2 - 1}{(a + 1)^2 + b^2} = 0$$
$$\Rightarrow a^2 + b^2 - 1 = 0$$
$$\Rightarrow a^2 + b^2 = 1$$
$$\Rightarrow |z| = 1$$

Hence proved.

Q. 9. If z_1 is a complex number other than -1 such that $|z_1| = 1$ and $z_2 = \frac{Z_1 - 1}{Z_1 + 1}$ then show that z2 is purely imaginary.

Now, $Z_2 = \frac{z_1 - 1}{z_1 + 1} = \frac{a + ib - 1}{a + ib + 1} = \frac{(a - 1) + ib}{(a + 1) + ib}$ $\Rightarrow \frac{(a - 1) + ib}{(a + 1) + ib} \times \frac{(a + 1) - ib}{(a + 1) - ib}$ $= \frac{a^2 + a - iab - a - 1 + ib + iab + ib - i^2b^2}{(a + 1)^2 + b^2}$ $= \frac{a^2 + -1 + ib + ib + b^2}{(a + 1)^2 + b^2} = \frac{a^2 + b^2 - 1 + 2ib}{(a + 1)^2 + b^2}$ $= \frac{(a^2 + b^2) - 1 + 2ib}{(a + 1)^2 + b^2} = \frac{1 - 1 + 2ib}{(a + 1)^2 + b^2} [\because a^2 + b^2 = 1]$ $= 0 + \frac{2ib}{(a + 1)^2 + b^2}$

Answer : Let $z_1 = a + ib$ such that $|z_1| = \sqrt{a^2 + b^2} = 1$

Thus, the real part of z_2 is 0 and z_2 is purely imaginary.

Q. 10. For all z C, prove that

(i)
$$\frac{1}{2}(z+\overline{z}) = \operatorname{Re}(z)$$
(ii)
$$\frac{1}{2}(z+\overline{z}) = \operatorname{Re}(z)$$
(iii)
$$\overline{z}\overline{z} = |z|^{2}$$
(iv)
$$\frac{(z+\overline{z})}{|s||real|}$$

(v)
$$(z-\overline{z})$$
 is 0 or imaginary.

Answer :

Let z = a + ib $\Rightarrow \bar{z} = a - ib$ Now, $\frac{z + \bar{z}}{2} = \frac{(a + ib) + (a - ib)}{2} = \frac{2a}{2} = a = Re(z)$ Hence Proved. (ii) Let z = a + ib $\Rightarrow \bar{z} = a - ib$ $w, \frac{z+\bar{z}}{2}$ $=\frac{(a+ib)+(a-ib)}{2}$ $=\frac{2a}{2}=\frac{a}{1}=Re(z)$ Hence, Proved. (iii) Let z = a + ib $\Rightarrow \bar{z} = a - ib$ $Now, z\bar{z} = (a + ib)(a - ib) = a^2 - (ib)^2 = a^2 + b^2 = |z|^2$ Hence Proved. (iv) Let z = a + ib $\Rightarrow \bar{z} = a - ib$

Now $,z + \bar{z} = (a + ib) + (a - ib) = 2a = 2Re(z)$ Hence, $z + \bar{z}$ is real. (v) Case 1. Let z = a + 0i $\Rightarrow \bar{z} = a - 0i$ Now $,z - \bar{z} = (a + 0i) - (a - 0i) = 0$ Case 2. Let z = 0 + bi $\Rightarrow \bar{z} = 0 - bi$ Now $,z - \bar{z} = (0 + ib) - (0 - ib) = 2ib = 2iIm(z) = Imaginary$ Case 2. Let z = a + ib $\Rightarrow \bar{z} = a - ib$ Now $,z - \bar{z} = (a + ib) - (a - ib) = 2ib = 2iIm(z) = Imaginary$ $(z - \bar{z})$

Thus, $(z-\overline{z})$ is 0 or imaginary.

Q. 11. If $z_1 = (1 + i)$ and $z_2 = (-2 + 4i)$, prove that Im $\left(\frac{\overline{z_1 z_2}}{\overline{z_1}}\right) = 2$

Answer : We have, $z_1 = (1 + i)$ and $z_2 = (-2 + 4i)$

Now, $\frac{z_1 z_2}{\overline{z_1}} = \frac{(1+i)(-2+4i)}{(1+i)}$ = $\frac{-2 + 4i - 2i + 4i^2}{(1-i)} = \frac{-2 + 4i - 2i - 4}{(1-i)} = \frac{-6 + 2i}{(1-i)}$ = $\frac{-6 + 2i}{(1-i)} \times \frac{(1+i)}{(1+i)}$

$$= \frac{-6 - 6i + 2i + 2i^2}{1 + 1}$$
$$= \frac{-6 - 4i - 2}{2} = \frac{-8 - 4i}{2}$$
$$= -4 - 2i$$

Hence,
$$Im\left(\frac{z_1z_2}{z_2}\right) = -2$$

Q. 12. If a and b are real numbers such that $a^2 + b^2 = 1$ then show that a real value

$$\frac{1-ix}{1+ix} = (a-ib)$$

of x satisfies the equation, 1+1

Answer : We have,

$$\frac{1-ix}{1+ix} = (a-ib) = \frac{a-ib}{1}$$

Applying componendo and dividendo, we get

$$\frac{(1-ix) + (1+ix)}{(1-ix) - (1+ix)} = \frac{a-ib+1}{a-ib-1}$$

$$\Rightarrow \frac{1-ix+1+ix}{1-ix-1+ix} = \frac{a-ib+1}{a-ib-1}$$

$$\Rightarrow \frac{2}{-2ix} = \frac{a-ib+1}{-(-a+ib+1)}$$

$$\Rightarrow ix = \frac{1-a+ib}{1+a-ib} \times \frac{1+a+ib}{1+a+ib}$$

$$= \frac{1+a+ib-a-a^2-aib+ib+aib+i^2b^2}{(1+a)^2-i^2b^2}$$

$$\Rightarrow ix = \frac{1-a^2-b^2+2ib}{(1+a)^2-i^2b^2} = \frac{1-a^2-b^2+2ib}{(1+a)^2+b^2} = \frac{1-(a^2+b^2)+2ib}{1+a^2+2a+b^2}$$

$$\Rightarrow ix = \frac{1 - (a^2 + b^2) + 2ib}{1 + 2a + (a^2 + b^2)}$$
$$\Rightarrow ix = \frac{1 - 1 + 2ib}{1 + 2a + 1} [\because a^2 + b^2 = 1]$$
$$\Rightarrow ix = \frac{2ib}{2 + 2a}$$
$$\Rightarrow x = \frac{2b}{2 + 2a} = Real value$$

Exercise 5D

Q. 1. Find the modulus of each of the following complex numbers and hence express each of them in polar form: 4

Answer : Let
$$Z = 4 = r(\cos\theta + i\sin\theta)$$

Now, separating real and complex part, we get

4 = rcosθ.....eq.1

0 = rsinθ.....eq.2

Squaring and adding eq.1 and eq.2, we get

$$16 = r^2$$

Since r is always a positive no., therefore,

r = 4,

Hence its modulus is 4.

Now, dividing eq.2 by eq.1, we get,

 $\frac{r\sin\theta}{r\cos\theta} = \frac{0}{4}$

 $Tan\theta = 0$

Since $\cos\theta = 1$, $\sin\theta = 0$ and $\tan\theta = 0$. Therefore the θ lies in first quadrant.

Tan θ = 0, therefore θ = 0°

Representing the complex no. in its polar form will be

 $Z = 4(\cos 0^\circ + i \sin 0^\circ)$

Q. 2. Find the modulus of each of the following complex numbers and hence express each of them in polar form: -2

Answer : Let $Z = -2 = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get

-2 = rcosθ..... eq.1

 $0 = rsin\theta \dots eq.2$

Squaring and adding eq.1 and eq.2, we get

$$4 = r^2$$

Since r is always a positive no, therefore,

r = 2,

Hence its modulus is 2.

Now, dividing eq.2 by eq.1, we get,

 $\frac{r\sin\theta}{r\cos\theta} = \frac{0}{-2}$

 $Tan\theta = 0$

Since $\cos\theta = -1$, $\sin\theta = 0$ and $\tan\theta = 0$. Therefore the θ lies in second quadrant.

Tan θ = 0, therefore θ = π

Representing the complex no. in its polar form will be

 $Z = 2(\cos\pi + i\sin\pi)$

Q. 3. Find the modulus of each of the following complex numbers and hence express each of them in polar form: –i

Answer : Let $Z = -i = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get

0 = rcosθ.....eq.1

-1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

$$1 = r^2$$

Since r is always a positive no., therefore,

r = 1,

Hence its modulus is 1.

Now, dividing eq.2 by eq.1, we get,

 $\frac{r\sin\theta}{r\cos\theta} = \frac{-1}{0}$

Tanθ = -∞

Since $\cos\theta = 0$, $\sin\theta = -1$ and $\tan\theta = -\infty$. Therefore the θ lies in fourth quadrant.

Tan $\theta = -\infty$, therefore $\theta = -\frac{\pi}{2}$

Representing the complex no. in its polar form will be

 $Z = 1\{\cos\left(-\frac{\pi}{2}\right) + i\sin(-\frac{\pi}{2})\}$

Q. 4. Find the modulus of each of the following complex numbers and hence express each of them in polar form: 2i

Answer : Let $Z = 2i = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get

0 = rcosθeq.1

2 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

 $4 = r^2$

Since r is always a positive no., therefore,

r = 2,

Hence its modulus is 2.

Now, dividing eq.2 by eq.1, we get,

 $\frac{rsin\theta}{rcos\theta} = \frac{2}{0}$

Tanθ = ∞

Since $\cos\theta = 0$, $\sin\theta = 1$ and $\tan\theta = \infty$. Therefore the θ lies in first quadrant.

 $\tan \theta = \infty$, therefore $\theta = \frac{\pi}{2}$

Representing the complex no. in its polar form will be

 $Z = 2\{\cos\left(\frac{\pi}{2}\right) + i\sin(\frac{\pi}{2})\}$

Q. 5. Find the modulus of each of the following complex numbers and hence express each of them in polar form: 1 - i

Answer : Let $Z = 1 - i = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get

1 = rcosθeq.1

-1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

$$2 = r^2$$

Since r is always a positive no., therefore,

r = √2,

Hence its modulus is $\sqrt{2}$.

Now, dividing eq.2 by eq.1, we get,

 $\frac{r\sin\theta}{r\cos\theta} = \frac{-1}{1}$

 $Tan\theta = -1$

Since $\cos\theta = \frac{1}{\sqrt{2}}$, $\sin\theta = -\frac{1}{\sqrt{2}}$ and $\tan\theta = -1$. Therefore the θ lies in fourth quadrant.

Tan θ = -1, therefore $\theta = -\frac{\pi}{4}$

Representing the complex no. in its polar form will be

 $Z = \sqrt{2} \{ \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}) \}$

Q. 6. Find the modulus of each of the following complex numbers and hence express each of them in polar form: -1 + i

Answer : Let $Z = 1 - i = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get

1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

$$2 = r^2$$

Since r is always a positive no., therefore,

$$r = \sqrt{2}$$

Hence its modulus is $\sqrt{2}$.

Now, dividing eq.2 by eq.1, we get,

 $\frac{rsin\theta}{rcos\theta} = \frac{1}{-1}$

 $Tan\theta = -1$

 $cos\theta=-\frac{1}{\sqrt{2}}$, $sin\theta=\frac{1}{\sqrt{2}}$ and $tan\theta$ = -1. Therefore the θ lies in second quadrant.

Tan θ = -1, therefore $\theta = \frac{3\pi}{4}$

Representing the complex no. in its polar form will be

$$Z = \sqrt{2} \left\{ \cos(\frac{3\pi}{4}) + i\sin(\frac{3\pi}{4}) \right\}$$

Q. 7. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\sqrt{3}+i$

Answer: Let
$$Z = \sqrt{3} + i = r(\cos\theta + i\sin\theta)$$

Now , separating real and complex part , we get

Squaring and adding eq.1 and eq.2, we get

$$4 = r^2$$

Since r is always a positive no., therefore,

r =2,

Hence its modulus is 2.

$$\frac{r\sin\theta}{r\cos\theta} = \frac{1}{\sqrt{3}}$$
$$\operatorname{Tan}\theta = \frac{1}{\sqrt{3}}$$

Since $\cos\theta = \frac{\sqrt{3}}{2}$, $\sin\theta = \frac{1}{2}$ and $\tan\theta = \frac{1}{\sqrt{3}}$. Therefore the θ lies in first quadrant.

 $\operatorname{Tan}\theta = \frac{1}{\sqrt{3}}, \text{ therefore } \theta = \frac{\pi}{6}$

Representing the complex no. in its polar form will be

 $Z = 2\left\{\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right\}$

Q. 8. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $^{-1+\sqrt{3}i}$

Answer : Let $Z = \sqrt{3}i - 1 = r(\cos\theta + i\sin\theta)$

Now , separating real and complex part , we get

 $\sqrt{3}$ = rsin θ eq.2

Squaring and adding eq.1 and eq.2, we get

$$4 = r^2$$

Since r is always a positive no., therefore,

Hence its modulus is 2.

$$\frac{r\sin\theta}{r\cos\theta} = \frac{\sqrt{3}}{-1}$$
$$Tan\theta = -\frac{\sqrt{3}}{1}$$

 $\cos\theta = -\frac{1}{2}$, $\sin\theta = \frac{\sqrt{3}}{2}$ and $\tan\theta = -\frac{\sqrt{3}}{1}$. therefore the θ lies in second quadrant.

Tan
$$\theta = -\sqrt{3}$$
, therefore $\theta = \frac{2\pi}{3}$

Representing the complex no. in its polar form will be

$$Z = 2\left\{\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right\}$$

Q. 9. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $1-\sqrt{3}i$

Answer: Let
$$Z = -\sqrt{3}i + 1 = r(\cos\theta + i\sin\theta)$$

Now, separating real and complex part, we get

$$-\sqrt{3}$$
 = rsin θ eq.2

Squaring and adding eq.1 and eq.2, we get

$$4 = r^2$$

Since r is always a positive no., therefore,

Hence its modulus is 2.

$$\frac{r\sin\theta}{r\cos\theta} = \frac{-\sqrt{3}}{1}$$
$$Tan\theta = -\frac{\sqrt{3}}{1}$$

 $\cos\theta = \frac{1}{2}$, $\sin\theta = -\frac{\sqrt{3}}{2}$ and $\tan\theta = -\frac{\sqrt{3}}{1}$. Therefore the θ lies in the fourth quadrant.

Tan $\theta = -\sqrt{3}$, therefore $\theta = -\frac{\pi}{3}$

Representing the complex no. in its polar form will be

 $Z = 2\{\cos^{\left(-\frac{\pi}{3}\right)} + i\sin^{\left(-\frac{\pi}{3}\right)}\}$

Q. 10. Find the modulus of each of the following complex numbers and hence express each of them in polar form: 2 - 2i

Answer : Let $Z = 2 - 2i = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get

-2 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

$$8 = r^2$$

Since r is always a positive no. therefore,

$$r = 2^{\sqrt{2}},$$

Hence its modulus is $2\sqrt{2}$.

Now, dividing eq.2 by eq.1, we get,

 $\frac{r\sin\theta}{r\cos\theta} = \frac{-2}{2}$

 $Tan\theta = -1$

 $\cos\theta=\frac{1}{\sqrt{2}},\,\sin\theta=-\frac{1}{\sqrt{2}}$ and $\tan\theta$ = -1 . Therefore the θ lies in the fourth quadrant.

Tan θ = -1, therefore θ = $-\frac{\pi}{4}$

Representing the complex no. in its polar form will be

 $Z = 2\sqrt{2} \{ \cos(-\frac{\pi}{4}) + i\sin(-\frac{\pi}{4}) \}$

Q. 11. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $-4+4\sqrt{3}i$

Answer : Let $Z = 4\sqrt{2i} - 4 = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get

-4 = rcosθeq.1

 $4\sqrt{3} = rsin\theta$ eq.2

Squaring and adding eq.1 and eq.2, we get

 $64 = r^2$

Since r is always a positive no., therefore,

r = 8

Hence its modulus is 8.

Now, dividing eq.2 by eq.1, we get,

 $\frac{r\sin\theta}{r\cos\theta} = \frac{4\sqrt{3}}{-4}$ $Tan\theta = -\frac{\sqrt{3}}{1}$ $since \frac{\cos\theta}{1} = -\frac{1}{2}, \sin\theta = \frac{\sqrt{3}}{2} and \tan\theta = -\frac{\sqrt{3}}{1}.$ Therefore the θ lies in second the quadrant.

Tan θ = - $\sqrt{3}$, therefore $\theta = \frac{2\pi}{3}$.

Representing the complex no. in its polar form will be

 $Z = 8\{\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})\}$

Q. 12. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $-3\sqrt{2} + 3\sqrt{2}i$

Answer : Let $Z = 3\sqrt{2}i - 3\sqrt{2} = r(\cos^{\theta} + i\sin\theta)$

Now, separating real and complex part, we get

-3√2 = rcosθeq.1

 $3\sqrt{2} = rsin\theta$ eq.2

Squaring and adding eq.1 and eq.2, we get

$$36 = r^2$$

Since r is always a positive no., therefore,

r = 6

Hence its modulus is 6.

Now, dividing eq.2 by eq.1, we get,

 $\frac{rsin\theta}{rcos\theta} = \frac{3\sqrt{2}}{-3\sqrt{2}}$

 $Tan\theta = -\frac{1}{1}$

 $cos\theta=-\frac{1}{\sqrt{2}}$, $sin\theta=\frac{1}{\sqrt{2}}$ and $tan\theta$ = -1 . therefore the θ lies in secothe nd quadrant.

Tan θ = -1 , therefore $\theta = \frac{3\pi}{4}$.

Representing the complex no. in its polar form will be

$$Z = 6\left\{\cos\left(\frac{3\pi}{4}\right) + \sin\left(\frac{3\pi}{4}\right)\right\}$$

Q. 13. Find the modulus of each of the following complex numbers and hence $\frac{1+i}{1-i}$

express each of them in polar form: 1-i

Answer : $= \frac{1+i}{1-i} \times \frac{1+i}{1+i}$

$$= \frac{1+i^2+2i}{1-i^2}$$
$$= \frac{2i}{2}$$

= i

Let $Z = i = r(\cos\theta + i\sin\theta)$

Now , separating real and complex part , we get

0 = rcosθeq.1

1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

Since r is always a positive no., therefore,

r = 1,

Hence its modulus is 1.

Now, dividing eq.2 by eq.1, we get,

 $\frac{r\sin\theta}{r\cos\theta} = \frac{1}{0}$ $\tan\theta = \infty$

Since $\cos\theta = 0$, $\sin\theta = 1$ and $\tan\theta = \infty$. Therefore the θ lies in first quadrant.

 $\tan\theta = \infty$, therefore $\theta = \frac{\pi}{2}$

Representing the complex no. in its polar form will be

$$Z = 1\left\{\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right\}$$

Q. 14. Find the modulus of each of the following complex numbers and hence

express each of them in polar form: $\frac{1-i}{1+i}$

$$= \frac{1-i}{1+i} \times \frac{1-i}{1-i}$$

Answer : $= \frac{1+i^2-2i}{1-i^2}$

 $= -\frac{2i}{2}$

 $= -i$

Let $Z = -i = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get
 $0 = r\cos\theta$eq.1

 $-1 = r\sin\theta$ eq.2

Squaring and adding eq.1 and eq.2, we get
 $1 = r^2$

Since r is always a positive no., therefore,
 $r = 1$,

Hence its modulus is 1.

 $\frac{r\sin\theta}{r\cos\theta} = \frac{-1}{0}$

Tanθ = -∞

Since $\cos\theta = 0$, $\sin\theta = -1$ and $\tan\theta = -\infty$, therefore the θ lies in fourth quadrant.

Tan $\theta = -\infty$, therefore $\theta = -\frac{\pi}{2}$

Representing the complex no. in its polar form will be

 $Z = 1\{\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2})\}$

Q. 15. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\frac{1+3i}{1-2i}$

Answer :

$$= \frac{1+3i}{1-2i} \times \frac{1+2i}{1+2i}$$
$$= \frac{1+6i^2+5i}{1-4i^2}$$
$$= \frac{5i-5}{5}$$

= i - 1

Let $Z = 1 - i = r(\cos\theta + i\sin\theta)$

Now , separating real and complex part , we get

-1 = rcosθeq.1

1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

$$2 = r^2$$

Since r is always a positive no., therefore,

r =√2,

Hence its modulus is $\sqrt{2}$.

Now, dividing eq.2 by eq.1, we get,

 $\frac{rsin\theta}{rcos\theta} = \frac{1}{-1}$

 $Tan\theta = -1$

 $cos\theta=-\frac{1}{\sqrt{2}}$, $sin\theta=\frac{1}{\sqrt{2}}$ and $tan\theta$ = -1 . Therefore the θ lies in second quadrant.

Tan
$$\theta = -1$$
, therefore $\theta = \frac{3\pi}{4}$

Representing the complex no. in its polar form will be

 $Z = \sqrt{2} \left\{ \cos\left(\frac{3\pi}{4}\right) + \sin\left(\frac{3\pi}{4}\right) \right\}$

Q. 16. Find the modulus of each of the following complex numbers and hence

 $\frac{1-3i}{1+2i}$

express each of them in polar form: $1\!+2i$

Answer :

$$\frac{1-3i}{1+2i} \times \frac{1-2i}{1-2i}$$

= $\frac{1+6i^2-5i}{1-4i^2}$
= $\frac{-5i-5}{5}$
= -i - 1
Let Z = -1 - i = r(cos + isin θ)

Now, separating real and complex part, we get

-1 = rcosθeq.1

-1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

$$2 = r^2$$

Since r is always a positive no., therefore,

Hence its modulus is $\sqrt{2}$.

Now, dividing eq.2 by eq.1, we get,

$$\frac{r\sin\theta}{r\cos\theta} = \frac{-1}{-1}$$

 $\tan\theta = 1$

Since $\cos\theta = -\frac{1}{\sqrt{2}}$, $\sin\theta = -\frac{1}{\sqrt{2}}$ and $\tan\theta = 1$. Therefore the θ lies in third quadrant.

Tan
$$\theta = 1$$
, therefore $\theta = -\frac{3\pi}{4}$

Representing the complex no. in its polar form will be

$$Z = \sqrt{2} \{ \cos(-\frac{3\pi}{4}) + i\sin(-\frac{3\pi}{4}) \}$$

Q. 17. Find the modulus of each of the following complex numbers and hence

express each of them in polar form: $\frac{5-i}{2-3i}$

Answer :

$$=\frac{5-i}{2-3i}\times\frac{2+3i}{2+3i}$$

$$= \frac{10 - 3i^{2} + 13i}{4 - 9i^{2}}$$
$$= \frac{+13i + 13}{13}$$
$$= i + 1$$

Let $Z = 1 + i = r(\cos\theta + i\sin\theta)$

Now , separating real and complex part , we get

1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

$$2 = r^2$$

Since r is always a positive no., therefore,

r = √2,

Hence its modulus is $\sqrt{2}$.

Now , dividing eq.2 by eq.1 , we get,

 $\frac{rsin\theta}{rcos\theta} = \frac{1}{1}$

 $Tan\theta = 1$

Since $\cos\theta = \frac{1}{\sqrt{2}}$, $\sin\theta = \frac{1}{\sqrt{2}}$ and $\tan\theta = 1$. Therefore the θ lies in first quadrant.

Tan θ = 1, therefore $\theta = \frac{\pi}{4}$

Representing the complex no. in its polar form will be

$$Z = \sqrt{2} \left\{ \cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right) \right\}$$

Q. 18. Find the modulus of each of the following complex numbers and hence

express each of them in polar form: $\frac{-16}{1+\sqrt{3}i}$

Answer :

$$= \frac{-16}{1 + \sqrt{3}i} \times \frac{1 - \sqrt{3}i}{1 - \sqrt{3}i}$$
$$= \frac{-16 + 16\sqrt{3}i}{1 - 3i^2}$$
$$= \frac{16\sqrt{3}i - 16}{4}$$
$$= 4^{\sqrt{3}}i - 4$$

Let Z =
$$4^{\sqrt{3}}$$
i - 4 = r(cos θ + isin θ)

Now , separating real and complex part , we get

 $4\sqrt{3}$ = rsin θ eq.2

Squaring and adding eq.1 and eq.2, we get

 $64 = r^2$

Since r is always a positive no., therefore,

Hence its modulus is 8.

Now, dividing eq.2 by eq.1 , we get,

 $\frac{r\sin\theta}{r\cos\theta} = \frac{4\sqrt{3}}{-4}$

 $\tan\theta = -\sqrt{3}$

 $\cos\theta = -\frac{1}{2}, \sin\theta = \frac{\sqrt{3}}{2}$ and $\tan\theta = -\sqrt{3}$. Therefore the θ lies in second quadrant.

Tan $\theta = -\sqrt{3}$, therefore $\theta = \frac{2\pi}{3}$

Representing the complex no. in its polar form will be

$$Z = 8\{\cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3})\}$$

Q. 19. Find the modulus of each of the following complex numbers and hence

	$2 + 6\sqrt{3i}$
lar form:	$5+\sqrt{3}i$

express each of them in pol

Answer:

$$= \frac{2 + 6\sqrt{3}i}{5 + \sqrt{3}i} \times \frac{5 - \sqrt{3}i}{5 - \sqrt{3}i}$$
$$= \frac{10 + 28\sqrt{3}i - 18i^2}{25 - 3i^2}$$
$$= \frac{28\sqrt{3}i + 28}{28}$$
$$= \sqrt{3}i + 1$$
Let Z = $\sqrt{3}i + 1 = r(\cos\theta + i\sin\theta)$ Now, separating real and complex part, we get $1 = r\cos\theta$ eq.1
 $\sqrt{3} = r\sin\theta$ eq.2
Squaring and adding on 1 and on 2, we get

Squaring and adding eq.1 and eq.2, we get

$$4 = r^2$$

Since r is always a positive no., therefore,

r = 2,

Hence its modulus is 2.

Now, dividing eq.2 by eq.1, we get,

 $\frac{rsin\theta}{rcos\theta} = \frac{\sqrt{3}}{1}$ $\tan\theta = \sqrt{3}$ Since $\cos\theta = \frac{1}{2}$, $\sin\theta = \frac{\sqrt{3}}{2}$ and $\tan\theta = \sqrt{3}$. therefore the θ lies in first quadrant. Tan $\theta = \sqrt{3}$, therefore $\theta = \frac{\pi}{3}$

Representing the complex no. in its polar form will be

$$Z = 2\left\{\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right\}$$

Q. 20

Find the modulus of each of the following complex numbers and hence express each of them in polar form: $\sqrt{\frac{1+i}{1-i}}$

Answer:

$$= \sqrt{\frac{1+i}{1-i}} \times \sqrt{\frac{1+i}{1+i}}$$

$$=\sqrt{\frac{(1+i)^2}{1-i^2}}$$

$$=\frac{1+i}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$$

$$\operatorname{Let} \mathbf{Z} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} = \mathbf{r}(\cos\theta + \mathbf{i}\sin\theta)$$

Now, separating real and complex part, we get

$$\frac{1}{\sqrt{2}} = \operatorname{rcos}\theta$$
eq.1

$$\frac{1}{\sqrt{2}} = rsin\theta$$
eq.2

Squaring and adding eq.1 and eq.2, we get

$$1 = r^2$$

Since r is always a positive no., therefore,

r = 1,

hence its modulus is 1.

now, dividing eq.2 by eq.1, we get,

$$\frac{r\sin\theta}{r\cos\theta} = \frac{\frac{i}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}$$

 $tan\theta = 1$

Since $\cos\theta = \frac{1}{\sqrt{2}} \sin\theta = \frac{1}{\sqrt{2}}$ and $\tan\theta = 1$. therefore the θ lies in first quadrant.

$$Tan\theta = 1$$
, therefore $\theta = \frac{\pi}{4}$

Representing the complex no. in its polar form will be

$$Z = 1\left\{\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right\}$$

Q. 20. Find the modulus of each of the following complex numbers and hence

express each of them in polar form: $\sqrt{\frac{1+i}{1-i}}$

Answer:

$$= \sqrt{\frac{1+i}{1-i}} \times \sqrt{\frac{1+i}{1+i}}$$
$$= \sqrt{\frac{(1+i)^2}{1-i^2}}$$
$$= \frac{1+i}{\sqrt{2}}$$
$$= \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}$$
$$Let^{Z} = \frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}} = r(\cos\theta + i\sin\theta)$$

Let

Now, separating real and complex part, we get

$$\frac{1}{\sqrt{2}} = \operatorname{rcos}\theta$$
eq.1

$$\frac{1}{\sqrt{2}} = rsin\theta$$
eq.2

Squaring and adding eq.1 and eq.2, we get

$$1 = r^2$$

Since r is always a positive no., therefore,

r = 1,

Hence its modulus is 1.

Now, dividing eq.2 by eq.1, we get,

$$\frac{r\sin\theta}{r\cos\theta} = \frac{\frac{i}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}$$

 $\tan\theta = 1$

Since $\cos\theta = \frac{1}{\sqrt{2}} \sin\theta = \frac{1}{\sqrt{2}}$ and $\tan\theta = 1$. Therefore the θ lies in first quadrant.

Tan $\theta = 1$, therefore $\theta = \frac{\pi}{4}$

Representing the complex no. in its polar form will be

$$Z = 1\left\{\cos\left(\frac{\pi}{4}\right) + i\sin\left(\frac{\pi}{4}\right)\right\}$$

Q. 21. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $-\sqrt{3}-i$

Answer : Let $Z = -^{i} - \sqrt{3} = r(\cos\theta + i\sin\theta)$

Now, separating real and complex part, we get

-1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

$$4 = r^2$$

Since r is always a positive no., therefore,

r = 2

Hence its modulus is 2.

Now, dividing eq.2 by eq.1, we get,

$$\frac{r\sin\theta}{r\cos\theta} = \frac{-1}{-\sqrt{3}}$$
$$\tan\theta = \frac{1}{\sqrt{3}}$$

 $\cos\theta = -\frac{\sqrt{3}}{2}$, $\sin\theta = -\frac{1}{2}$ and $\tan\theta = \frac{1}{\sqrt{3}}$. Therefore the θ lies in third quadrant.

 $\tan \theta = \frac{1}{\sqrt{3}}$, therefore $\theta = -\frac{5\pi}{6}$.

Representing the complex no. in its polar form will be

$$Z = 2\{\cos(-\frac{5\pi}{6}) + i\sin(-\frac{5\pi}{6})\}$$

Q. 22. Find the modulus of each of the following complex numbers and hence express each of them in polar form: $(i^{25})^3$

```
Answer : = i^{75}

= i^{4n+3} where n = 18

Since i^{4n+3} = -i

i^{75} = -i

Let Z = -i = r(cos\theta + isin\theta)

Now , separating real and complex part , we get

0 = rcos\theta .....eq.1
```

-1 = rsinθeq.2

Squaring and adding eq.1 and eq.2, we get

 $1 = r^2$

Since r is always a positive no., therefore,

r = 1,

Hence its modulus is 1.

Now, dividing eq.2 by eq.1, we get,

$$\frac{rsin\theta}{rcos\theta} = \frac{-1}{0}$$

tanθ = -∞

Since $\cos\theta = 0$, $\sin\theta = -1$ and $\tan\theta = -\infty$. therefore the θ lies in fourth quadrant.

Tan $\theta = -\infty$, therefore $\theta = -\frac{\pi}{2}$

Representing the complex no. in its polar form will be

 $Z = 1\{\cos(-\frac{\pi}{2}) + i\sin(-\frac{\pi}{2})\}$

Q. 23. Find the modulus of each of the following complex numbers and hence

$$\frac{(1-i)}{\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)}$$

express each of them in polar form

Answer :

$$= \frac{1-i}{\frac{1}{2} + i\frac{\sqrt{3}}{2}}$$
$$= \frac{2-2i}{1+i\sqrt{3}}$$

$$= \frac{2 - 2i}{1 + \sqrt{3}i} \times \frac{1 - \sqrt{3}i}{1 - \sqrt{3}i}$$
$$= \frac{2 - 2\sqrt{3}i - 2i + 2\sqrt{3}i^2}{1 - 3i^2}$$
$$= \frac{(2 - 2\sqrt{3}) + i(2\sqrt{3} + 2)}{4}$$
$$= \frac{(1 - \sqrt{3}) + i(\sqrt{3} + 1)}{2}$$
$$= \frac{(1 - \sqrt{3}) + i(\sqrt{3} + 1)}{2}$$

Let
$$Z = \frac{(1-\sqrt{3})+i(\sqrt{3}+1)}{2} = r(\cos\theta + i\sin\theta)$$

Now, separating real and complex part , we get

$$\frac{1-\sqrt{3}}{2} = \operatorname{rcos}\theta$$
.....eq.1
$$\frac{1+\sqrt{3}}{2} = \operatorname{rsin}\theta$$
.....eq.2

Squaring and adding eq.1 and eq.2, we get

$$2 = r^2$$

Since r is always a positive no., therefore,

Hence its modulus is $\sqrt{2}$.

$$\frac{r\sin\theta}{r\cos\theta} = \frac{\frac{1+\sqrt{3}}{2}}{\frac{1-\sqrt{3}}{2}}$$

 $tan\theta = \frac{1+\sqrt{3}}{1-\sqrt{3}}$

 $\cos\theta = \frac{1-\sqrt{3}}{2\sqrt{2}}$, $\sin\theta = \frac{1+\sqrt{3}}{2\sqrt{2}}$ and $\tan\theta = \frac{1+\sqrt{3}}{1-\sqrt{3}}$. Therefore the θ lies in second quadrant. As

 $Tan\theta = \frac{1+\sqrt{3}}{1-\sqrt{3}}$, therefore $\theta = \frac{7\pi}{12}$

Representing the complex no. in its polar form will be

 $Z = \sqrt{2} \{ \cos(\frac{7\pi}{12}) + i\sin(\frac{7\pi}{12}) \}$

Q. 24. Find the modulus of each of the following complex numbers and hence express each of them in polar form: (sin 120° – i cos 120°)

Answer : = $sin(90^{\circ} + 30^{\circ}) - icos(90^{\circ} + 30^{\circ})$

 $= \cos 30^{\circ} + i \sin 30^{\circ}$

Since, $sin(90^\circ + \alpha) = cos\alpha$

And $\cos(90^\circ + \alpha) = -\sin\alpha$

$$=\frac{\sqrt{3}}{2}+i\frac{1}{2}$$

Hence it is of the form

$$Z = \frac{\sqrt{3}}{2} + i\frac{1}{2} = r(\cos\theta + i\sin\theta)$$

Therefore r = 1

Hence its modulus is 1 and argument is $\frac{2}{6}$

Exercise 5E

Q. 1. $x^2 + 2 = 0$

Answer : This equation is a quadratic equation.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Given:

$$\Rightarrow x^2 + 2 = 0$$

$$\Rightarrow x^2 = -2$$

$$\Rightarrow x = \pm \sqrt{-2}$$

But we know that $\sqrt{-1} = i$

$$\Rightarrow x = \pm \sqrt{2} i$$

Ans: $x = \pm \sqrt{2} i$
Answer : Given:
 $x^2 + 5 = 0$

$$\Rightarrow x^2 = -5$$

$$\Rightarrow x = \pm \sqrt{-5}$$

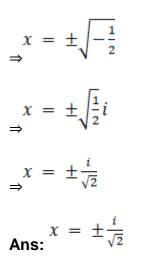
$$\Rightarrow x = \pm \sqrt{-5}$$

$$\Rightarrow x = \pm \sqrt{5} i$$

Ans: $x = \pm \sqrt{5} i$
Ans: $x = \pm \sqrt{5} i$
Answer : $2x^2 + 1 = 0$

$$\Rightarrow 2x^2 = -1$$

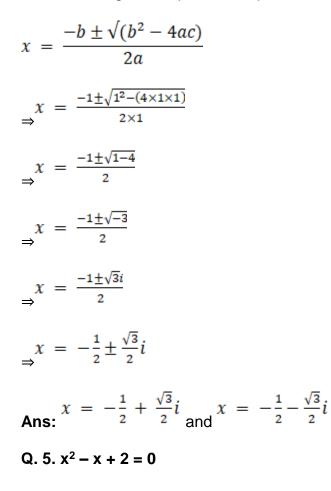
$$\Rightarrow x^2 = -\frac{1}{2}$$



Q. 4. $x^2 + x + 1 = 0$

Answer : Given:

$$x^2 + x + 1 = 0$$



Answer : Given:

$$x^2 - x + 2 = 0$$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

$$\Rightarrow x = \frac{-(-1)\pm \sqrt{(-1)^2 - (4 \times 1 \times 2)}}{2 \times 1}$$

$$\Rightarrow x = \frac{1 \pm \sqrt{1-8}}{2}$$

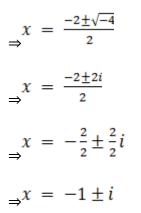
$$\Rightarrow x = \frac{1 \pm \sqrt{-7}}{2}$$

$$\Rightarrow x = \frac{1 \pm \sqrt{-7}}{2}$$

$$\Rightarrow x = \frac{1 \pm \sqrt{7}i}{2}$$

$$\Rightarrow x = \frac{1}{2} \pm \frac{\sqrt{7}}{2}i$$
Ans: $x = \frac{1}{2} \pm \frac{\sqrt{7}}{2}i$ and $x = \frac{1}{2} - \frac{\sqrt{7}}{2}i$
Q. 6. $x^2 + 2x + 2 = 0$
Answer : Given:
 $x^2 + 2x + 2 = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$\Rightarrow x = \frac{-2 \pm \sqrt{2^2 - (4 \times 1 \times 2)}}{2 \times 1}$$
$$\Rightarrow x = \frac{-2 \pm \sqrt{4 - 8}}{2}$$



Ans: x = -1 + i and x = -1-i

Q. 7. $2x^2 - 4x + 3 = 0$

Answer : Given:

$$2x^2 - 4x + 3 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - (4 \times 2 \times 3)}}{2 \times 2}$$

$$x = \frac{4 \pm \sqrt{16 - 24}}{4}$$

$$x = \frac{4 \pm \sqrt{16 - 24}}{4}$$

$$x = \frac{4 \pm \sqrt{-8}}{4}$$

$$x = \frac{4 \pm \sqrt{-8}}{4}$$

$$x = \frac{4 \pm 2\sqrt{2}i}{4}$$

Ans:
$$x = 1 + \frac{i}{\sqrt{2}} \operatorname{and} x = 1 - \frac{i}{\sqrt{2}}$$

Q. 8. $x^2 + 3x + 5 = 0$

Answer : Given:

$$x^2 + 3x + 5 = 0$$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

$$x = \frac{-3 \pm \sqrt{(3)^2 - (4 \times 1 \times 5)}}{2 \times 1}$$

$$x = \frac{-3 \pm \sqrt{9 - 20}}{2}$$

$$x = \frac{-3 \pm \sqrt{-11}}{2}$$

$$x = \frac{-3 \pm \sqrt{-11}}{2}$$

$$x = -\frac{3}{2} \pm \frac{\sqrt{11}}{2}i$$

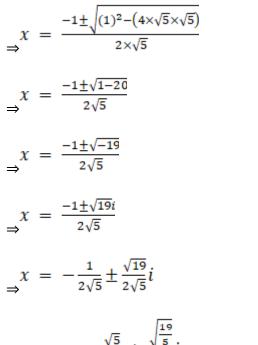
$$x = -\frac{3}{2} \pm \frac{\sqrt{11}}{2}i$$
Ans: $x = -\frac{3}{2} \pm \frac{\sqrt{11}}{2}i$ and $x = -\frac{3}{2} - \frac{\sqrt{11}}{2}i$

$$Q. 9. \sqrt{5}x^2 + x + \sqrt{5} = 0$$

Answer : Given:

$$\sqrt{5}x^2 + x + \sqrt{5} = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$



Ans:
$$x = -\frac{\sqrt{5}}{10} + \frac{\sqrt{\frac{19}{5}}}{2}i_{\text{and}}x = -\frac{\sqrt{5}}{10} - \frac{\sqrt{\frac{19}{5}}}{2}i$$

Q. 10. $25x^2 - 30x + 11 = 0$

Answer : Given:

$$25x^2 - 30x + 11 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-30) \pm \sqrt{(-30)^2 - (4 \times 25 \times 11)}}{2 \times 25}$$

$$x = \frac{30 \pm \sqrt{900 - 1100}}{50}$$

$$x = \frac{30 \pm \sqrt{-200}}{50}$$

$$x = \frac{30 \pm \sqrt{-200}}{50}$$

$$x = \frac{30 \pm 10\sqrt{2}i}{50}$$

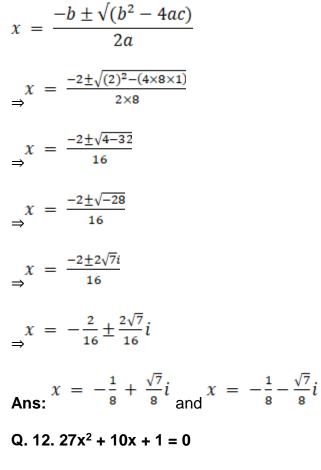
$$x = -\frac{30}{50} \pm \frac{10\sqrt{2}}{50}i$$

$$x = -\frac{3}{5} + \frac{\sqrt{2}}{5}i \text{ and } x = -\frac{3}{5} - \frac{\sqrt{2}}{5}i$$
Q. 11. $8x^2 + 2x + 1 = 0$

Answer : Given:

 $8x^2 + 2x + 1 = 0$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:



Answer :

Given:

 $27x^2 + 10x + 1 = 0$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-10 \pm \sqrt{(10)^2 - (4 \times 27 \times 1)}}{2 \times 27}$$

$$x = \frac{-10 \pm \sqrt{100 - 108}}{54}$$

$$x = \frac{-10 \pm \sqrt{-8}}{54}$$

$$x = \frac{-10 \pm \sqrt{-8}}{54}$$

$$x = \frac{-10 \pm 2\sqrt{2}i}{54}$$

$$x = -\frac{10 \pm 2\sqrt{2}i}{54}$$

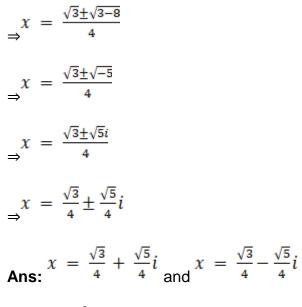
Ans:
$$x = -\frac{5}{27} + \frac{\sqrt{2}}{27}i_{\text{and}} x = -\frac{5}{27} - \frac{\sqrt{2}}{27}i_{\text{and}}$$

Q. 13. $2x^2 - \sqrt{3}x + 1 = 0$

Answer : Given:

 $2x^2 - \sqrt{3}x + 1 = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$\Rightarrow x = \frac{-(-\sqrt{3}) \pm \sqrt{(-\sqrt{3})^2 - (4 \times 2 \times 1)}}{2 \times 2}$$



Q. 14.
$$17x^2 - 8x + 1 = 0$$

Answer : Given:

$$17x^2 - 8x + 1 = 0$$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - (4 \times 17 \times 1)}}{2 \times 17}$$

$$x = \frac{8 \pm \sqrt{64 - 68}}{34}$$

$$x = \frac{8 \pm \sqrt{-4}}{34}$$

$$x = \frac{8 \pm \sqrt{-4}}{34}$$

$$x = \frac{8 \pm 2i}{34}$$

$$x = \frac{8 \pm 2i}{34}$$

$$x = \frac{8}{34} \pm \frac{2}{34}i$$
Ans: $x = \frac{4}{17} + \frac{1}{17}i$ and $x = \frac{4}{17} - \frac{1}{17}i$

Q. 15. $3x^2 + 5 = 7x$

Answer : Given:

$$3x^2 + 5 = 7x$$

 $\Rightarrow 3x^2 - 7x + 5 = 0$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - (4 \times 3 \times 5)}}{2 \times 3}$$

$$x = \frac{7 \pm \sqrt{49 - 60}}{6}$$

$$x = \frac{7 \pm \sqrt{-11}}{6}$$

$$x = \frac{7 \pm \sqrt{-11}}{6}$$

$$x = \frac{7 \pm \sqrt{11}i}{6}$$

$$x = \frac{7}{6} \pm \frac{\sqrt{11}}{6}i$$
Ans: $x = \frac{7}{6} \pm \frac{\sqrt{11}}{6}i$ and $x = \frac{7}{6} - \frac{\sqrt{11}}{6}i$

$$3x^2 - 4x + \frac{20}{3} = 0$$
Q. 16.

Answer : Given:

$$3x^2 - 4x + \frac{20}{3} = 0$$

Multiplying both the sides by 3 we get,

$$9x^2 - 12x + 20 = 0$$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

$$x = \frac{-(-12)\pm \sqrt{(-12)^2 - (4 \times 9 \times 20)}}{2 \times 9}$$

$$x = \frac{12 \pm \sqrt{144 - 720}}{18}$$

$$x = \frac{12 \pm \sqrt{-576}}{18}$$

$$x = \frac{12 \pm 24i}{18}$$

$$x = \frac{12 \pm 24i}{18}$$

$$x = \frac{12}{3} \pm \frac{4}{3}i$$

$$x = \frac{2}{3} \pm \frac{4}{3}i$$
Ans:
$$x = \frac{2}{3} \pm \frac{4}{3}i$$
and
$$x = \frac{2}{3} - \frac{4}{3}i$$
Q. 17. $3x^2 + 7ix + 6 = 0$
Answer : Given:
 $3x^2 + 7ix + 6 = 0$

 $\Rightarrow 3x^{2} + 9ix - 2ix + 6 = 0$ $\Rightarrow 3x(x + 3i) - 2i\left(x - \frac{6}{2i}\right) = 0$ $\Rightarrow 3x(x + 3i) - 2i\left(x - \frac{3 \times i}{i \times i}\right) = 0$ $\therefore (i^{2} = -1)$ $\Rightarrow 3x(x + 3i) - 2i(x - \frac{3 \times i}{-1}) = 0$

$$\Rightarrow 3x(x + 3i) - 2i(x + 3i) = 0$$

$$\Rightarrow (x + 3i)(3x - 2i) = 0$$

$$\Rightarrow x + 3i = 0 & 3x - 2i = 0$$

$$\Rightarrow x = 3i & x = \frac{2}{3}i$$

Ans: x = 3i and $x = \frac{2}{3}i$
Q. 18. $21x^2 - 28x + 10 = 0$

Answer : Given:

$$21x^2 - 28x + 10 = 0$$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:

 $\frac{\sqrt{14}}{21}i$

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

$$\Rightarrow x = \frac{-(-28) \pm \sqrt{(-28)^2 - (4 \times 21 \times 10)}}{2 \times 21}$$

$$\Rightarrow x = \frac{28 \pm \sqrt{784 - 840}}{42}$$

$$\Rightarrow x = \frac{28 \pm \sqrt{-56}}{42}$$

$$\Rightarrow x = \frac{28 \pm \sqrt{-56}}{42}$$

$$\Rightarrow x = \frac{28 \pm 2\sqrt{14}i}{42}$$

$$\Rightarrow x = \frac{28 \pm 2\sqrt{14}i}{42}$$

$$\Rightarrow x = \frac{28}{42} \pm \frac{2\sqrt{14}}{42}i$$
Ans: $x = \frac{2}{3} + \frac{\sqrt{14}}{21}i$ and $x = \frac{2}{3} - 2$
Q. 19. $x^2 + 13 = 4x$

Answer : Given:

 $x^{2} + 13 = 4x$ $\Rightarrow x^{2} - 4x + 13 = 0$

Solution of a general quadratic equation $ax^2 + bx + c = 0$ is given by:

$$x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - (4 \times 1 \times 13)}}{2 \times 1}$$

$$x = \frac{4 \pm \sqrt{16 - 52}}{2}$$

$$x = \frac{4 \pm \sqrt{-36}}{2}$$

$$x = \frac{4 \pm 6i}{2}$$

$$x = \frac{4 \pm 6i}{2}$$

$$x = 2 \pm 3i$$
Ans: $x = 2 \pm 3i$
Ans: $x = 2 \pm 3i$
Ans: $x = 2 \pm 3i \times 2 \pm 3i$
Answer: Given:
 $x^2 + 3ix \pm 10 = 0$

$$\Rightarrow x^2 + 5ix - 2ix \pm 10 = 0$$

$$x(x \pm 5i) - 2i\left(x - \frac{10}{2i}\right) = 0$$

$$x(x \pm 5i) - 2i\left(x - \frac{5 \times i}{i \times i}\right) = 0$$

$$\Rightarrow x(x + 5i) - 2i(x - \frac{5\times i}{-1}) = 0$$

$$\Rightarrow x(x + 5i) - 2i(x + 5i) = 0$$

$$\Rightarrow (x + 5i)(x - 2i) = 0$$

$$\Rightarrow x + 5i = 0 \& x - 2i = 0$$

$$\Rightarrow x = -5i \& x = 2i$$

Ans: $x = -5i \& x = 2i$
Q. 21. $2x^2 + 3ix + 2 = 0$
Answer : Given:
 $2x^2 + 3ix + 2 = 0$

$$\Rightarrow 2x^2 + 4ix - ix + 2 = 0$$

$$\Rightarrow 2x(x + 2i) - i(x - \frac{2}{i}) = 0$$

$$\Rightarrow 2x(x + 2i) - i(x - \frac{2\times i}{i \times i}) = 0$$

$$\Rightarrow 2x(x + 2i) - i(x - \frac{2\times i}{-1}) = 0$$

$$\Rightarrow 2x(x + 2i) - i(x + 2i) = 0$$

$$\Rightarrow 2x(x + 2i) - i(x + 2i) = 0$$

$$\Rightarrow x + 2i = 0 \& 2x - i = 0$$

$$\Rightarrow x = -2i \& x = \frac{i}{2}$$

Ans: $x = -2i \& x = \frac{i}{2}$

Exercise 5F

Q. 1. $\sqrt{5 + 12i}$ **Answer**: Let, $(a + ib)^2 = 5 + 12i$ Now using, $(a + b)^2 = a^2 + b^2 + 2ab$ ⇒ $a^2 + (bi)^2 + 2abi = 5 + 12i$ Since $i^2 = -1$ ⇒ $a^2 - b^2 + 2abi = 5 + 12i$

Now, separating real and complex parts, we get

$$\Rightarrow a^{2} - b^{2} = 5....eq.1$$

$$\Rightarrow 2ab = 12....eq.2$$

$$\Rightarrow a = \frac{6}{b}$$

Now, using the value of a in eq.1, we get

$$\Rightarrow \left(\frac{6}{b}\right)^{2} - b^{2} = 5$$

$$\Rightarrow 36 - b^{4} = 5b^{2}$$

$$\Rightarrow b^{4} + 5b^{2} - 36 = 0$$

Simplify and get the value of b², we get,

⇒ $b^2 = -9$ or $b^2 = 4$

As b is real no. so, $b^2 = 4$

$$b = 2 \text{ or } b = -2$$

Therefore, a = 3 or a = -3

Hence the square root of the complex no. is 3 + 2i and -3 -2i.

Q. 2.
$$\sqrt{-7+24i}$$

Answer : Let, $(a + ib)^2 = -7 + 24i$
Now using, $(a + b)^2 = a^2 + b^2 + 2ab$
 $\Rightarrow a^2 + (bi)^2 + 2abi = -7 + 24i$
Since $i^2 = -1$
 $\Rightarrow a^2 - b^2 + 2abi = -7 + 24i$
Now, separating real and complex parts, we get

$$\Rightarrow a^{2} - b^{2} = -7....eq.1$$

$$\Rightarrow 2ab = 24....eq.2$$

$$\Rightarrow a = \frac{12}{b}$$

Now, using the value of a in eq.1, we get

$$\Rightarrow \left(\frac{12}{b}\right)^2 - b^2 = -7$$
$$\Rightarrow 144 - b^4 = -7b^2$$
$$\Rightarrow b_4 - 7b^2 - 144 = 0$$

Simplify and get the value of b², we get,

⇒
$$b^2 = -9$$
 or $b^2 = 16$
As b is real no. so, $b^2 = 16$
b= 4 or b= -4

Therefore, a= 3 or a= -3

Hence the square root of the complex no. is 3 + 4i and -3 -4i.

Q. 3.
$$\sqrt{-2+2\sqrt{3}i}$$

Answer : Let, $(a + ib)^2 = -2 + 2\sqrt{3}i$
Now using, $(a + b)^2 = a^2 + b^2 + 2ab$
 $\Rightarrow a^2 + (bi)^2 + 2abi = -2 + 2\sqrt{3}i$
Since $i^2 = -1$
 $\Rightarrow a^2 - b^2 + 2abi = -2 + 2\sqrt{3}i$
Now, separating real and complex parts, we get

⇒
$$a^2 - b^2 = -2....eq.1$$

⇒ $2ab = 2\sqrt{3}....eq.2$
⇒ $a = \frac{\sqrt{3}}{b}$

Now, using the value of a in eq.1, we get

$$\Rightarrow \left(\frac{\sqrt{3}}{b}\right)^{2} - b^{2} = -2$$
$$\Rightarrow 3 - b^{4} = -2b^{2}$$
$$\Rightarrow b_{4} - 2b^{2} - 3 = 0$$

Simplify and get the value of b², we get,

$$\Rightarrow$$
 b² = -1 or b² = 3

As b is real no. so, $b^2 = 3$

$$b = \sqrt{3}$$
 or $b = -\sqrt{3}$

Therefore, a= 1 or a= -1

Hence the square root of the complex no. is $1 + \sqrt{3}i$ and $-1 - \sqrt{3}i$.

Q. 4. $\sqrt{1+4\sqrt{-3}}$

Answer : Let, $(a + ib)^2 = 1 + 4^{\sqrt{3}}i$

Now using, $(a + b)^2 = a^2 + b^2 + 2ab$

⇒
$$a^2 + (bi)^2 + 2abi = 1 + 4^{\sqrt{3}}i$$

Since
$$i^2 = -1$$

⇒ $a^2 - b^2 + 2abi = 1 + 4^{\sqrt{3}}i$

Now, separating real and complex parts, we get

⇒
$$a^2 - b^2 = 1....eq.1$$

⇒ $2ab = 4\sqrt{3}....eq.2$
⇒ $a = \frac{2\sqrt{3}}{b}$

Now, using the value of a in eq.1, we get

$$\Rightarrow \left(\frac{2\sqrt{3}}{b}\right)^2 - b^2 = 1$$

 $\Rightarrow 12 - b^4 = b^2$

Simplify and get the value of b², we get,

$$\Rightarrow$$
 b² = -4 or b² = 3

As b is real no. so, $b^2 = 3$

$$b = \frac{\sqrt{3}}{3}$$
 or $b = \frac{-\sqrt{3}}{3}$

Therefore, a= 2 or a= -2

Hence the square root of the complex no. is $2 + \sqrt{3}i$ and $-2 - \sqrt{3}i$.

Answer : Let, $(a + ib)^2 = 0 + i$

Now using,
$$(a + b)^2 = a^2 + b^2 + 2ab$$

$$\Rightarrow$$
 a² + (bi)² + 2abi = 0 + i

Since $i^2 = -1$

$$\Rightarrow$$
 a² - b² + 2abi = 0 + i

Now, separating real and complex parts, we get

⇒
$$a^2 - b^2 = 0$$
eq.1
⇒ $2ab = 1$ eq.2
⇒ $a = \frac{1}{2b}$

Now, using the value of a in eq.1, we get

$$\Rightarrow \left(\frac{1}{2b}\right)^2 - b^2 = 0$$
$$\Rightarrow 1 - 4b^4 = 0$$
$$\Rightarrow 4b^2 = 1$$

Simplify and get the value of b^2 , we get,

$$\Rightarrow b^2 = -\frac{1}{2} \text{ or } b^2 = \frac{1}{2}$$

As b is real no. so, $b^2 = 3$

$$b = \frac{1}{\sqrt{2}}$$
 or $b = -\frac{1}{\sqrt{2}}$

Therefore , a= $\frac{1}{\sqrt{2}}$ or a= $-\frac{1}{\sqrt{2}}$

Hence the square root of the complex no. is $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}$.

Q. 6. √4i

Answer : Let, $(a + ib)^2 = 0 + 4i$

Now using, $(a + b)^2 = a^2 + b^2 + 2ab$

$$\Rightarrow$$
 a² + (bi)² + 2abi = 0 + 4i

Since $i^2 = -1$

Now, separating real and complex parts, we get

⇒
$$a^2 - b^2 = 0$$
eq.1
⇒ $2ab = 4$eq.2
⇒ $a = \frac{2}{b}$

Now, using the value of a in eq.1, we get

$$\Rightarrow \left(\frac{2}{b}\right)^2 - b^2 = 0$$
$$\Rightarrow 4 - b^4 = 0$$

Simplify and get the value of b², we get,

⇒ $b^2 = -2$ or $b^2 = 2$

As b is real no. so, $b^2 = 2$

$$b = \sqrt{2}$$
 or $b = -\sqrt{2}$

Therefore , $a = \sqrt{2}$ or $a = -\sqrt{2}$

Hence the square root of the complex no. is $\sqrt{2} + \sqrt{2}$ i and $\sqrt{2} - \sqrt{2}$ i.

Q. 7. $\sqrt{3+4\sqrt{-7}}$

Answer : Let, $(a + ib)^2 = 3 + 4^{\sqrt{7}}i$

Now using, $(a + b)^2 = a^2 + b^2 + 2ab$

⇒
$$a^2$$
 + (bi)² + 2abi = 3 + 4 $\sqrt{7}$ i

Since $i^2 = -1$

$$\Rightarrow a^2 - b^2 + 2abi = 3 + 4\sqrt{7}i$$

now, separating real and complex parts, we get

⇒
$$a^2 - b^2 = 3$$
eq.1
⇒ $2ab = 4\sqrt{7}$ eq.2
⇒ $a = \frac{2\sqrt{7}}{b}$

Now, using the value of a in eq.1, we get

$$\Rightarrow \left(\frac{2\sqrt{7}}{b}\right)^{2} - b^{2} = 3$$

$$\Rightarrow 12 - b^{4} = 3b^{2}$$

$$\Rightarrow b^{4} + 3b^{2} - 28 = 0$$

Simplify and get the value of b², we get,

$$\Rightarrow b^{2} = -7 \text{ or } b^{2} = 4$$

as b is real no. so, $b^{2} = 4$

$$b = 2 \text{ or } b = \frac{-2}{2}$$

Therefore , a=
$$\sqrt{7}$$
 or a= - $\sqrt{7}$

Hence the square root of the complex no. is $\sqrt[4]{7}$ + 2i and $\sqrt[4]{7}$ -2i.

Q. 8. $\sqrt{16 - 30i}$

Answer : Let, (a + ib)² = 16 -30i

Now using, $(a + b)^2 = a^2 + b^2 + 2ab$

Since $i^2 = -1$

⇒
$$a^2 - b^2 = 16....eq.1$$

⇒ $2ab = -30....eq.2$
⇒ $a = -\frac{15}{b}$

$$\Rightarrow \left(-\frac{15}{b}\right)^2 - b^2 = 16$$
$$\Rightarrow 225 - b^4 = 16b^2$$
$$\Rightarrow b^4 + 16b^2 - 225 = 0$$

Simplify and get the value of b², we get,

$$\Rightarrow$$
 b² = -25 or b² = 9

As b is real no. so, $b^2 = 9$

b= 3 or b= -3

Therefore, a = -5 or a = 5

Hence the square root of the complex no. is -5 + 3i and 5 - 3i.

Q. 9. √-4 - 3i

Answer : Let, $(a + ib)^2 = -4 - 3i$

Now using, $(a + b)^2 = a^2 + b^2 + 2ab$

Since $i^2 = -1$

$$\Rightarrow a^{2} - b^{2} = -4....eq.1$$
$$\Rightarrow 2ab = -3...eq.2$$
$$\Rightarrow a = -\frac{3}{2b}$$

$$\Rightarrow \left(-\frac{3}{2b}\right)^2 - b^2 = -4$$
$$\Rightarrow 9 - 4b^4 = -16b^2$$
$$\Rightarrow 4b^4 - 16b^2 - 9 = 0$$

Simplify and get the value of b², we get,

$$\Rightarrow b^{2} = \frac{9}{2} \text{ or } b^{2} = -2$$

As b is real no. so, $b^{2} = \frac{9}{2}$

$$b = \frac{1}{\sqrt{2}}$$
 or $b = -\frac{1}{\sqrt{2}}$

Therefore, a= $-\frac{1}{\sqrt{2}}$ or a= $\frac{1}{\sqrt{2}}$

Hence the square root of the complex no. is $-\frac{1}{\sqrt{2}} + \frac{3}{\sqrt{2}}i$ and $\frac{1}{\sqrt{2}} - \frac{3}{\sqrt{2}}i$.

Q. 10. √-15 - 8i

Answer : Let, $(a + ib)^2 = -15 - 8i$

Now using, $(a + b)^2 = a^2 + b^2 + 2ab$

$$\Rightarrow$$
 a² + (bi)² + 2abi = -15 -8i

Since $i^2 = -1$

⇒ a² - b² + 2abi = -15 - 8i

Now, separating real and complex parts, we get

 \Rightarrow a² - b² = -15.....eq.1

$$\Rightarrow 2ab = -8....eq.2$$
$$\Rightarrow a = -\frac{4}{b}$$

$$\Rightarrow \left(-\frac{4}{b}\right)^2 - b^2 = -15$$

⇒
$$16 - b^4 = -15b^2$$

Simplify and get the value of b^2 , we get,

$$\Rightarrow$$
 b² = 16 or b² = -1

As b is real no. so, $b^2 = 16$

b= 4 or b= -4

Therefore, a= -1 or a= 1

Hence the square root of the complex no. is -1 + 4i and 1 - 4i.

Q. 11.
$$\sqrt{-11-60i}$$

Answer : Let, $(a + ib)^2 = -11 - 60i$
Now using, $(a + b)^2 = a^2 + b^2 + 2ab$
 $\Rightarrow a^2 + (bi)^2 + 2abi = -11 - 60i$
Since $i^2 = -1$
 $\Rightarrow a^2 - b^2 + 2abi = -11 - 60i$
Now, separating real and complex parts, we get
 $\Rightarrow a^2 - b^2 = -11....eq.1$

$$\Rightarrow 2ab = -60....eq.2$$
$$\Rightarrow a = -\frac{30}{b}$$

$$\Rightarrow \left(-\frac{30}{b}\right)^2 - b^2 = -11$$

⇒
$$900 - b^4 = -11b^2$$

Simplify and get the value of b², we get,

as b is real no. so, $b^2 = 36$

Therefore,
$$a = -5$$
 or $a = 5$

Hence the square root of the complex no. is -5 + 6i and 5 - 6i.

Answer : Let, $(a + ib)^2 = 7 - 30^{\sqrt{2}}i$

Now using, $(a + b)^2 = a^2 + b^2 + 2ab$

⇒
$$a^2$$
 + (bi)² + 2abi = 7 - 30 $\sqrt{2}$ i

Since $i^2 = -1$

$$\Rightarrow$$
 a² - b² + 2abi = 7 - 30 $\sqrt{2}$ i

$$\Rightarrow$$
 a² - b² = 7eq.1

$$\Rightarrow 2ab = 30^{\sqrt{2}} \dots eq.2$$
$$\Rightarrow a = \frac{15\sqrt{2}}{b}$$

$$\Rightarrow \left(\frac{15\sqrt{2}}{b}\right)^2 - b^2 = 7$$

 \Rightarrow 450 - b⁴ = 7b²

Simplify and get the value of b², we get,

$$rightarrow$$
 b² = -25 or b² = 18

As b is real no. so, $b^2 = 18$

$$b = \frac{3\sqrt{2}}{0} \text{ or } b = \frac{-3\sqrt{2}}{2}$$

Therefore , a= 5 or a= -5

Hence the square root of the complex no. is 5 + $3\sqrt{2}$ i and - 5 - $3\sqrt{2}$ i.

Answer : Let, $(a + ib)^2 = 0 - 8i$

Now using, $(a + b)^2 = a^2 + b^2 + 2ab$

$$\Rightarrow$$
 a² + (bi)² + 2abi = 0 - 8i

Since $i^2 = -1$

⇒ a² - b² + 2abi = 0 - 8i

$$\Rightarrow a^{2} - b^{2} = 0 \dots eq.1$$
$$\Rightarrow 2ab = -8 \dots eq.2$$
$$\Rightarrow a = -\frac{4}{b}$$

$$\Rightarrow \left(-\frac{4}{b}\right)^2 - b^2 = 0$$
$$\Rightarrow 16 - b^4 = 0$$
$$\Rightarrow b^4 = 16$$

Simplify and get the value of b², we get,

$$\Rightarrow$$
 b² = -4 or b² = 4

As b is real no. so, $b^2 = 4$

b= 2 or b= $^{-2}$

Therefore ,
$$a = -2$$
 or $a = 2$

Hence the square root of the complex no. is -2 + 2i and 2 - 2i.

Q. 14.
$$\sqrt{1-i}$$

Answer : Let, $(a + ib)^2 = 1 - i$
Now using, $(a + b)^2 = a^2 + b^2 + 2ab$
 $\Rightarrow a^2 + (bi)^2 + 2abi = 1 - i$
Since $i^2 = -1$
 $\Rightarrow a^2 - b^2 + 2abi = 1 - i$

$$\Rightarrow a^{2} - b^{2} = 1....eq.1$$
$$\Rightarrow 2ab = -1...eq.2$$
$$\Rightarrow a = -\frac{1}{2b}$$

$$\Rightarrow \left(-\frac{1}{2b}\right)^2 - b^2 = 1$$
$$\Rightarrow 1 - 4b^4 = 4b^2$$
$$\Rightarrow 4b^4 + 4b^2 - 1 = 0$$

Simplify and get the value of b², we get,

$$\Rightarrow b^2 = \frac{-4 \pm \sqrt{32}}{8}$$

As b is real no. so,
$$b^2 = \frac{-4 + 4\sqrt{2}}{8}$$

$$b^2 = \frac{-1 + \sqrt{2}}{2}$$

$$b = \sqrt{\frac{-1 + \sqrt{2}}{2}}$$
 or $b = -\sqrt{\frac{-1 + \sqrt{2}}{2}}$

Therefore , a=
$$-\sqrt{\frac{1+\sqrt{2}}{2}}$$
 or a= $\sqrt{\frac{1+\sqrt{2}}{2}}$

Hence the square root of the complex no. is $-\sqrt{\frac{1+\sqrt{2}}{2}} + \sqrt{\frac{-1+\sqrt{2}}{2}}_{i}$

and $\sqrt{\frac{1+\sqrt{2}}{2}} - \sqrt{\frac{-1+\sqrt{2}}{2}}$ i.

Exercise 5G

Q. 1. Evaluate $\frac{1}{i^{78}}$.

Answer : we have, $\frac{1}{i^{78}}$

$$=\frac{1}{(i^4)^{19}.i^2}$$

We know that, $i^4 = 1$

$$\Rightarrow \frac{1}{1^{19} \cdot i^2}$$
$$\Rightarrow \frac{1}{i^2} = \frac{1}{-1}$$
$$\Rightarrow \frac{1}{i^{78}} = -1$$

Q. 2. Evaluate ($i^{57} + i^{70} + i^{91} + i^{101} + i^{104}$).

Answer : We have, $i^{57} + i^{70} + i^{91} + i^{101} + i^{104}$ = $(i^4)^{14} \cdot i + (i^4)^{17} \cdot i^2 + (i^4)^{22} \cdot i^3 + (i^4)^{25} \cdot i + (i^4)^{26}$ We know that, $i^4 = 1$ $\Rightarrow (1)^{14} \cdot i + (1)^{17} \cdot i^2 + (1)^{22} \cdot i^3 + (1)^{25} \cdot i + (1)^{26}$

.

= i -1 -i + i +1

= i

Q. 3. Evaluate

$$\left(\frac{i^{180}+i^{178}+i^{176}+i^{174}+i^{172}}{i^{170}+i^{168}+i^{166}+i^{164}+i^{162}}\right)$$

$$= i^{4n} \cdot i - i^{4n} \cdot i^{-1}$$

$$= (i^{4})^{n} \cdot i - (i^{4})^{n} \cdot i^{-1}$$

$$= (1)^{n} \cdot i - (1)^{n} \cdot i^{-1}$$

$$= i - i^{-1}$$

$$= i - \frac{1}{i}$$

Q. 4. Evaluate (i⁴ⁿ⁺¹ – i⁴ⁿ⁻¹)

Answer : We have, $i^{4n+1} - i^{4n-1}$

= -1

$$= \left(\frac{(i^4)^{45} + (i^4)^{44} \cdot i^2 + (i^4)^{44} + (i^4)^{43} \cdot i^2 + (i^4)^{43}}{(i^4)^{42} \cdot i^2 + (i^4)^{42} + (i^4)^{41} \cdot i^2 + (i^4)^{41} + (i^4)^{40} \cdot i^2}\right)$$

$$= \left(\frac{(1)^{45} + (1)^{44} \cdot i^2 + (1)^{44} + (1)^{43} \cdot i^2 + (1)^{43}}{(1)^{42} \cdot i^2 + (1)^{42} + (1)^{41} \cdot i^2 + (1)^{41} + (1)^{40} \cdot i^2}\right)$$

$$= \left(\frac{1 + i^2 + 1 + i^2 + 1}{i^2 + 1 + i^2 + 1} + i^2\right)$$

$$= \left(\frac{1 - 1 + 1 - 1 + 1}{-1 + 1 - 1 + 1 - 1}\right)$$

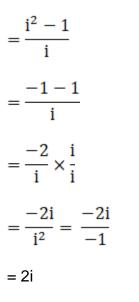
$$= \left(\frac{1}{-1}\right)$$

We have,
$$\binom{i^{170}+i^{168}+i^{166}+i^{164}+i^{162}}{i^{180}+i^{178}+i^{176}+i^{174}+i^{172}}$$

= $\left(\frac{i^{180}+i^{178}+i^{176}+i^{174}+i^{172}}{i^{170}+i^{168}+i^{166}+i^{164}+i^{162}}\right)$

We have,
$$\left(\frac{i^{180}+i^{178}+i^{176}+i^{174}+i^{172}}{i^{170}+i^{168}+i^{166}+i^{164}+i^{162}}\right)$$

Answer :



Q. 5. Evaluate
$$\left(\sqrt{36} \times \sqrt{-25}\right)$$
.

Answer : We have, $(\sqrt{36} \times \sqrt{-25})$ = $6 \times \sqrt{-1 \times 25}$

$$= 6 \times (\sqrt{-1} \times \sqrt{25})$$

$$= 6 \times (\sqrt{-1} \times 5)$$

= 6×5i = 30i

Q. 6. Find the sum (i^{n} + i^{n+1} + i^{n+2} + i^{n+3}), where n N.

Answer : We have i^{n} + i^{n+1} + i^{n+2} + i^{n+3}

- $= i^{n} + i^{n}.i + i^{n}.i^{2} + i^{n}.i^{3}$
- $= i^{n} (1 + i + i^{2} + i^{3})$
- = iⁿ (1 + i -1 -i)
- $= i^{n}(0) = 0$

Q. 7. Find the sum (i + i^2 + i^3 + i^4 +.... up to 400 terms)., where n N.

Answer : We have, $i + i^2 + i^3 + i^4 + ...$ up to 400 terms

We know that given series is GP where a=i, r = i and n = 400

Thus,
$$S = \frac{a(1-r^n)}{1-r}$$

= $\frac{i(1-(i)^{400})}{1-i}$
= $\frac{i(1-(i^4)^{100})}{1-i}$
= $\frac{i(1-1^{100})}{1-i}$ [: $i^4 = 1$]
= $\frac{i(1-1)}{1-i} = 0$

Q. 8. Evaluate $(1 + i^{10} + i^{20} + i^{30})$.

Answer : We have, 1 + i¹⁰ + i²⁰ + i³⁰

$$= 1 + (i^{4})^{2} \cdot i^{2} + (i^{4})^{5} + (i^{4})^{7} \cdot i^{2}$$

We know that, $i^{4} = 1$
$$\Rightarrow 1 + (1)^{2} \cdot i^{2} + (1)^{5} + (1)^{7} \cdot i^{2}$$

$$= 1 + i^{2} + 1 + i^{2}$$

$$= 1 - 1 + 1 - 1$$

$$= 0$$

Q. 9. Evaluate:
$$(i^{41} + \frac{1}{i^{71}})$$

Answer : We have, $\left(i^{41} + \frac{1}{i^{71}}\right)$

- $i^{41} = i^{40}$. i = i
- $i^{71} = i^{68} \cdot i^3 = -i$

Therefore,

$$\begin{pmatrix} i^{41} + \frac{1}{i^{71}} \end{pmatrix} = i - \frac{1}{i} = \frac{i^2 - 1}{i}$$

$$\begin{pmatrix} i^{41} + \frac{1}{i^{71}} \end{pmatrix} = -\frac{2}{i} \times \frac{i}{i}$$

$$\begin{pmatrix} i^{41} + \frac{1}{i^{71}} \end{pmatrix} = -\frac{2i}{i^2} = 2i$$

$$\text{Hence, } \begin{pmatrix} i^{41} + \frac{1}{i^{71}} \end{pmatrix} = 2i$$

Q. 10. Find the least positive integer n for which $\left(\frac{1+i}{1-i}\right)^n=1$.

Answer: We have, $\left(\frac{1+i}{1-i}\right)^n = 1$ Now, $\frac{1+i}{1-i} = \frac{1+i}{1-i} \times \frac{1+i}{1+i}$ $= \frac{(1+i)^2}{1^2 - i^2}$ $= \frac{1^2 + 2i + i^2}{1 - (-1)}$ $= \frac{1+2i-1}{2}$ = i

 $\frac{1+i}{1-i}^n = (i)^n = 1 \Rightarrow n \text{ is multiple of } 4$

 \therefore The least positive integer n is 4

Q. 11. Express $(2 - 3i)^3$ in the form (a + ib).

Q. 12. Express
$$\frac{(3+i\sqrt{5})(3-\sqrt{5})}{(\sqrt{3}+\sqrt{2}i)-(\sqrt{3}-\sqrt{2}i)}$$
 in the form (a + ib).

Answer : We have,
$$\frac{(3+i\sqrt{5})(3-i\sqrt{5})}{(\sqrt{3}+\sqrt{2i})-(\sqrt{3}-\sqrt{2i})}$$

$$= \frac{(3)^{2} - (i\sqrt{5})^{2}}{\sqrt{3} + \sqrt{2i} - \sqrt{3} + \sqrt{2i}} [\because (a+b)(a-b) = a^{2} - b^{2}]$$
$$= \frac{9+5}{2\sqrt{2i}} \times \frac{\sqrt{2i}}{\sqrt{2i}}$$
$$= \frac{14\sqrt{2i}}{2(\sqrt{2i})^{2}}$$
$$= \frac{7\sqrt{2i}}{-2}$$
$$= \frac{-7\sqrt{2i}}{2}$$

Q. 13. Express $\frac{3-\sqrt{-16}}{1-\sqrt{-9}}$ in the form (a + ib).

Answer : We have,
$$\frac{3-\sqrt{-16}}{1-\sqrt{-9}}$$

We know that $\sqrt{-1} = i$

Therefore,

$$\frac{3-\sqrt{-16}}{1-\sqrt{-9}} = \frac{3-4i}{1-3i}$$
$$\frac{3-\sqrt{-16}}{1-\sqrt{-9}} = \frac{3-4i}{1-3i} \times \frac{1+3i}{1+3i}$$
$$\frac{3-\sqrt{-16}}{1-\sqrt{-9}} = \frac{3+9i-4i-12i^2}{(1)^2-(3i)^2}$$
$$\frac{3-\sqrt{-16}}{1-\sqrt{-9}} = \frac{15+5i}{1+9} = \frac{15}{10} + \frac{5i}{10} = \frac{3}{2} + \frac{1}{2}i$$

 $\frac{3-\sqrt{-16}}{1-\sqrt{-9}} = \frac{3}{2} + \frac{i}{2}$

Q. 14. Solve for x: (1 - i) x + (1 + i) y = 1 - 3i.

Answer : We have, (1 - i) x + (1 + i) y = 1 - 3i

- \Rightarrow x-ix+y+iy = 1-3i
- \Rightarrow (x+y)+i(-x+y) = 1-3i

On equating the real and imaginary coefficients we get,

$$\Rightarrow$$
 x+y = 1 (i) and $-x+y = -3$ (ii)

From (i) we get

Substituting the value of x in (ii), we get

-(1-y)+y=-3

 $\Rightarrow 2y = -3+1$

 \Rightarrow x=1-y = 1-(-1)=2

Hence, x=2 and y = -1

Q. 15. Solve for x: $x^2 - 5ix - 6 = 0$.

Answer : We have, $x^2 - 5ix - 6 = 0$

Here,
$$b^2-4ac = (-5i)^2-4 \times 1 \times -6$$

Therefore, the solutions are given by $x=\frac{-(-5i)\pm\sqrt{-1}}{2\times 1}$

$$x = \frac{5i \pm i}{2 \times 1}$$
$$x = \frac{5i \pm i}{2}$$

Hence, x = 3i and x = 2i

Q. 16. Find the conjugate of
$$\frac{1}{(3+4i)}$$
.

Answer : Let
$$z = \frac{1}{3+4i}$$

 $= \frac{1}{3+4i} \times \frac{3-4i}{3-4i} = \frac{3-4i}{9+16}$
 $= \frac{3}{25} - \frac{4}{25}i$
 $\Rightarrow \bar{z} = \frac{3}{25} + \frac{4}{25}i$

Q. 17. If z = (1 - i), find z^{-1} .

Answer : We have, z = (1 - i)

- $\Rightarrow \overline{z} = 1 + i$ $\Rightarrow |\mathbf{z}|^2 = (1)^2 + (-1)^2 = 2$
- \div The multiplicative inverse of (1 i),

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{1+i}{2}$$

$$z^{-1} = \frac{1}{2} + \frac{1}{2}i$$
Q. 18. If $z = (\sqrt{5} + 3i)$, find z^{-1} .
Answer : We have, $z = (\sqrt{5} + 3i)$

$$\Rightarrow \overline{z} = (\sqrt{5} - 3i)$$

$$\Rightarrow |z|^2 = (\sqrt{5})^2 + (3)^2$$

$$= 5 + 9 = 14$$

: The multiplicative inverse of $(\sqrt{5} + 3i)$,

$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{\sqrt{5} - 3i}{14}$$
$$z^{-1} = \frac{\sqrt{5}}{14} + \frac{3}{14}i$$

Q. 19. Prove that arg (z) + arg (\overline{z}) = 0

Answer : Let $z = r(\cos\theta + i \sin\theta)$

$$\Rightarrow \arg(z) = \theta$$

Now, $\overline{z} = r(\cos\theta - i\sin\theta) = r(\cos(-\theta) + i\sin(-\theta))$ $\Rightarrow \arg(\overline{z}) = -\theta$

3π

Thus, arg (z) $+ \frac{\arg(\overline{z})}{2} = \theta - \theta = 0$

Hence proved.

Q. 20. If
$$|z| = 6$$
 and arg (z) = $\frac{3\pi}{4}$, find z.

Answer : We have, |z| = 6 and arg (z) = 4

Let $z = r(\cos\theta + i \sin\theta)$

We know that, |z| = r = 6

And arg (z) = $\theta = \frac{3\pi}{4}$

Thus,
$$z = r(\cos\theta + i\sin\theta) = \frac{6\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)}{4}$$

Q. 21. Find the principal argument of (-2i).

Answer : Let, z = -2i

Let $0 = r\cos\theta$ and $-2 = r\sin\theta$

By squaring and adding, we get

$$(0)^{2} + (-2)^{2} = (r\cos\theta)^{2} + (r\sin\theta)^{2}$$

$$\Rightarrow 0+4 = r^{2}(\cos^{2}\theta + \sin^{2}\theta)$$

$$\Rightarrow 4 = r^{2}$$

$$\Rightarrow r = 2$$

$$\therefore \cos\theta = 0 \text{ and } \sin\theta = -1$$

Since, θ lies in fourth quadrant, we have

$$\theta = -\frac{\pi}{2}$$

Since, $\theta \in (-\pi, \pi]$ it is principal argument.

Q. 22. Write the principal argument of (1 + i $\sqrt{3}$)².

- Answer : Let, $z = (1 + i\sqrt{3})^2$ $= (1)^2 + (i\sqrt{3})^2 + 2\sqrt{3}i$ $= 1 - 1 + 2\sqrt{3}i$ $z = 0 + 2\sqrt{3}i$ Let $0 = r\cos\theta$ and $2\sqrt{3} = r\sin\theta$ By squaring and adding, we get $(0)^2 + (2\sqrt{3})^2 = (r\cos\theta)^2 + (r\sin\theta)^2$ $\Rightarrow 0 + (2\sqrt{3})^2 = r^2(\cos^2\theta + \sin^2\theta)$
- $\Rightarrow (2\sqrt{3})^2 = r^2$
- ⇒ r = 2√3
- $\therefore \cos\theta = 0$ and $\sin\theta = 1$

Since, θ lies in first quadrant, we have

$$\theta = \frac{\pi}{2}$$

Since, $\theta \in (-\pi, \pi]$ it is principal argument.

Q. 23. Write –9 in polar form.

Answer : We have, z = -9

```
Let -9 = r\cos\theta and 0 = r\sin\theta

By squaring and adding, we get

(-9)^2 + (0)^2 = (r\cos\theta)^2 + (r\sin\theta)^2

\Rightarrow 81 = r^2(\cos^2\theta + \sin^2\theta)

\Rightarrow 81 = r^2

\Rightarrow r = 9

\therefore \cos\theta = -1 and \sin\theta = 0

\Rightarrow \theta = \pi
```

Thus, the required polar form is $9(\cos \pi + i \sin \pi)$

Q. 24. Write 2i in polar form.

Answer : Let, z = 2i

Let $0 = r\cos\theta$ and $2 = r\sin\theta$

By squaring and adding, we get

$$(0)^{2} + (2)^{2} = (r\cos\theta)^{2} + (r\sin\theta)^{2}$$

$$\Rightarrow 0+4 = r^{2}(\cos^{2}\theta + \sin^{2}\theta)$$

$$\Rightarrow 4 = r^{2}$$

$$\Rightarrow r = 2$$

$$\therefore \cos\theta = 0$$
 and $\sin\theta = 1$

Since, θ lies in first quadrant, we have

$$\theta = \frac{\pi}{2}$$

Thus, the required polar form is $2\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$

Thus, the required polar form is

Q. 25. Write –3i in polar form.

Answer : Let, z = -3i

Let $0 = r\cos\theta$ and $-3 = r\sin\theta$

By squaring and adding, we get

$$(0)^{2} + (-3)^{2} = (r\cos\theta)^{2} + (r\sin\theta)^{2}$$

$$\Rightarrow 0+9 = r^2(\cos^2\theta + \sin^2\theta)$$

 \Rightarrow r = 3

$$\therefore \cos\theta = 0$$
 and $\sin\theta = -1$

Since, θ lies in fourth quadrant, we have

$$\theta = \frac{3\pi}{2}$$

$$3\left(\cos\left(\frac{3\pi}{2}\right) + i\sin\left(\frac{3\pi}{2}\right)\right)$$

Thus, the required polar form is

Q. 26. Write z = (1 - i) in polar form.

Answer : We have, z = (1 - i)

Let $1 = r\cos\theta$ and $-1 = r\sin\theta$

By squaring and adding, we get

$$(1)^{2} + (-1)^{2} = (r\cos\theta)^{2} + (r\sin\theta)^{2}$$

$$\Rightarrow 1+1 = r^2(\cos^2\theta + \sin^2\theta)$$

$$\Rightarrow 2 = r^2$$

$$\therefore \cos\theta = \frac{1}{\sqrt{2}} \text{ and } \sin\theta = \frac{-1}{\sqrt{2}}$$

Since, θ lies in fourth quadrant, we have

$$\theta = -\frac{\pi}{4}$$

$$\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right)+\sin\left(-\frac{\pi}{4}\right)\right)$$

Thus, the required polar form is

Q. 27. Write z = (–1 + i
$$\sqrt{3}$$
) in polar form.

Answer : We have,
$$z = (-1 + i\sqrt{3})$$

Let $-1 = r\cos\theta$ and $\sqrt{3} = r\sin\theta$

By squaring and adding, we get

$$(-1)^{2} + (\sqrt{3})^{2} = (r\cos\theta)^{2} + (r\sin\theta)^{2}$$
$$\Rightarrow 1+3 = r^{2}(\cos^{2}\theta + \sin^{2}\theta)$$
$$\Rightarrow 4 = r^{2}$$
$$\Rightarrow r = 2$$

$$\therefore \cos\theta = \frac{-1}{2} \text{ and } \sin\theta = \frac{\sqrt{3}}{2}$$

Since, θ lies in second quadrant, we have

$$\theta = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$$

Thus, the required polar form is $2\left(\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3}\right)$

Q. 28. If
$$|z| = 2$$
 and arg (z) = $\frac{\pi}{4}$, find z.

Answer : We have, |z| = 2 and arg $(z) = \frac{\pi}{4}$,

Let $z = r(\cos\theta + i \sin\theta)$

We know that, |z| = r = 2

And arg (z) = $\theta = \frac{\pi}{4}$

Thus,
$$z = r(\cos\theta + i\sin\theta) = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$