CBSE Test Paper-03 Class - 12 Physics (Alternating Current)

- 1. Domestic power supply in India is:
 - a. 416 V 60 Hz
 - b. 110 V 60 Hz
 - c. 24 V DC
 - d. 220 V 50 Hz
- 2. If the current is halved in a coil then the energy stored is how much times the previous value:
 - a. $\frac{1}{2}$
 - b. 1/4
 - c. 2
 - d. 4
- 3. If V_{m} and I_{m} are peak voltage and current, Impedance Z in an AC circuit is
 - a. $\frac{v_m}{2i_m}$
 - b. $v_{\rm m} i_{\rm m}$
 - C. $\frac{2v_m}{i_m}$

d.
$$\frac{v_m}{i_m}$$

- 4. The rms current I_{rms} is related to the peak current I_o as
 - a. I_{rms} = 0.787 I_{o}
 - b. I_{rms} = 0.9 I_o
 - c. $I_{rms} = 0.707 I_{o}$
 - d. $I_{rms} = 0.5 I_o$
- 5. A power transmission line feeds input power at 2300 V to a step-down transformer with its primary windings having 4000 turns. Number of turns in the secondary in order to get output power at 230 V is
 - a. 325
 - b. 380
 - c. 425
 - d. 400

- 6. A power transmission line feeds input power at 2200V to a step-down transformer with its primary windings having 3000 turns. Find the number of turns in the secondary winding to get the power output at 220 V.
- 7. Is a motor starter a variable R or L?
- 8. The number of turns in the secondary coil of a transformer is 500 times that in primary. What power is obtained from the secondary when power fed to the primary is 10 W?
- 9. Mention various energy losses in a transformer.
- 10. An alternating voltage given by V = 140 sin 314t is connected across a pure resistor of 50Ω . Find
 - i. the frequency of the source.
 - ii. the rms current through the resistor.
- 11. An electric lamp having coil of negligible inductance connected in series with a capacitor and an AC source is glowing with certain brightness. How does the brightness of the lamp change on reducing the
 - i. capacitance, and
 - ii. the frequency? Justify your answer.
- 12. A $100\mu F$ capacitor in series with a 40Ω resistance is connected to a 110 V, 60 Hz supply.
 - a. What is the maximum current in the circuit?
 - b. What is the time lag between current maximum and voltage maximum?
- 13. An inductor $200\mu H$, capacitor $500\mu F$, resistor 10Ω are connected in series with a 100 V, variable frequency a.c. source.

Calculate:

- i. frequency at which the power factor of the circuit is unity
- ii. current amplitude at this frequency
- iii. Q-factor
- 14. i. Determine the value of phase difference between the current and the voltage in the given series L-C-R circuit.

- ii. Calculate the value of additional capacitor which may be joined suitably to the capacitor C that would make the power factor of the circuit unity.
- 15. A resistor of 400 Ω , an inductor of $\frac{5}{\pi}$ H and a capacitor of $\frac{50}{\pi}\mu F$ are connected m series across a source of alternating voltage of 140 sin 100 $\pi t V$. Find the voltage (rms) across the resistor, the inductor and the capacitor. Is the algebraic sum of these voltages more than the source voltage? If yes, resolve the paradox. (Given, $\sqrt{2} = 1.414$)..

CBSE Test Paper-03 Class - 12 Physics (Alternating Current) Answers

1. d. 220 V 50 Hz

Explanation: In INDIA domestic power supply is at 220V and 50Hz.

2. b. 1/4

> Explanation: $E = \frac{1}{2}Li^2$ $\frac{E_1}{E_2} = \left(\frac{i_1}{i_2}\right)^2$ $i_2 = rac{i_1}{2}$ $rac{E_1}{E_2} = \left(rac{i_1}{rac{i_1}{2}}
> ight)^2 = 4$ $E_2 = \frac{E_1}{4}$ l. $\frac{v_m}{i_m}$

Explanation: Impedance refers to the overall obstruction offered by a circuit containing different components to the passage of current. Also Z has unit same as resistance.

So, drawing an analogy with the ohm's law, we get the above relation

4. c.
$$I_{rms} = 0.707 I_o$$

 $\overline{i}^2 = \frac{i_0^2}{2}$

Explanation: Average value of i² over a complete cycle is given by $ar{i}^2 = rac{1}{T} \int_0^T i^2 dt$ $i = i_0 \sin \omega t$ $T = rac{2\pi}{\omega}$ $ar{i}^2 = rac{\omega}{2\pi} \int_0^{2\pi/\omega} i_0^2 \sin^2 \omega t dt = rac{\omega}{2\pi} i_0^2 \int_0^{2\pi/\omega} rac{(1-\cos 2\omega t)}{2} dt$ $ar{i}^2 = rac{\omega}{2\pi} rac{i_0^2}{2} \left[t - rac{\sin 2\omega t}{2\omega}
ight]_0^{2\pi/\omega} = rac{\omega}{2\pi} rac{i_0^2}{2} \left(rac{2\pi}{\omega}
ight)$

the root-mean-square value of the alternating current is

$$i_{rms} = \sqrt{\overline{i}^2} = rac{i_0}{\sqrt{2}}$$
 i_{rms} = 0.707 i_0

5. d. 400

Explanation: N_p = no. of turns in primary coil = 4000

N_s = no. of turns in primary coil

V_p = input voltage = 2300 V

V_s = output voltage = 230 V

$$\frac{\frac{V_s}{V_p} = \frac{N_s}{N_p}}{\frac{230}{2300} = \frac{N_s}{4000}}$$
$$N_s = 400$$

6. Given, input voltage (V1) = 2200 V

Number of turns $(n_1) = 3000$

Output voltage (V2) = 220 V

As,
$$rac{V_2}{V_1} = rac{n_2}{n_1} \Rightarrow rac{220}{2200} = rac{n_2}{3000} \Rightarrow n_2 = rac{220}{2200} imes 3000$$

 $n_2 = 300$

- 7. Variable R
- 8. If there is no loss of energy, then the output power will be 10 W.
- 9. For energy losses in transformer.
 - Copper Losses (Winding Resistance) Core or Iron Losses
 - Hysteresis Losses
 - Eddy Current Losses

10. An alternating voltage given by V = 140 sin 315 t, R = 50 Ω Comparing it with V = V_0 sin ωt

i. Here, $\omega = 314 \text{rad/s}$ i.e. $2\pi v = 314$ $\Rightarrow v = 314/2\pi$ $v = \frac{314}{2 \times 3.14}$ = 50 Hzii. As, $I_{\text{rms}} = \frac{V_{\text{rms}}}{R}$ and $V_{\text{rms}} = \frac{V_0}{\sqrt{2}}$ Here, $V_0 = 140 \text{V}$ $V_{\text{rms}} = \frac{140}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = 70\sqrt{2} \text{V}$

$$\therefore \quad I_{
m rms} = rac{70\sqrt{2}}{R} = rac{70\sqrt{2}}{50} = 1.9 {
m A}$$

- 11. When AC source is connected, the capacitor offers capacitive reactance
 - $X_C = rac{1}{\omega C} = rac{1}{2\pi v_0 C}$. The current flows in the circuit and the lamp glows.
 - i. By *reducing the capacitance*, the capacitive reactance will *increase*. So the *bulb brightness* will *decrease*.
 - ii. On reducing frequency, X_C increases so current in the circuit decrease. Therefore, the brightness of the bulb decrease.

12. Here,
$$C = 100\mu F = 100 \times 10^{-6}F = 10^{-4}F$$
, $R = 40\Omega$
 $E_v = 110volt$, $E_0 = \sqrt{2}$, $E_v = \sqrt{2} \times 110V$ v = 60 Hz,
 $\omega = 2\pi v = 120\pi rad/s$ I₀ =?
In RC circuit as $Z = \sqrt{R^2 + X_L^2} = \sqrt{R^2 + \frac{1}{\omega^2 C^2}}$
 $\therefore I_0 = \frac{E_0}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} = \frac{\sqrt{2} \times 110}{\sqrt{1600 + \frac{1}{(120\pi \times 10^{-4})^2}}}$ In PC circuit voltage lags behind the current by phase angle

In RC circuit, voltage lags behind the current by phase angle . ϕ

where
$$\tan \phi = \frac{\frac{1}{\omega C}}{R} = \frac{1}{\omega CR} = \frac{1}{120\pi \times 10^{-4} \times 40} = 0.6628$$

 $\phi = \tan^{-1}(0.6625) = 33.5^{\circ} = \frac{33.5\pi}{180} rad$ Time lag
 $= \frac{\phi}{\omega} = \frac{33.5\pi}{180 \times 120\pi} = 1.55 \times 10^{-3} \sec$
i Power factor

13. i. Power factor

$$\begin{aligned} \cos\theta &= \frac{R}{Z} = 1\\ \mathrm{R} = \mathrm{Z}\\ R &= \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}\\ R^2 &= R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2\\ \omega L &= \frac{1}{\omega C}\\ \omega^2 &= \frac{1}{LC} \text{ or } \omega = \frac{1}{\sqrt{LC}}\\ 2\pi v &= \frac{1}{\sqrt{LC}}\\ \nu &= \frac{1}{2\pi\sqrt{LC}}\\ \nu &= \frac{1}{2\pi\sqrt{LC}}\\ \omega_0 &= \frac{1}{2\pi\sqrt{LC}}\\ &= \frac{1}{\sqrt{200 \times 10^{-6} \times 500 \times 10^{-6}}}\\ &= 3.16 \times 10^{-3} \ rad \ s^{-1} \end{aligned}$$

$$\omega_0 = 3.16 \times 10^{-3} rad/s$$
ii. The current amplitude at this frequency, $I_0 = \frac{V}{R} = \frac{100}{10} = 10A$
iii. The Q-factor, $Q = \frac{X_L}{R} = \frac{\omega_0 L}{R}$
 $= \frac{3.16 \times 10^{-3} \times 200 \times 10^{-6}}{10} = 6.32 \times 10^{-8}$
14. i. $V = V_0 \sin(1000t + \phi)$

Given

$$V = V_0 \sin(1000t + \phi) \Rightarrow \omega = 1000 \text{Hz}$$

 $R = 400\Omega C = 2\mu F, L = 100 \text{mH}$
 \therefore Capacitive reactance, $X_c = \frac{1}{\omega C}$
 $\Rightarrow \quad X_C = \frac{1}{1000 \times 2 \times 10^{-6}}$
 $\Rightarrow \quad X_c = \frac{10^3}{2} \Rightarrow X_c = 500\Omega$
 \therefore Inductive reactance, $X_L = \omega L$
 $\Rightarrow \quad X_L = 1000 \times 100 \times 10^{-3} \Rightarrow X_L = 100\Omega$
So $X_c > X_L$
 $\Rightarrow \tan \phi$ is negative.
Hence, the voltage lags behind the current by a phase angle ϕ .

$$\therefore \text{ Phase difference, } \tan \phi = \frac{X_L - X_C}{R}$$
$$\tan \phi = \frac{100 - 500}{400} \Rightarrow \tan \phi = \frac{-400}{400}, \tan \phi = -1$$
$$\Rightarrow \quad \tan \phi = -\tan\left(\frac{\pi}{4}\right) \Rightarrow \phi = -\frac{\pi}{4}$$

This is the required value of the phase difference between the current and the voltage in the given series L-C-R circuit.

As, $\cos \phi < 1$

ii. Suppose, new capacitance of the circuit is C'. Thus, to have power factor unity $\cos\phi'=1=rac{R}{\sqrt{R^2+(X_L-X_C)^2}}$

$$egin{array}{lll} \Rightarrow & R^2 = R^2 + \left(X_L - X_C'
ight)^2 \ \Rightarrow & X_L = X_C' = rac{1}{\omega C'} ext{ or } \omega L = rac{1}{\omega C'} \ \Rightarrow & \omega^2 = rac{1}{LC'} ext{ or } (1000)^2 = rac{1}{LC'} (\because \omega = 1000) \ \Rightarrow & C' = rac{1}{L imes 10^6} = rac{1}{100 imes 10^{-3} imes 10^6} \end{array}$$

$$\begin{aligned} &= \frac{10}{10^6} = \frac{1}{10^5} = 10^{-5} \\ \Rightarrow \quad C' = 10^{-5} F = 10 \times 10^{-6} F = 10 \mu F \\ \text{As, C > C. Hence, we have to add an additional capacitor of capacitance} \\ &8 \mu F (10 \mu F - 2 \mu F) \text{ in parallel with previous capacitor.} \end{aligned}$$

15. It can be calculated with the help of formula of phase difference.
As applied voltage, $V = 140 \sin 100 \pi t$
 $C = \frac{50}{\pi} \mu F$, $L = \frac{5}{\pi} H$, $R = 400 \Omega$
Comparing it with $V = V_0 \sin \omega t$,
 $V_0 = 140 V$, $\omega = 100 \pi$
Inductive reactance, $X_L = \omega L$
 $X_L = 100 \pi \times 5/\pi = 500 \Omega$
Capacitive reactance, $X_C = \frac{1}{\omega C}$
 $X_c = \frac{1}{100 \pi \times \frac{50}{\pi} \times 10^{-6}} = 200 \Omega$
Impedance of the AC circuit,
 $Z = \sqrt{R^2 + (X_L - X_C)^2}$
 $= \sqrt{1409^2 + (500 - 200)^2}$
 $Z = \sqrt{1600 + 900} = 500 \Omega$
Maximum current in the circuit,
 $I_0 = \frac{V_0}{Z} = \frac{140}{500 \times \sqrt{2}} = 0.2 A$
 V_{rms} across resistor R, $V_{rms} = I_{rms} R$
 V_{rms} across resistor R, $V_{rms} = I_{rms} X_L$
 $V_L = 0.2 \times 500 = 100 V$
 V_{rms} across capacitor, $V_C = I_{rms} X_C$
 $V_C = 0.2 \times 200 = 40 V$
Here, $V < V_R + V_L + V_C$
Because V_L and V_R are not in same phase,
 $\therefore V = \sqrt{V_K^2 + (V_L - V_C)^2}$