

DPP No. 4

Total Marks : 34

Max. Time : 36 min.

Topics	pics : Quadratic Equation, Fundamentals of Mathematics, Circle, Complex Number					
Туре	Type of Questions					
Single Fill in	Comprehension (no negative marking) Q.1 to Q.3 Single choice Objective (no negative marking) Q.4, 5, 6 Fill in the Blanks (no negative marking) Q.7, 8 Subjective Questions (no negative marking) Q.9, 10			arks, 3 min.) arks, 3 min.) arks, 4 min.) arks, 5 min.)	[9, [9, [8, [8,	9] 9] 8] 10]
COMF	REHENSION (For	Q.No. 1 to 3)				
	A polynomial P(x) of third degree vanish when $x = 1 \& x = -2$. This polynomial have the values 4 & 28 when $x = -1$ and $x = 2$ respectively.					
1.	One of the factor o (A) x + 1		(C) 3x + 1	(D) none of t	(D) none of these	
2.	If the polynomial P (A) – 32	P(x) is divided by (x + 3), th (B) 100	e remainder is (C) 32	(D) 0		
3.	P(i), where $i = \sqrt{-}$ (A) purely real	.1 is (B) purely imaginary	(C) imaginary	(D) none of t	hese	
4.	The value of x satisfying the equation $\frac{6x + 2a + 3b + c}{6x + 2a - 3b - c} = \frac{2x + 6a + b + 3c}{2x + 6a - b - 3c}$ is					
	(A) ab/c	(B) 2ab/c	(C) ab/3c	(D) ab/2c		
5.	If $x = 3 - \sqrt{8}$, then $x^3 + \frac{1}{x^3}$ is equal to					
	(A) 6	(B) 198	(C) 6√2	(D) 102		
6.	Which of these five numbers $\sqrt{\pi^2}$, $\sqrt[3]{0.8}$, $\sqrt[4]{0.00016}$, $\sqrt[3]{-1}$, $\sqrt{(0.09)^{-1}}$, is (are) rational :					
	(A) none	(B) all	(C) the first and fou			
7.	Circles with centres P, Q & S are touching each other externally as shown in the figure at points A, B & C . If the radii of circles with centres P, Q & S are 1, 2 and 3 respectively then the length of chord AB is					

- 8. In a circle, chords AB and CD intersect at a point R inside the circle. If AR : RB = 1: 4 and CR: RD = 4: 9, then the ratio AB: CD is _____.
- 9. (i) Find the smallest positive integer 'n' for which $\left(\frac{1+i}{1-i}\right)^n = 1$
 - (ii) If $g(x) = x^4 x^3 + x^2 + 3x 5$, find g(2 + 3i)
 - (iii) Given that $x, y \in R$, solve
 - (a) $x^2 y^2 i(2x + y) = 2i$ (b) (x + 2y) + i(2x 3y) = 5 4i
- **10.** Find the real values of x & y for which $z_1 = 9y^2 4 10$ i x and $z_2 = 8y^2 20$ i are conjugate complex of each other.

Answers Key

1. (C) **2.** (A) **3.** (C) **4.** (A) **5.** (B) **6.** (D) **7.** $\sqrt{2}$ **8.** 15: 13 **9.** (i) 4 (ii) -(77 + 108i) (iii) (a) $x = -2, -\frac{2}{3}, y = 2, -\frac{2}{3}$ (b) x = 1, y = 2**10.** (-2, 2); (-2, -2)