Ordinary Thinking

Objective Questions

Atomic Structure

1. If in nature there may not be an element for which the principal quantum number n > 4, then the total possible number of elements n > 4.

[IIT 1983; MP PET 1999; RPMT 1999; RPET 2001]

(a) 60

(b) 32

(c) 4

- (d) 64
- 2. In the Bohr's hydrogen atom model, the radius of the stationary and second spectral line of Paschen series orbit is directly proportional to (n = principle quantum number)[MNR 1988; SCRA 1994; Series limit of Lyman series, second spectral line of Balmer

CBSE PMT 1996; AllMS 1999; DCE 2002]

- (a) n^{-1}
- (b)
- (c) n^{-2}
- (d) n^2
- 3. In the *n* orbit, the energy of an electron $E_n = -\frac{13.6}{n^2} eV$ for

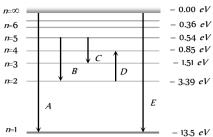
hydrogen atom. The energy required to take the electron from first orbit to second orbit will be

[MP PMT 1987; CPMT 1991, 97; RPMT 1999; DCE 2001; Kerala PMT 2004]

- (a) $10.2 \, eV$
- (b) 12.1 eV
- (c) 13.6 eV
- (d) 3.4 eV
- 4. In the following atoms and moleculates for the transition from n=2 to n=1, the spectral line of minimum wavelength will be produced by [IIT 1983]
 - (a) Hydrogen atom
- (b) Deuterium atom
- (c) Uni-ionized helium
- (d) di-ionized lithium
- 5. The Lyman series of hydrogen spectrum lies in the region

[MNR 1993; MP PMT 1995; UPSEAT 2002]

- (a) Infrared
- (b) Visible
- (c) Ultraviolet
- (d) Of X rays
- **6.** The size of an atom is of the order of


[CPMT 1990; MP PMT 1984; KCET 1994]

- (a) $10^{-8} m$
- (b) $10^{-10} m$
- (c) $10^{-12} m$
- (d) $10^{-14} m$
- 7. Which one of the series of hydrogen spectrum is in the visible region [RPMT 1999;MP PET 1990; MP PMT 1994;

AFMC 1998; CBSE PMT 1990; MH CET 2004]

- (a) Lyman series
- (b) Balmer series
- (c) Paschen series
- (d) Bracket series
- **8.** The energy levels of the hydrogen spectrum is shown in figure. There are some transitions *A*, *B*, *C*, *D* and *E*. Transition *A*, *B* and *C* respectively represent

[CPMT 1986, 88]

- (a) First member of Lyman series, third spectral line of Balmer series and the second spectral line of Paschen series
- (b) Ionization potential of hydrogen, second spectral line of Balmer series and third spectral line of Paschen series
- (c) Series limit of Lyman series, third spectral line of Balmer series and second spectral line of Paschen series

Series limit of Lyman series, second spectral line of Balmer series and third spectral line of Paschen series

9. In the above figure D and E respectively represent

[CPMT 1986, 88]

- (a) Absorption line of Balmer series and the ionization potential of hydrogen
- (b) Absorption line of Balmer series and the wavelength lesser than lowest of the Lyman series
- (c) Spectral line of Balmer series and the maximum wavelength of Lyman series
- (d) Spectral line of Lyman series and the absorption of greater wavelength of limiting value of Paschen series
- 10. The Rutherford α -particle experiment shows that most of the α -particles pass through almost unscattered while some are scattered through large angles. What information does it give about the structure of the atom [AFMC 1997]
 - (a) Atom is hollow
 - (b) The whole mass of the atom is concentrated in a small centre called nucleus
 - (c) Nucleus is positively charged
 - (d) All the above
- 11. Which of the following is true

[MP PET 1993]

- (a) Lyman series is a continuous spectrum
 - (b) Paschen series is a line spectrum in the infrared
 - (c) Balmer series is a line spectrum in the ultraviolet
 - (d) The spectral series formula can be derived from the Rutherford model of the hydrogen atom
- 12. The energy required to knock out the electron in the third orbit of a hydrogen atom is equal to [DPMT 1987]
 - (a) 13.6 *eV*
- (b) $+\frac{13.6}{9}eV$
- (c) $-\frac{13.6}{3}eV$
- (d) $-\frac{3}{13.6}eV$
- 13. An electron has a mass of $9.1\times10^{-31}\,kg$. It revolves round the nucleus in a circular orbit of radius $0.529\times10^{-10}\,metre$ at a speed of $2.2\times10^6\,m/s$. The magnitude of its linear momentum in this motion is

[AFMC 1988]

- (a) $1.1 \times 10^{-34} kg m/s$
- (b) $2.0 \times 10^{-24} \, kg m/s$
- (c) $4.0 \times 10^{-24} kg m/s$
- (d) $4.0 \times 10^{-31} kg m/s$
- In a beryllium atom, if a be the radius of the first orbit, then the 14. radius of the second orbit will be in general

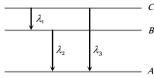
[CBSE PMT 1992; Roorkee 1993; BHU 1998]

- na_0
- (c) $n^2 a_0$
- 15. The ionization potential for second *He* electron is
 - (a) 13.6 eV
- (b) 27.2 eV
- (c) 54.4 eV
- (d) 100 eV
- 16. The energy required to remove an electron in a hydrogen atom from n = 10 state is [MP PMT 1993]
 - (a) 13.6 eV
- (b) 1.36 eV
- (c) 0.136 eV
- (d) 0.0136 eV
- Every series of hydrogen spectrum has an upper and lower limit in wavelength. The spectral series which has an upper limit of wavelength equal to 18752 Å is [MP PMT 1993]
 - (a) Balmer series
- (b) Lyman series
- (c) Paschen series
- (d) Pfund series

(Rydberg constant $R = 1.097 \times 10^7$ per metre)

- The kinetic energy of the electron in an orbit of radius r in 18. [MP PMT 1987] hydrogen atom is (*e* = electronic charge)

- lonization potential of hydrogen atom is 13.6 V. 19.


Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV. The spectral lines emitted by hydrogen atoms according to Bohr's theory will be

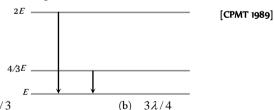
CBSE PMT 1996; MP PMT 1999; AMU (Med.) 2002]

- (a) One
- (b) Two

- 20. Energy levels A, B, C of a certain atom corresponding to increasing values of energy *i.e.* $E_A < E_B < E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct

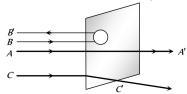
[AIIMS 1995; CBSE PMT 1990, 2005]

- (c) $\lambda_1 + \lambda_2 + \lambda_3 = 0$
- (d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$
- 21. The angular momentum of electron in n orbit is given by


- (a) nh
- (c) $n\frac{h}{2\pi}$
- (d) $n^2 \frac{h}{2\pi}$
- The ratio of the energies of the hydrogen atom in its first to second excited state is [CPMT 1978]
 - (a) 1/4
- (b) 4/9
- (c) 9/4
- (d)
- An electron jumps from the 4° orbit to the 2° orbit of hydrogen 23. atom. Given the Rydberg's constant $R = 10^5 \, cm^{-1}$. The frequency in Hz of the emitted radiation will be
 - (a) $\frac{3}{16} \times 10^5$
- (b) $\frac{3}{16} \times 10^{15}$
- (c) $\frac{9}{16} \times 10^{15}$ (d) $\frac{3}{4} \times 10^{15}$
- The ionisation potential of hydrogen atom is 13.6 volt. The energy required to remove an electron in the n = 2 state of the hydrogen atom is [NCERT 1983; MP PET 2005]
 - (a) 27.2 eV
- (b) 13.6 eV
- (c) 6.8 eV
- (d) 3.4 eV
- 25. The ionisation energy of 10 times ionised sodium atom is

[DPMT 1991]

[Roorkee 1993]


- (a) 13.6 eV
- (b) $13.6 \times 11 \ eV$
- (c) $\frac{13.6}{11}eV$
- (d) $13.6 \times (11)^2 eV$
- 26. If the wavelength of the first line of the Balmer series of hydrogen is $6561\,\text{Å}$, the wavelength of the second line of the series should be [CPMT 1984; DPMT 2004]
 - 13122 Å
- (b) 3280 Å
- (c) 4860 Å
- (d) 2187 Å
- The following diagram indicates the energy levels of a certain atom 27. when the system moves from 2E level to E, a photon of wavelength λ is emitted. The wavelength of photon produced during its

transition from $\frac{4E}{3}$ level to E is

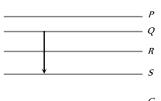
- $\lambda/3$ (a)
- (c) $4\lambda/3$
- (d) 3λ
- A beam of fast moving alpha particles were directed towards a thin 28. film of gold. The parts A', B' and C' of the transmitted and reflected beams corresponding to the incident parts A, B and C of the beam, are shown in the adjoining diagram. The number of alpha particles in

[CPMT 1986, 88; RPET 2000]

- (a) B' will be minimum and in C' maximum
- (b) A' will be maximum and in B' minimum
- (c) A' will be minimum and in B' maximum
- (d) C' will be minimum and in B' maximum
- **29.** According to Bohr's theory the radius of electron in an orbit described by principal quantum number n and atomic number Z is proportional to [CPMT 1988]
 - (a) Z^2n^2
- (b) $\frac{Z^2}{n^2}$
- (c) $\frac{Z^2}{n}$
- (d) $\frac{n^2}{Z}$
- **30.** The radius of electron's second stationary orbit in Bohr's atom is *R*. The radius of the third orbit will be

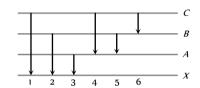
[EAMCET 1992; DPMT 1999]

- (a) 3 R
- (b) 2.25 R
- (c) 9 R
- (d) $\frac{R}{3}$
- 31. If m is mass of electron, v its velocity, r the radius of stationary circular orbit around a nucleus with charge Ze, then from Bohr's first postulate, the kinetic energy $K = \frac{1}{2}mv^2$ of the electron in C.G.S. system is equal to


[NCERT 1977]

- (a) $\frac{1}{2} \frac{Ze^2}{r}$
- (b) $\frac{1}{2} \frac{Ze^2}{r^2}$
- (c) $\frac{Ze^2}{r}$
- (d) $\frac{Ze}{r^2}$
- **32.** Consider an electron in the n orbit of a hydrogen atom in the Bohr model. The circumference of the orbit can be expressed in terms of the de Broglie wavelength λ of that electron as
 - (a) $(0.259) n\lambda$
- (b) $\sqrt{n}\lambda$
- (c) $(13.6) \lambda$
- (d) $n\lambda$
- 33. In any Bohr orbit of the hydrogen atom, the ratio of kinetic energy to potential energy of the electron is [MP PET 1994]
 - (a) 1/2

- (b) 2
- (c) -1/2
- (d) 2
- **34.** The spectral series of the hydrogen spectrum that lies in the ultraviolet region is the


[CPMT 1990; MP PET 1994; MP PMT 2000]

- (a) Balmer series
- (b) Pfund series
- (c) Paschen series
- (d) Lyman series
- **35.** Figure shows the energy levels *P*, *Q*, *R*, *S* and *G* of an atom where *G* is the ground state. *A* red line in the emission spectrum of the atom can be obtained by an energy level change from *Q* to *S*. A blue line can be obtained by following energy level change

- (a) P to Q
- (b) Q to R
- (c) R to S
- (d) R to G
- **36.** A hydrogen atom (ionisation potential 13.6 *eV*) makes a transition from third excited state to first excited state. The energy of the photon emitted in the process is [MNR 1995]
 - (a) 1.89 *eV*
- (b) 2.55 eV
- (c) 12.09 eV
- (d) 12.75 eV
- **37.** The figure indicates the energy level diagram of an atom and the origin of six spectral lines in emission (*e.g.* line no. 5 arises from the transition from level *B* to *A*). The following spectral lines will also occur in the absorption spectrum

[CBSE PMT 1995]

- (a) 1, 4, 6
- (b) 4, 5, 6
- (c) 1, 2, 3
- (d) 1, 2, 3, 4, 5, 6
- **38.** When a hydrogen atom is raised from the ground state to an excited state [CBSE PMT 1995; AMU (Med.) 1999]
 - (a) P.E. increases and K.E. decreases
 - (b) P.E. decreases and K.E. increases
 - (c) Both kinetic energy and potential energy increase
 - (d) Both K.E. and P.E. decrease
- **39.** An electron makes a transition from orbit n = 4 to the orbit n = 2 of a hydrogen atom. The wave number of the emitted radiations (R = Rydberg's constant) be

[CBSE PMT 1995]

- (a) $\frac{16}{3R}$
- (b) $\frac{2R}{16}$
- (c) $\frac{3R}{16}$
- (d) $\frac{41}{10}$
- **40.** In Bohr model of the hydrogen atom, the lowest orbit corresponds to [Manipal MEE 1995]
 - (a) Infinite energy
- (b) The maximum energy
- (c) The minimum energy
- (d) Zero energy
- 41. The ratio of the kinetic energy to the total energy of an electron in a Bohr orbit is [Roorkee 1995; BHU 2002]
 - (a) 1
- (b) 2
- (c) 1:2
- (d) None of these
- 42. An electron in the n=1 orbit of hydrogen atom is bound by 13.6 *eV*. If a hydrogen atom is in the n=3 state, how much energy is required to ionize it [MP PMT 1995]
 - [**MP PMT 1994**]
 (a) 13.6 *eV*
- (b) 4.53 eV
- (c) 3.4 eV
- (d) 1.51 eV

- **43.** Which of the following statements about the Bohr model of the hydrogen atom is false [MP PMT 1995]
 - (a) Acceleration of electron in n = 2 orbit is less than that in n = 1 orbit
 - (b) Angular momentum of electron in n = 2 orbit is more than that in n = 1 orbit
 - (c) Kinetic energy of electron in n = 2 orbit is less than that in n = 1 orbit
 - (d) Potential energy of electron in n = 2 orbit is less than that in n = 1 orbit
- 44. If an electron jumps from 1st orbital to 3rd orbital, then it will
 - (a) Absorb energy
- (b) Release energy
- (c) No gain of energy
- (d) None of these
- **45.** The ratio of the frequencies of the long wavelength limits of Lyman and Balmer series of hydrogen spectrum is

[KCEE 1996]

- (a) 27:5
- (b) 5:27
- (c) 4:1
- (d) 1:4
- **46.** Which of the following transitions in a hydrogen atom emits photon of the highest frequency

[MP PET 1996; DPMT 2001]

- (a) n = 1 to n = 2
- (b) n = 2 to n = 1
- (c) n = 2 to n = 6
- (d) n = 6 to n = 2
- **47.** In terms of Rydberg's constant *R*, the wave number of the first Balmer line is [MP PMT 1996]
 - (a) R

- (b) 3R
- (c) $\frac{5R}{36}$
- (d) $\frac{8R}{9}$
- **48.** If the ionisation potential of helium atom is 24.6 *volt*, the energy required to ionise it will be [MP PMT 1996]
 - (a) 24.6 eV
- (b) 24.6 V
- (c) 13.6 V
- (d) 13.6 eV
- **49.** Which of the transitions in hydrogen atom emits a photon of lowest frequency (*n* = quantum number)

[BHU 1999]

- (a) n = 2 to n = 1
- (b) n = 4 to n = 3
- (c) n = 3 to n = 1
- (d) n = 4 to n = 2
- **50.** According to Bohr's theory, the expressions for the kinetic and potential energy of an electron revolving in an orbit is given respectively by
 - $\text{(a)} \quad + \frac{e^2}{8\pi\varepsilon_0 r} \text{ and } \frac{e^2}{4\pi\varepsilon_0 r} \qquad \text{(b)} \quad + \frac{8\pi\varepsilon_0 e^2}{r} \text{ and } \frac{4\pi\varepsilon_0 e^2}{r}$
 - (c) $-\frac{e^2}{8\pi\varepsilon_0 r}$ and $-\frac{e^2}{4\pi\varepsilon_0 r}$ (d) $+\frac{e^2}{8\pi\varepsilon_0 r}$ and $+\frac{e^2}{4\pi\varepsilon_0 r}$
- **51.** In a hydrogen atom, which of the following electronic transitions would involve the maximum energy change

[MP PET 1997]

- (a) From n = 2 to n = 1
- (b) From n = 3 to n = 1
- (c) From n = 4 to n = 2
- (d) From n = 3 to n = 2
- **52.** In the lowest energy level of hydrogen atom, the electron has the angular momentum [MP PET 1997; BCECE 2003]

- (a) π/h
- (b) h/π
- (c) $h/2\pi$
- (d) $2\pi/h$
- **53.** The minimum energy required to excite a hydrogen atom from its ground state is

[EAMCET (Engg.) 1995; MP PMT 1997; CPMT 1999; DCE 1999]

- (a) 13.6 eV
- (b) $-13.6 \ eV$
- (c) 3.4 eV
- (d) 10.2 eV
- 54. Ratio of the wavelengths of first line of Lyman series and first line of Balmer series is [AFMC 1996]

[EAMCET (Engg.) 1995; MP PMT 1997]

- (a) 1: 3
- (b) 27:5
- (c) 5:27
- (d) 4:9
- **55.** The Rydberg constant R for hydrogen is

[MP PMT/PET 1998]

- (a) $R = -\left(\frac{1}{4\pi\varepsilon_0}\right) \cdot \frac{2\pi^2 me^2}{ch^2}$ (b) $R = \left(\frac{1}{4\pi\varepsilon_0}\right) \cdot \frac{2\pi^2 me^4}{ch^2}$
- (c) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \cdot \frac{2\pi^2 m e^4}{c^2 h^2}$ (d) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \cdot \frac{2\pi^2 m e^4}{c h^3}$
- **56.** The wavelength of the first line of Balmer series is $6563~\mathring{A}$. The Rydberg constant for hydrogen is about

[MP PMT/PET 1998]

- (a) $1.09 \times 10^7 per m$
- (b) $1.09 \times 10^8 \ per \ m$
- (c) $1.09 \times 10^9 \ per \ m$
- (d) $1.09 \times 10^5 per m$
- **57.** According to Bohr's theory the moment of momentum of an electron revolving in second orbit of hydrogen atom will be

[MP PET 1999; KCET 2003]

- (a) 2πh
- (b) #

(c) $\frac{h}{}$

- (d) $\frac{2h}{\pi}$
- The velocity of an electron in the second orbit of sodium atom (atomic number = 11) is ν. The velocity of an electron in its fifth orbit will be [MP PET 1999]
 - (a) *v*
- (b) $\frac{22}{5}$
- (c) $\frac{5}{2}v$
- (d) $\frac{2}{5}v$
- 59. The absorption transitions between the first and the fourth energy states of hydrogen atom are 3. The emission transitions between these states will be [MP PET 1999]
 - (a) 3

(b) 4

(c) 5

- (d) 6
- 60. The ratio of longest wavelength and the shortest wavelength observed in the five spectral series of emission spectrum of hydrogen is [MP PET 1999]
 - (a) $\frac{4}{3}$

(b) $\frac{525}{376}$

(c) 25

(d) $\frac{900}{11}$

In the Bohr model of a hydrogen atom, the centripetal force is 61. furnished by the coulomb attraction between the proton and the electron. If a_0 is the radius of the ground state orbit, m is the mass, e is the charge on the electron and ε_0 is the vacuum permittivity, the speed of the electron is

(a) 0

(b) $\frac{e}{\sqrt{\varepsilon_0 a_0 m}}$

- (d) $\frac{\sqrt{4\pi\varepsilon_0 a_0 m}}{a_0}$
- 62. The electron in a hydrogen atom makes a transition $n_1 \rightarrow n_2$, where n_1 and n_2 are the principal quantum numbers of the two states. Assume the Bohr model to be valid. The time period of the electron in the initial state is eight times that in the final state. The possible values of n and n are [IIT 1998: KCET 2005]
 - (a) $n_1 = 4, n_2 = 2$
- (b) $n_1 = 8, n_2 = 2$
- (c) $n_1 = 8, n_2 = 1$ (d) $n_1 = 6, n_2 = 3$
- As per Bohr model, the minimum energy (in eV) required to remove 63. an electron from the ground state of doubly ionized Li atom (Z = 3) [IIT 1997 Re-Exam; MH CET 2000]
 - (a) 1.51
- (b) 13.6
- (c) 40.8
- (d) 122.4
- Which one of these is non-divisible 64. [KCET 1994]
 - (a) Nucleus
- (b) Photon
- (c) Proton
- (d) Atom
- In Bohr's model of hydrogen atom, let PE represents potential 65. energy and TE the total energy. In going to a higher level
 - PE decreases, TE increases
 - PE increases, TE increases
 - PE decreases. TE decreases
 - (d) PE increases, TE decreases
- According to Bohr's model, the radius of the second orbit of helium 66. [Bihar MEE 1995] atom is
 - (a) 0.53 Å
- (b) 1.06 Å
- (c) 2.12 Å
- (d) 0.265 Å
- The fact that photons carry energy was established by 67.

[ISM Dhanbad 1994]

- (a) Doppler's effect
- (b) Compton's effect
- (d) Diffraction of light
- 68. An ionic atom equivalent to hydrogen atom has wavelength equal to 1/4 of the wavelengths of hydrogen lines. The ion will be
 - (a) He^+
- (b) Li⁺⁺

- 69. The extreme wavelengths of Paschen series are

[RPET 1997]

- $0.365 \,\mu m$ and $0.565 \,\mu m$ (b) $0.818 \,\mu m$ and $1.89 \,\mu m$
- 1.45 μm and 4.04 μm
- (d) $2.27 \, \mu m$ and $7.43 \, \mu m$
- 70. The third line of Balmer series of an ion equivalent to hydrogen atom has wavelength of 108.5 nm. The ground state energy of an electron of this ion will be [RPET 1997]
 - (a) 3.4 eV
- (b) 13.6 eV
- (c) 54.4 eV
- (d) 122.4 eV
- An electron in the n = 1 orbit of hydrogen atom is bound by 13.6 eV71. energy is required to ionize it is [MP PMT 2003]
 - (a) 13.6 eV
- (b) 6.53 eV
- (c) 5.4 eV
- (d) 1.51 eV
- lonization energy of hydrogen is 13.6 eV. If $h = 6.6 \times 10^{-34} J sec$, 72. the value of R will be of the order of

[RPMT 1997]

- (a) $10^{10} m^{-1}$
- (b) $10^7 m^{-1}$
- (c) $10^4 m^{-1}$
- (d) $10^{-7} m^{-1}$
- To explain his theory, Bohr used 73.

[CBSE PMT 1993; MP PET 2002]

- Conservation of linear momentum
- (b) Conservation of angular momentum
- Conservation of quantum frequency
- (d) Conservation of energy

[KCET 1994]

The ionisation energy of hydrogen atom is 13.6 eV. Following Bohr's 74. theory, the energy corresponding to a transition between the 3rd and the 4th orbit is

> [CBSE PMT 1992; DPMT 2000; RPMT 1999; AMU (Med.) 2001]

- (a) 3.40 eV
- (b) 1.51 eV
- (c) 0.85 eV
- (d) 0.66 eV
- Hydrogen atoms are excited from ground state of the principal quantum number 4. Then the number of spectral lines observed will [CBSE PMT 1993] be

(a) 3

(c) 5

(b) 6

- (d) 2
- 76. Hydrogen atom emits blue light when it changes from n = 4 energy level to the n = 2 level. Which colour of light would the atom emit when it changes from the n = 5 level to the n = 2 level
 - (a) Red
- (b) Yellow
- (c) Green
- (d) Violet
- In Rutherford scattering experiment, what will be the correct angle 77. for α scattering for an impact parameter b = 0

[RPET 1997]

[CBSE PMT 1994; JIPMER 2000]

- 90° (a)
- 270^{o}
- (c)

- (d) 180^{o}
- The radius of hydrogen atom in its ground state is $5.3 \times 10^{-11} m$. 78. After collision with an electron it is found to have a radius of

 $21.2 \times 10^{-11} m$. What is the principal quantum number n of the final state of the atom

[CBSE PMT 1994; CPMT 2001; MH CET 2000]

- (a) n=4
- (b) n = 2
- (c) n = 16
- (d) n = 3
- The splitting of line into groups under the effect of electric or 79. magnetic field is called [AFMC 1995]
 - (a) Zeeman's effect
- (b) Bohr's effect
- Heisenberg's effect
- (d) Magnetic effect
- 80. The energy of a hydrogen atom in its ground state is -13.6 eV. The energy of the level corresponding to the quantum number n = 2 (first excited state) in the hydrogen atom is [CBSE PMT 1996; CBSE PMT 1997, 2001;

MP PET 2000; AFMC 2000, 01, 02; BCECE 2003]

- (a) $-2.72 \ eV$
- (b) $-0.85 \ eV$
- (c) $-0.54 \ eV$
- (d) $-3.4 \ eV$
- The first line of Balmer series has wavelength 6563 Å. What will be 81. the wavelength of the first member of Lyman series

[RPMT 1996]

- (a) 1215.4 Å
- (b) 2500 Å
- (c) 7500 Å
- (d) 600 Å
- 82. The wavelength of Lyman series is
- [BHU 1997]
- - (b) $\frac{3}{4 \times 10967} cm$
 - (c) $\frac{4 \times 10967}{3} cm$

(a) $\frac{4}{3 \times 10967} cm$

- (d) $\frac{3}{4} \times 10967 \ cm$
- When hydrogen atom is in its first excited level, its radius is its 83. ground state radius [CBSE PMT 1997]
 - (a) Half
- (b) Same
- (c) Twice
- (d) Four times
- Hydrogen atom excites energy level from fundamental state to n = 3. 84. Number of spectrum lines according to Bohr, is

[CPMT 1997]

(a) 4

(b) 3

(c) 1

- (d) 2
- [CPMT 1997] 85. Number of spectral lines in hydrogen atom is
 - (a) 3

(b) 6

(c) 15

- (d) Infinite
- In Bohr's model, the atomic radius of the first orbit is r_0 , then the 86. radius of the third orbit is

[AIIMS 1997; CPMT 2001; KCET (Engg./Med.) 1999; Pb. PMT 2004]

- (b) r_0

- (c)
- (d) $3r_0$
- 87. The wavelength of the energy emitted when electron come from fourth orbit to second orbit in hydrogen is 20.397 cm. The wavelength of energy for the same transition in He^+ is

[AllMS 1997;]IPMER 2000]

- $5.099~cm^{-1}$
- $20.497 \ cm^{-1}$
- $40.994 \ cm^{-1}$
- (d) $81.988 \ cm^{-1}$

88. Minimum excitation potential of Bohr's first orbit in hydrogen atom

[BHU 1998; JIPMER 2001, 02; Pb. PMT 2004]

- (a) 13.6 V
- (b) 3.4 V
- (c) 10.2 V
- (d) 3.6 V

Which of the following statements are true regarding Bohr's model

- (1) Orbiting speed of electron decreases as it shifts to discrete orbits away from the nucleus
- Radii of allowed orbits of electron are proportional to the principal quantum number
- (III) Frequency with which electrons orbits around the nucleus in discrete orbits is inversely proportional to the principal quantum number
- (IV) Binding force with which the electron is bound to the nucleus increases as it shifts to outer orbits

Select correct answer using the codes given below

Codes:

- (a) 1 and 111
- (b) II and IV
- (c) 1, 11 and 111
- (d) 11, 111 and 1V

The wavelength of radiation emitted is λ_0 when an electron jumps 90. from the third to the second orbit of hydrogen atom. For the electron jump from the fourth to the second orbit of the hydrogen atom, the wavelength of radiation emitted will be

- (a) $\frac{16}{25}\lambda_0$
- (c) $\frac{27}{20}\lambda_0$
- (d) $\frac{25}{16}\lambda_0$

For electron moving in π orbit of H-atom the angular velocity is 91. [RPET 1999] proportional to

(a) n

(b) 1/n

(c) n

(d) 1/n

The energy of electron in first excited state of H-atom is 92. $-3.4 \ eV$ its kinetic energy is

[RPET 1999; CBSE PMT 2005]

- (a) $-3.4 \ eV$
- (b) + 3.4 eV
- (c) $-6.8 \ eV$
- (d) 6.8 eV

The energy required to excite an electron from the ground state of 93. hydrogen atom to the first excited state, is

[Pb. PMT 1999]

[SCRA 1998]

- (a) $1.602 \times 10^{-14} J$
- (b) $1.619 \times 10^{-16} J$
- (c) $1.632 \times 10^{-18} J$
- (d) $1.656 \times 10^{-20} J$

Which of the following phenomena suggests the presence of electron 94. energy levels in atoms [JIPMER 1999]

- (a) Radio active decay
- (b) Isotopes
- (c) Spectral lines
- (d) α -particles scattering
- Which of the following spectral series in hydrogen atom give 95. spectral line of 4860 Å [Roorkee 1999]

	(a) Lyman	(b) Balmer		n^2	. Z	
	(c) Paschen	(d) Brackett		(c) $\frac{n^2}{Z}$	(d) $\frac{-}{n}$	
96.	If scattering particles are 50	6 for 90^o angle then this will be at	105.	In Bohr's model, if the ato	omic radius of the first orbit is r_0 ,	then
	60^{o} angle	[RPMT 2000]		the radius of the fourth or		
	(a) 224	(b) 256		(a) r_0	(b) $4r_0$	
	(c) 98	(d) 108			· · ·	
97.	,	gen atom is excited, from its 4° to 5°		(c) $r_0/16$	(d) $16r_0$	
	stationary orbit, the change (Planck's constant: $h = 6.6 \times$	in angular momentum of electron is $(10^{-34} J - s)$	106.	If <i>R</i> is the Rydberg's const first line in the Lyman seri	tant for hydrogen the wave number o ies will be	f the
		[AFMC 2000; Pb. PET 2001]			[KCET:	2000]
	(a) $4.16 \times 10^{-34} J- s$	(b) $3.32 \times 10^{-34} J-s$		(a) $\frac{R}{A}$	(b) $\frac{3R}{4}$	
	(c) $1.05 \times 10^{-34} J-s$	(d) $2.08 \times 10^{-34} J-s$		4 D	4	
98.	Energy of electron in a orbit	of <i>H</i> -atom is [RPET 2000]		(c) $\frac{R}{2}$	(d) 2 <i>R</i>	
	(a) Positive	(b) Negative	107.	In hydrogen atom, if the	difference in the energy of the electro	on in
	(c) Zero	(d) Nothing can be said	•		s is E , the ionization energy of hydr	
99.	The concept of stationary orl	bits was proposed by		atom is	[EAMCET (Med.) 2000]	
		[Pb. PMT 2000]		(a) 13.2 <i>E</i>	(b) 7.2 <i>E</i>	
	(a) Neil Bohr	(b) J.J. Thomson		(c) 5.6 E	(d) 3.2 E	
	(c) Ruther ford	(d) 1. Newton	108.		Paschen series in hydrogen spectrum	
100.	, ,	ance between the electron and proton is al force of attraction between them will		wavelength 18,800 $ ilde{A}$. The is	short wavelengths limit of Paschen s [EAMCET (Med.) 2000]	series
	be	[Pb. PMT 2000]		(a) 1215 \mathring{A}	(b) 6560 Å	
	(a) $2.8 \times 10^{-7} N$	(b) $3.7 \times 10^{-7} N$		(c) 8225 Å	(d) 12850 Å	
	`,	•	109.	The ratio of the largest to	shortest wavelengths in Lyman seri	es of
	(c) $6.2 \times 10^{-7} N$	(d) $9.1 \times 10^{-7} N$		hydrogen spectra is	[EAMCET (Med.) :	
101.		wave length of second line for Balmer		(a) $\frac{25}{3}$	(b) $\frac{17}{6}$	
	series will be	[RPMT 2000]		9	6	
	(a) $\lambda = \frac{16}{3R}$	(b) $\lambda = \frac{36}{5R}$		(c) $\frac{9}{5}$	(d) $\frac{4}{3}$	
		J.K		3	3	
	(c) $\lambda = \frac{4}{3R}$	(d) None of the above	110.		en atom, the ratio of periods of revolu	ution
102.		omentum of a electron, if energy of this		of an electron in $n=2$ a	FEAMCET (Engg.) 2	2000]
	electron in <i>H</i> -atom is 1.5 <i>eV</i> (i	2,		(a) 2:1	(b) 4:1	2000]
	(a) 1.05×10^{-34}	(b) 2.1×10^{-34}		(c) 8:1	(d) 16:1	
	(c) 3.15×10^{-34}	(d) -2.1×10^{-34}	111.	. ,	shortest wavelengths in Brackett seri	es of
103.	Who discovered spin quantur			hydrogen spectra is	[EAMCET (Engg.) 2000]	
	(a) Unlenbeck and Goudsmi	it		(a) $\frac{25}{3}$	(b) $\frac{17}{6}$	
	(b) Nell's Bohr			9	6	
	(c) Zeeman			(c) $\frac{9}{5}$	(d) $\frac{4}{3}$	
	(d) Sommerfield			5	3	
104.	The time of revolution of an in n Bohr orbit is directly pro-	electron around a nucleus of charge Ze	112.	, ,	n atom makes a transition from an ex Which of the following statements is t	
	// boin orbit is directly pro	[MP PET 2003]		(a) Its kinetic energy inc	reases and its potential and total ene	
	, ,	n^3		decrease	. 1	
	(a) <i>n</i>	(b) $\frac{n^3}{Z^2}$		(b) Its kinetic energy de	creases, potential energy increases an the same	d its

total energy remains the same

Atomic and Nuclear Physics 1469 (c) Its kinetic and total energies decrease and its potential energy (d) 50883 per cm Radius of the first orbit of the electron in a hydrogen atom is 0.53 123. \mathring{A} . So, the radius of the third orbit will be (d) Its kinetic, potential and total energies decreases [Kerala (Engg.) 2001] The ratio of minimum to maximum wavelength in Balmer series is [MP PET 2000] (a) 2.12 Å(b) 4.77 Å (b) 5:36 (a) 5:9 (c) 1.06 Å (d) 1.59 Å (d) 3:4 The first line in the Lyman series has wavelength λ . The wavelength 124. The radius of the Bohr orbit in the ground state of hydrogen atom of the first line in Balmer series is is 0.5 \mathring{A} . The radius of the orbit of the electron in the third excited [MH CET (Med.) 2001] state of He^+ will be [MP PMT 2000] (a) 8 Å (b) 4 Å (c) 0.5 Å (d) 0.25 Å The ratio of the speed of the electron in the first Bohr orbit of hydrogen and the speed of light is equal to (where e, h and c have their usual meanings) [MP PMT 2000] In hydrogen atom which quantity is integral multiple of 125. (a) $2\pi hc/e^2$ (b) $e^2h/2\pi c$ [DCE 2001] (a) Angular momentum (b) Angular velocity (d) $2\pi e^2/hc$ (c) $e^2c/2\pi h$ (c) Angular acceleration (d) Momentum According to the Rutherford's atomic model, the electrons inside the In the following transitions, which one has higher frequency [KCET (Med.) 2000] atom are [UPSEAT 2001] (a) Stationary (b) Not stationary (a) 3-2(b) 4 - 3(c) 4-2(d) 3-1(c) Centralized (d) None of these The diagram shows the path of four α -particles of the same energy The energy of hydrogen atom in its ground state is - 13.6 eV. The being scattered by the nucleus of an atom simultaneously. Which of energy of the level corresponding to the quantum number n is these are/is not physically possible equal 5 is [KCET (Engg./Med.) 2001] [AMU (Med.) 2001] (a) $-5.40 \ eV$ (b) $-2.72 \ eV$ (c) $-0.85 \ eV$ (d) $-0.54 \ eV$ According to classical theory, the circular path of an electron in Rutherford atom is [BHU 2001] (b) Circular (a) Spiral (a) 3 and 4 (b) 2 and 3 (c) Parabolic (d) Straight line (c) 1 and 4 (d) 4 only Rutherford's α -particle experiment showed that the atoms have An electron citation from 5° orbit to 4° orbit of hydrogen atom. 128. Taking the Rydberg constant as 10^7 per metre. What will be the (b) Nucleus (a) Proton [Pb. PMT 2001] frequency of radiation emitted (c) Neutron (d) Electrons (a) $6.75 \times 10^{12} \ Hz$ (b) $6.75 \times 10^{14} Hz$ Orbital acceleration of electron is [RPET 2001] $6.75 \times 10^{13} \ Hz$ (d) None of these For principal quantum number n = 3, the possible values of orbital 129. quantum number '1 are [MP PET 2001; MP PMT 2001] (b) 0, 1, 2, 3 (a) 1, 2, 3 Which of the following is true for number of spectral lines in going form Layman series to Pfund series [RPET 2001] (c) 0, 1, 2 (d) -1, 0, +1(a) Increases Four lowest energy levels of H-atom are shown in the figure. The 130. number of possible emission lines would be (b) Decreases [MP PMT 2001] (c) Unchanged

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

May decreases or increases

(a) 50883 × 10° per second
(b) 16961 per cm
(c) 17581 per cm

The wavelength of yellow line of sodium is 5896 \mathring{A} . Its wave number

[MP PET 2001]

(a) 3

(b) 4

(c) 5

- (d) 6
- 131. The order of the size of nucleus and Bohr radius of an atom respectively are [MP PET 2001; MP PMT 2001]
 - (a) $10^{-14} m$, $10^{-10} m$
- (b) $10^{-10} m, 10^{-8} m$
- (c) $10^{-20} m$, $10^{-16} m$
- (d) $10^{-8} m$, $10^{-6} m$
- **132.** Energy of an electron in an excited hydrogen atom is -3.4 *eV.* Its angular momentum will be: $h = 6.626 \times 10^{-34} J s$

[UPSEAT 1999; Kerala PET 2002]

- (a) $1.11 \times 10^{34} J \text{ sec}$
- (b) $1.51 \times 10^{-31} J \text{ sec}$
- (c) $2.11 \times 10^{-34} J \text{ sec}$
- (d) $3.72 \times 10^{-34} J \text{ sec}$
- **133.** The ratio of the wavelengths for $2 \rightarrow 1$ transition in *Li*, *He* and *H* is
 - (a) 1:2:3
- (b) 1:4:9
- (c) 4:9:36
- (d) 3:2:1
- **134.** The wavelength of light emitted from second orbit to first orbits in a hydrogen atom is [Pb. PMT 2002]
 - (a) $1.215 \times 10^{-7} m$
- (b) $1.215 \times 10^{-5} m$
- (c) $1.215 \times 10^{-4} m$
- (d) $1.215 \times 10^{-3} m$
- 135. Energy of the electron in n orbit of hydrogen atom is given by $E_n = -\frac{13.6}{n^2} eV$. The amount of energy needed to transfer electron from first orbit to third orbit is

[MH CET 2002; Kerala PMT 2002]

- (a) 13.6 *eV*
- (b) 3.4 *eV*
- (c) 12.09 *eV*
- (d) 1.51 *eV*
- 136. The ratio of speed of an electron in ground state in Bohrs first orbit of hydrogen atom to velocity of light in air is

[MH CET 2002]

- (a) $\frac{e^2}{2\varepsilon_0 hc}$
- (b) $\frac{2e^2\varepsilon_0}{hc}$
- (c) $\frac{e^3}{2\varepsilon_0 hc}$
- (d) $\frac{2\varepsilon_0 hc}{e^2}$
- **137.** Whenever a hydrogen atom emits a photon in the Balmer series [KCET 2002]
 - (a) It need not emit any more photon
 - (b) It may emit another photon in the Paschen series
 - (c) It must emit another photon in the Lyman series
 - (d) It may emit another photon in the Balmer series
- 138. The de-Broglie wavelength of an electron in the first Bohr orbit is
 - (a) Equal to one fourth the circumference of the first orbit
 - (b) Equal to half the circumference of the first orbit
 - (c) Equal to twice the circumference of the first orbit
 - (d) Equal to the circumference of the first orbit
- 139. In hydrogen atom, when electron jumps from second to first orbit, then energy emitted is [AIEEE 2002]

- (a) $-13.6 \ eV$
- (b) $-27.2 \ eV$
- (c) $-6.8 \ eV$
- (d) None of these
- 140. Minimum energy required to takeout the only one electron from ground state of He^+ is [CPMT 2002]
 - 4
 - (a) 13.6 *eV*
- (b) 54.4 *eV*
- (c) 27.2 eV
- (d) 6.8 eV
- **141.** The frequency of 1 line of Balmer series in H_2 atom is ν_0 . The frequency of line emitted by singly ionised He atom is

[CPMT 2002]

- (a) $2v_0$
- (b) $4v_0$
- (c) $v_0/2$
- (d) $v_0/4$
- 142. When the electron in the hydrogen atom jumps from 2- orbit to 1- orbit, the preserve 1206 of radiation emitted is λ. When the electrons jump from 3- orbit to 1- orbit, the wavelength of emitted radiation would be [MP PMT 2002]
 - (a) $\frac{27}{32}\lambda$
- (b) $\frac{32}{27}$
- (c) $\frac{2}{3}\lambda$

- (d) $\frac{3}{2}\lambda$
- **143.** The possible quantum number for 3d electron are

[MP PMT 2002]

- (a) $n = 3, l = 1, m_l = +1, m_s = -\frac{1}{2}$
- (b) $n = 3, l = 2, m_l = +2, m_s = -\frac{1}{2}$
- (c) $n = 3, l = 1, m_l = -1, m_s = +\frac{1}{2}$
- (d) $n = 3, l = 0, m_l = +1, m_s = -\frac{1}{2}$
- **144.** The radius of the first (lowest) orbit of the hydrogen atom is a_0 . The radius of the second (next higher) orbit will be

[MP PET 2002; MP PMT 2004]

- (a) $4a_0$
- (b) $6a_0$
- (c) $8a_0$
- (d) $10a_0$
- 145. Which of the following transition will have highest emission wavelength [BHU 2003]
 - (a) n = 2 to n = 1
- (b) n = 1 to n = 2
- (c) n = 2 to n = 5
- (d) n = 5 to n = 2
- 146. When the wave of hydrogen atom comes from infinity into the first orbit then the value of wave number is [RPET 2003]
 - (a) 109700 cm
- (b) 1097*cm*
- (c) 109 cm
- (d) None of these
- 147. [KCEVit2002] he increase in principle quantum number, the energy difference between the two successive energy levels

[RPET 2003]

- (a) Increases
- (b) Decreases
- (c) Remains constant
- (d) Sometimes increases and sometimes decreases
- 148. In which of the following systems will the radius of the first orbit (n = 1) be minimum

[Pb. PMT 2004]

	(a) Single ionized helium			(a) 2000 Å, 3000 Å	(b) 1575 Å, 2960 Å
	(b) Deuterium atom			(c) 6529 Å, 4280 Å	(d) 6552 Å, 4863 Å
	(c) Hydrogen atom		159.	The kinetic energy of elect	ron in the first Bohr orbit of the hydrogen
	(d) Doubly ionized lithium			atom is	[Pb. PET 2000]
149.	If the binding energy of the electron in a hydroger the energy required to remove the electron from			(a) - 6.5 <i>eV</i>	(b) – 27.2 <i>eV</i>
	state of Li^{++} is [AIEEE 2003]			(c) 13.6 <i>eV</i>	(d) - 13.6 <i>eV</i>
	(a) 122.4 <i>eV</i> (b) 30.6 <i>eV</i>		160.		drogen atom, the ratio of the longest
	(c) 13.6 eV (d) 3.4 eV			wavelength in Lyman serie series is	s to the longest wavelength in the Balmer [UPSEAT 2004]
150.	Which of the following is quantised according to hydrogen atom	Bohr's theory of [MP PMT 2004]		(a) 5/27	(b) 1/93
	(a) Linear momentum of electron	,		(c) 4/9	(d) 3/2
	(b) Angular momentum of electron		161.	In Bohr's model of hydrog	gen atom, which of the following pairs of
	(c) Linear velocity of electron			quantities are quantized	[UPSEAT 2004]
	(d) Angular velocity of electron			(a) Energy and linear mo	mentum
151.	The shortest wavelength in the Lyman series of hy	drogen spectrum		(b) Linear and angular m	omentum
	is 912 \mathring{A} corresponding to a photon energy of 13.6			(c) Energy and angular n	nomentum
	wavelength in the Balmer series is about			(d) None of the above	
		[MP PMT 2004]	162.	()	est energy photon of Balmer series of
	(a) 3648 Å (b) 8208 Å			hydrogen spectrum is close	
	(c) 1228 Å (d) 6566 Å			(a) 13.6 <i>eV</i>	(b) 3.4 <i>eV</i>
152.	Energy <i>E</i> of a hydrogen atom with principal quan			(c) 1.5 eV	(d) 0.85 <i>eV</i>
	given by $E = \frac{-13.6}{n^2} eV$. The energy of a photon	ejected when the		(c) 1.3 c r	(a) 0.03 ev
	electron jumps from $n = 3$ state to $n = 2$ state		163.	Energy of an electron in <i>n</i>	orbit of hydrogen atom is $\left(k = \frac{1}{4\pi\varepsilon_0}\right)$
	approximately [CBSE PMT 2004]			2 2 4	2 2
	(a) 1.5 eV (b) 0.85 eV			(a) $-\frac{2\pi^2 k^2 m e^4}{n^2 h^2}$	(b) $-\frac{4\pi^2 m k e^2}{n^2 h^2}$
	(c) 3.4 eV (d) 1.9 eV			n^2h^2	n^2h^2
153.	The Bohr model of atoms	[CBSE PMT 2004]		n^2h^2	n^2h^2
	(a) Assumes that the angular momentum of electr	ons is quantized		(c) $-\frac{n^2h^2}{2\pi k me^4}$	(d) $-\frac{n^2h^2}{4\pi^2kme^2}$
	(b) Uses Einstein's photo-electric equation		164.	Which one of the relati	on is correct between time period and
	(c) Predicts continuous emission spectra for atom		104.		electron is revolving in a orbit
	(d) Predicts the same emission spectra for all type	s of atoms			[DPMT 2003]
154.	The colour of the second line of Balmer series is			2	
.5-7-	The colour of the occord line of painter occide to	[] & K CET 2004]		(a) n^2	(b) $\frac{1}{n^2}$
	(a) Blue (b) Yellow	J & K CD1 2004)			n
	(c) Red (d) Violet			(c) n^3	(d) $\frac{1}{}$
					n
155.	Which state of triply ionised Baryllium (Be^{+++}		165.	An electron changes its	position from orbit $n = 4$ to the orbit
	orbital radius as that of the ground state of hydrog			n=2 of an atom. The w	avelength of the emitted radiation's is ($R =$
	()	[KCET 2004]		Rydberg's constant)	[BHU 2004]
	(a) $n = 4$ (b) $n = 3$. 16	. 16
	(c) $n = 2$ (d) $n = 1$			(a) $\frac{16}{R}$	(b) $\frac{3R}{3R}$
156.	The ratio of areas within the electron orbits for state to the ground state for hydrogen atom is	the first excited			
	state to the ground state for hydrogen atom is	[PCECE pon4]		(c) $\frac{16}{5R}$	(d) $\frac{16}{7.8}$
	(-) 16 .1	[BCECE 2004]		5 <i>R</i>	r/R
	(a) 16:1 (b) 18:1		166.	If the energy of a hydroge	n atom in n th orbit is E_n , then energy in
	(c) 4:1 (d) 2:1	,			onized helium atom will be
157.	The kinetic energy of an electron revolving around				
	(a) Four times of P.E. (b) Double of P	.E.		(a) $4E_n$	(b) $E_n/4$
	(c) Equal to P.E. (d) Half of its P	LE.			

(c) $2E_n$

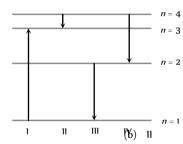
Taking Rydberg's constant $R_H = 1.097 \times 10^7 m$ first and second

wavelength of Balmer series in hydrogen spectrum is

158.

(d) $E_n/2$

[Kerala PET 2002; CBSE PMT 2003]


167. What is the ratio of wavelength of radiations emitted when an electron in hydrogen atom jump from fourth orbit to second orbit and from third orbit to second orbit

[MH CET 2004]

- (a) 27:25
- (b) 20:27
- (c) 20:25
- (d) 25:27
- **168.** The energy of electron in the *n*th orbit of hydrogen atom is expressed as $E_n = \frac{-13.6}{n^2} \, eV$. The shortest and longest wavelength of Lyman series will be **[Pb. PET 2003]**
 - (a) 910 Å, 1213 Å
- (b) 5463 Å, 7858 Å
- (c) 1315 Å, 1530 Å
- (d) None of these
- **169.** The ground state energy of hydrogen atom is -13.6~eV. What is the potential energy of the electron in this state

[AIIMS 2005]

- (a) 0 eV
- (b) $-27.2 \ eV$
- (c) 1 eV
- (d) 2 *eV*
- **170.** The diagram shows-the energy levels for an electron in a certain atom. Which transition shown represents the emission of a photon with the most energy [AIEEE 2005]

(a) 1 (c) 111

- (d) IV
- 171. As the electron in Bohr orbit of Hydrogen atom passes from state n=2 to n=1, the kinetic energy K and potential energy U change as [MP PET 2005]
 - (a) K two-fold, U four-fold
 - (b) K four-fold, U two-fold
 - (c) K four-fold, U also four-fold
 - (d) K two-fold, U also two-fold
- **172.** The magnetic moment (μ) of a revolving electron around the nucleus varies with principal quantum number n as

[AIIMS 2005]

- (a) $\mu \propto n$
- (b) $\mu \propto 1/n$
- (c) $\mu \propto n^2$
- (d) $\mu \propto 1/n^2$
- 173. Bohr's atom model assumes

[KCET 2005]

- (a) The nucleus is of infinite mass and is at rest
- (b) Electrons in a quantized orbit will not radiate energy
- (c) Mass of electron remains constant
- (d) All the above conditions
- **174.** Radius of first Bohr orbit is *r*. What is the radius of 2° Bohr orbit?
 - (a) 8*r*

(b) 2

(c) 4r

(d) $2\sqrt{2r}$

Nucleus, Nuclear Reaction

- Which of the following particles are constituents of the nucleus [CBSE PMT 199
 - (a) Protons and electrons
- (b) Protons and neutrons
- (c) Neutrons and electrons
- (d) Neutrons and positrons
- The particles which can be added to the nucleus of an atom without changing its chemical properties are called

[NCERT 1979]

- (a) Electrons
- (b) Protons
- (c) Neutrons
- (d) None of the above
- 3. The neutron was discovered by

[MP PMT 1992; RPMT 1996]

- (a) Marie Curie
- (b) Pierre Curie
- (c) James Chadwick
- (d) Rutherford
- **4.** The mass number of a nucleus is

[11T 1986; ISM Dhanbad 1994;

MP PMT 1997; CBSE PMT 2003; MH CET (Med.) 2001]

- (a) Always less than its atomic number
- (b) Always more than its atomic number
- (c) Always equal to its atomic number
- (d) Sometimes more than and sometimes equal to its atomic number
- **5.** The energy equivalent of 1 *kilogram* of matter is about

[MP PET/PMT 1988; MNR 1987]

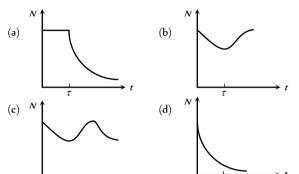
- (a) $10^{-15} J$
- (b) 1 *J*
- (c) 10^{-12} /
- (d) $10^{17} J$
- 6. Nuclear binding energy is equivalent to [MP PET/PMT 1988]
 - (a) Mass of proton
- (b) Mass of neutron
- (c) Mass of nucleus
- (d) Mass defect of nucleus
- 7. If the binding energy of the deutrium is 2.23 MeV.

The mass defect given in *a.m.u.* is [MP PET 1993]

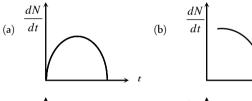
- (a) 0.0024
- (b) 0.0012
- (c) 0.0012
- (d) 0.0024
- 8. Which of the following has the mass closest in value to that of the positron [AFMC 1993]
 - (a) Proton
- (b) Electron
- (c) Photon
- (d) Neutrino

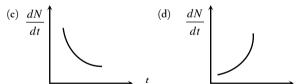
 $(1 \ a.m.u = 931 \ MeV)$

Size of nucleus is of the order of

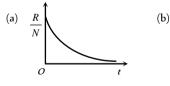

[CPMT 1983; MP PET 2002, 03]

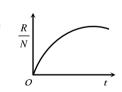
- (a) $10^{-10} m$
- (b) $10^{-15} m$
- (c) $10^{-12} m$
- (d) $10^{-19} m$

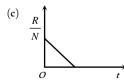

[BHU 2005]

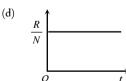

4. A radioactive sample consists of two distinct species having equal number of atoms initially. The mean life time of one species is τ and that of the other is 5τ . The decay products in both cases are stable. A plot is made of the total number of radioactive nuclei as a function of time. Which of the following figures best represents the form of this plot

[IIT-JEE (Screening) 2001]

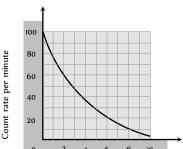


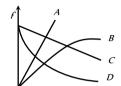

5. Radioactive element decays to form a stable nuclide, then the rate of decay of reactant $\left(\frac{dN}{dt}\right)$ will vary with time (t) as shown in figure

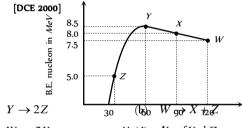


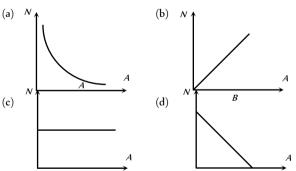


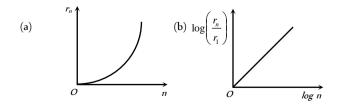
6. A radioactive sample has N_0 active atoms at t=0. If the rate of disintegration at any time is R and the number of atoms is N, then the ratio R/N varies with time as

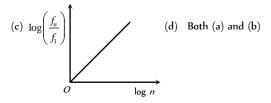





7. The count rate of 10g of radioactive material was measured at different times and this has been shown in the figure. The half life of material and the total counts (approximately) in the first half life period, respectively are [CPMT 1986]

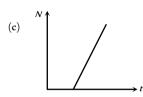

- (a) 4*h*, 9000
- (b) 3*h*, 14000
- (c) 3*h*, 235
- (d) 3h, 50
- **8.** The fraction *f* of radioactive material that has decayed in time *t*, varies with time *t*. The correct variation is given by the curve
 - (a) A
 - (b) B
 - (c) C
 - (d) D


9. Binding energy per necleon verses mass number curve for nuclei is shown in the figure. *W*, *X*, *Y* and *Z* are four nuclei indicated on the curve. The process that would release energy is



- (c) $W \rightarrow 2Y$
- Massinumker_of KucleZ
- **10.** The plot of the number (N) of decayed atoms versus activity (A) of a radioactive substance is

11. If in hydrogen from, radius of n^{th} Bohr orbit is r_n^D , frequency of revolution of electron in n^{th} orbit is f_n choose the correct option



(d) (c)

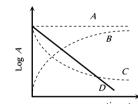
12. The graph between the instantaneous concentration (N) of a radioactive element and time (t) is

(a)

(d)

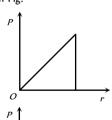
In Fig. X represents time and Y represent activity of a radioactive 13. sample. Then the activity of sample, varies with time according to the curve

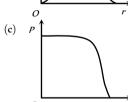
(a)

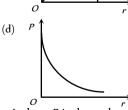

- (c)

(d) D

- The graph which represents the correct variation of logarithm of 14. activity (log A) versus time, in figure is

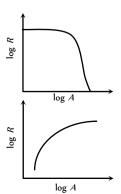

(a)

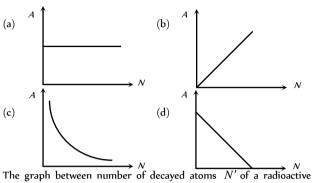

- (c) C



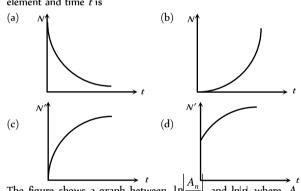
The charge density in a nucleus varies with distance from the centre of the nucleus according to the curve in Fig.

(a)

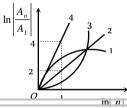




The graph between $\log R$ and $\log A$ where R is the nuclear radius 16. and A is the mass number is


(a) log log Alog log A

The curve between the activity A of a radioactive sample and the 17. number of active atoms N is


18. element and time t is

The figure shows a graph between In and $\ln n$, where A_n is 19.

> the area enclosed by the nth orbit in a hydrogen like atom. The correct curve is

- (a) 4
- (b) 3
- (c) 2
- (d) 1

ssertion & Reason

Read the assertion and reason carefully to mark the correct option out of

the options given below:

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- *(b)* If both assertion and reason are true but reason is not the correct explanation of the assertion.
- If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- If assertion is false but reason is true. (e)
- : It is not possible to use 35 Cl as the fuel for fusion 1. Assertion
 - : The binding energy of $^{35}\,Cl$ is too small. Reason

[AIIMS 2005]

: The atom is stable only because the centripetal

centrifugal force.

force due to Coulomb's law is balanced by the

Reason

	1502	mine and Nuclear Physics	
2.	Assertion	can be energy maximum and the milk consumed by them. It causes maximum can be energy max	ectron in the hydrogen atom passes from level $n = 4$ to the $n = 1$ level. The um and minimum number of photon that emitted are six and one respectively.
	Reason	rl	otons are emitted when electron make a on from the higher energy state to the lower state.
_		emissior	en atom consists of only one electron but its n spectrum has many lines.
3.	Assertion	compared to protons. spectrum	yman series is found in the absorption m of hydrogen atom whereas in the
	Reason	, , , , , , , , , , , , , , , , , , , ,	n spectrum, all the series are found.
4.	Assertion	emission	sential that all the lines available in the n spectrum will also be available in the ion spectrum.
	Reason		ectrum of hydrogen atom is only absorption
5.	Assertion		scattering of $lpha$ -particles at a large angles, a nucleus of the atom is responsible.
	Reason	[AIIMS 2003] 17. Assertion : All the	is very heavy in comparison to electrons. e radioactive elements are ultimately ed in lead.
6.	Assertion	$_{Z}X^{A}$ undergoes $2lpha$ – decays. $2eta$ – decays and Reason : All the e	elements above lead are unstable.
		2γ – decays and the daughter product is 18. Assertion : Amongs has max	st alpha, beta and gamma rays, $lpha$ -particle dimum penetrating power.
		$_{Z-2}Y^{A-8}$. Reason : The alpl	ha particle is heavier than beta and gamma
	Reason	n α -decay the mass number decreases by 4 and atomic number decreases by 2. In β - decay the nass number remains unchanged, but atomic	ising power of β -particle is less compared to cles but their penetrating power is more.
		number increases by 1 only. [AIIMS 2001] Reason : The mai particle.	ass of eta -particle is less than the mass of $lpha$ -
7.	Assertion	20. Assertion : The ma	ass of β -particles when they are emitted is than the mass of electrons obtained by other
	Reason	addis of factors is directly proportional to the	ele and electron, both are similar particles.
		•	tivity of 10^8 undecayed radioactive nuclei
8.	Assertion	sobars are the element having same mass number of half li	life of 50 days is equal to that of 1.2×10^8 of undecayed nuclei of some other material
	Reason	reactions and protons are protons made made as [ranks 1997]	If life of 60 days
9.	Assertion	The force of repulsion between atomic fracieus and	tivity is proportional to half-life.
		equare law. radioact	
	Reason	Rutherford did $lpha$ -particle scattering experiment. Reason : The fra	agments have abnormally high proton to ratio.
10.	Assertion		n capture occurs more often than positron in heavy elements.
	Reason	n O-narticle scattering experiment, the distance of	elements exhibit radioactivity.
		elosest approach for α -particles is $\simeq 10^{-15} m$.	has of a nucleus can be either less than or han the sum of the masses of nucleons
11.	Assertion	According to classical theory, the proposed path of Reason : The whom electron in Rutherford atom model will be nucleus.	ole mass of the atom is considered in the
	Reason	According to electromagnetic theory an accelerated particle continuously emits radiation.	
12.	Assertion	Electrons in the atom are held due to coulomb	swers

Atomic Structure

1	a	2	d	3	а	4	d	5	С
6	b	7	b	8	С	9	а	10	d
11	b	12	b	13	b	14	С	15	С
16	С	17	С	18	b	19	С	20	b
21	С	22	С	23	С	24	d	25	d
26	С	27	d	28	b	29	d	30	b
31	а	32	d	33	С	34	d	35	d
36	b	37	С	38	а	39	С	40	С
41	а	42	d	43	d	44	а	45	а
46	а	47	С	48	а	49	b	50	а
51	b	52	С	53	d	54	С	55	d
56	а	57	С	58	d	59	d	60	d
61	С	62	ad	63	d	64	b	65	b
66	b	67	С	68	а	69	b	70	С
71	а	72	b	73	b	74	d	75	b
76	d	77	d	78	b	79	а	80	d
81	а	82	а	83	b	84	b	85	d
86	С	87	а	88	С	89	а	90	b
91	d	92	b	93	С	94	С	95	b
96	а	97	С	98	b	99	а	100	b
101	a	102	С	103	а	104	b	105	d
106	b	107	b	108	С	109	d	110	С
111	a	112	а	113	а	114	b	115	d
116	b	117	d	118	а	119	b	120	а
121	b	122	b	123	b	124	d	125	а
126	d	127	d	128	С	129	С	130	d
131	a	132	С	133	С	134	а	135	С
136	а	137	С	138	d	139	d	140	b
141	b	142	а	143	b	144	а	145	d
146	a	147	b	148	d	149	b	150	b
151	a	152	d	153	а	154	а	155	С
156	d	157	d	158	d	159	С	160	а
161	С	162	b	163	а	164	С	165	b
166	a	167	b	168	а	169	b	170	С
171	С	172	а	173	d	174	С		

Nucleus.	. Nuclear	Reaction

1	b	2	С	3	С	4	d	5	d
6	d	7	d	8	b	9	b	10	С
11	а	12	b	13	d	14	С	15	С
16	С	17	С	18	С	19	d	20	С
21	b	22	d	23	а	24	b	25	С
26	b	27	С	28	С	29	а	30	а
31	b	32	а	33	d	34	С	35	С
36	b	37	а	38	а	39	d	40	С
41	b	42	а	43	С	44	а	45	С

46	С	47	d	48	b	49	а	50	b
51	d	52	b	53	d	54	С	55	а
56	а	57	d	58	ad	59	С	60	а
61	С	62	b	63	а	64	а	65	d
66	С	67	а	68	b	69	b	70	d
71	b	72	d	73	bc	74	d	75	С
76	d	77	d	78	С	79	b	80	b
81	С	82	d	83	С	84	b	85	d
86	b	87	а	88	d	89	d	90	а
91	С	92	b	93	а	94	С	95	а
96	b	97	С	98	d	99	d	100	b
101	С	102	b	103	а	104	d	105	С
106	b	107	а	108	b	109	d	110	С
111	С	112	С	113	b	114	b	115	d
116	а	117	b	118	а	119	С	120	b
121	d	122	d	123	а	124	а	125	С
126	С	127	b	128	d	129	С	130	а
131	С	132	а	133	а	134	b	135	b
136	С	137	а	138	С	139	b	140	а
141	b	142	b	143	b	144	d	145	d
146	а	147	b	148	b	149	d	150	а
151	С	152	b	153	d	154	С	155	С
156	а	157	b	158	а	159	С	160	С
161	а	162	а	163	b	164	b	165	С
166	b	167	d	168	d	169	а	170	b
171	b	172	а	173	С	174	b	175	а
176	b	177	а	178	С	179	b		

Radioactivity

1	а	2	а	3	d	4	С	5	а
6	С	7	С	8	d	9	С	10	С
11	b	12	С	13	С	14	С	15	а
16	С	17	а	18	С	19	b	20	а
21	а	22	С	23	а	24	d	25	d
26	d	27	С	28	b	29	а	30	С
31	С	32	С	33	d	34	С	35	С
36	b	37	b	38	d	39	d	40	d
41	а	42	b	43	С	44	d	45	b
46	b	47	d	48	d	49	b	50	а
51	b	52	С	53	а	54	d	55	С
56	d	57	b	58	d	59	d	60	b
61	а	62	d	63	а	64	d	65	b
66	а	67	b	68	С	69	d	70	С
71	d	72	а	73	а	74	d	75	С
76	d	77	d	78	С	79	а	80	d
81	d	82	b	83	а	84	а	85	b

16

21

а

С

17

22

С

18

23

b

19

24

b

е

20

b

	_								
86	С	87	d	88	d	89	b	90	а
91	b	92	d	93	С	94	С	95	а
96	d	97	d	98	а	99	b	100	С
101	а	102	d	103	b	104	b	105	b
106	d	107	а	108	d	109	С	110	b
111	С	112	С	113	d	114	d	115	С
116	b	117	а	118	а	119	d	120	а
121	С	122	d	123	а	124	d	125	d
126	d	127	С	128	d	129	С	130	b
131	d	132	b	133	С	134	а	135	а
136	b	137	ac	138	b	139	С	140	С
141	d	142	С	143	а	144	d	145	С
146	b	147	d	148	b	149	b	150	С
151	С	152	а	153	b	154	b	155	d
156	b	157	С	158	С	159	d	160	С
161	а	162	d	163	С	164	С	165	d
166	d	167	С	168	С	169	b	170	d
171	b	172	С	173	b	174	а	175	С
176	d								

Critical	Thinking	Questions
----------	----------	------------------

1	С	2	С	3	b	4	а	5	а
6	а	7	a	8	d	9	b	10	d
11	а	12	a	13	а	14	d	15	С
16	d	17	С	18	d	19	С	20	d
21	b	22	С	23	d	24	а	25	d
26	d	27	С	28	С	29	cd	30	а
31	а	32	С	33	а	34	а	35	b
36	b	37	b	38	С	39	b	40	а
41	а	42	b	43	С	44	С	45	d
46	а	47	b	48	d	49	а	50	b
51	d	52	а	53	b	54	b	55	а
56	а	57	b	58	b	59	b	60	а
61	а	62	а	63	b	64	С	65	а

Graphical Questions

1	а	2	а	3	С	4	d	5	С
6	d	7	b	8	b	9	С	10	d
11	d	12	d	13	b	14	d	15	С
16	а	17	b	18	С	19	а		

Assertion and Reason

1	С	2	а	3	b	4	b	5	С
6	a	7	а	8	b	9	b	10	а
11	е	12	С	13	b	14	b	15	d

Answers and Solutions

Atomic Structure

- 1. (a) For n=1, maximum number of states $=2n^2=2$ and for n=2, 3, 4, maximum number of states would be 8, 18, 32 respectively, Hence number of possible elements =2+8+18+32=60.
 - (d) Bohr radius $r = \frac{\varepsilon_0 n^2 h^2}{\pi Z m e^2}$; $\therefore r \propto n^2$
- 3. (a) n=2 $E_2=-\frac{13.6}{(2)^2}=-3.4 \text{ eV}$

$$n = 1 \qquad \qquad E_1 = -13.6 \ eV$$

$$E_{1\to 2} = -3.4 - (13.6) = +10.2 \, eV$$

4. (d) $\frac{1}{\lambda} = RZ^2 \left(\frac{1}{1^2} - \frac{1}{2^2} \right)$

For di-ionised lithium the value of Z is maximum.

- **5.** (c) Lyman series lies in the UV region.
- **6.** (b) The size of the atom is of the order of $1\text{Å} = 10^{-}m$.
- 7. (b) Balmer series lies in the visible region.
- **8.** (c) Transition A $(n = \infty \text{ to } 1)$: Series limit of Lyman series

Transition B (n = 5 to n = 2): Third spectral line o Balmer series

Transition C (n = 5 to n = 3): Second spectral line of Paschen series

- **9.** (a) *D* is excitation of electron from 2° orbit corresponding to absorption line in Balmer series and *E* is the energy released to bring the electron from ∞ to ground state *i.e.* ionisation potential.
- **10.** (d)

2.

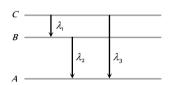
- 11. (b) Paschen series lies in the infrared region.
- 12. (b) Energy required to knock out the electron in the π orbit = $+\frac{13.6}{n^2}eV \implies E_3 = +\frac{13.6}{9}eV$.
- 13. (b) Linear momentum = $mv = 9.1 \times 10^{-31} \times 2.2 \times 10^{6}$ = $2.0 \times 10^{-24} \, kg - m / s$
- **14.** (c) $r \propto n^2 \implies r_n = n^2 a_0 \ (\because r_1 = a_0)$
- **15.** (c) For the ionization of second He electron. He^+ will act as hydrogen like atom.

Hence ionization potential

$$= Z^2 \times 13.6 \text{ volt} = (2)^2 \times 13.6 = 54.4 \text{ V}$$

16. (c) Energy required
$$=\frac{13.6}{n^2} = \frac{13.6}{10^2} = 0.136 \, eV$$

17. (c) $\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \Rightarrow \frac{1}{n_1^2} - \frac{1}{n_2^2} = \frac{1}{R\lambda}$


$$= \frac{1}{1.097 \times 10^7 \times 18752 \times 10^{-10}} = 0.0486 = \frac{7}{144} . \text{ But}$$

$$\frac{1}{3^2} - \frac{1}{4^2} = \frac{7}{144} \Rightarrow n_1 = 3 \text{ and } n = 4$$
 (Paschen series)

18. (b) Potential energy of electron in r orbit of radius r in H-atom $U = -\frac{e^2}{r} \quad \text{(in CGS)}$

$$\therefore$$
 K.E. $=\frac{1}{2}|P.E.| \implies K = \frac{e^2}{2r}$

- 19. (c) Final energy of electron $= -13.6 + 12.1 = -1.51 \, eV$. which is corresponds to third level *i.e.* n = 3. Hence number of spectral lines emitted $= \frac{n(n-1)}{2} = \frac{3(3-1)}{2} = 3$
- **20.** (b) Let the energy in *A*, *B* and *C* state be *E*, *E* and *E*, then from the figure

$$(E_C - E_B) + (E_B - E_A) = (E_C - E_A) \text{ or } \frac{hc}{\lambda_1} + \frac{hc}{\lambda_2} = \frac{hc}{\lambda_3}$$

$$\Rightarrow \lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

- 21. (c) According to Bohr's second postulate.
- **22.** (c) First excited state *i.e.* second orbit (n = 2)

Second excited state *i.e.* third orbit
$$(n = 3)$$

$$\therefore E = -\frac{13.6}{n^2} \Rightarrow \frac{E_2}{E_3} = \left(\frac{3}{2}\right)^2 = \frac{9}{4}$$

23. (c) $\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = \frac{3R}{16} \Rightarrow \lambda = \frac{16}{3R} = \frac{16}{3} \times 10^{-5} cm$

Frequency
$$n = \frac{c}{\lambda} = \frac{3 \times 10^{10}}{\frac{16}{3} \times 10^{-5}} = \frac{9}{16} \times 10^{15} \, Hz$$

- **24.** (d) Energy required to remove electron in the n=2 state = $+\frac{13.6}{(2)^2}$ = $+3.4 \ eV$
- **25.** (d) $(E)_v = Z^2(E_{ion})_H = (11)^2 13.6 \text{ eV}$
- **26.** (c) The wavelength of spectral line in Balmer series is given by $\frac{1}{\lambda} = R \left[\frac{1}{2^2} \frac{1}{n^2} \right]$

For first line of Balmer series, n = 3

$$\Rightarrow \frac{1}{\lambda_1} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{5R}{36}; \text{ For second line } n = 4.$$

$$\Rightarrow \frac{1}{\lambda_2} = R \left[\frac{1}{2^2} - \frac{1}{4^2} \right] = \frac{3R}{16}$$

$$\therefore \frac{\lambda_2}{\lambda_1} = \frac{20}{27} \Rightarrow \lambda_1 = \frac{20}{27} \times 6561 = 4860 \,\text{Å}$$

27. (d)
$$2E - E = \frac{hc}{\lambda} \Rightarrow E = \frac{hc}{\lambda}$$

 $\frac{4E}{3} - E = \frac{hc}{\lambda!} \Rightarrow \frac{E}{3} = \frac{hc}{\lambda!} \therefore \frac{\lambda'}{\lambda} = 3 \Rightarrow \lambda' = 3\lambda$

29. (d)
$$r = \frac{\varepsilon_0 n^2 h^2}{\pi Z m e^2}$$
; $\therefore r \propto \frac{n^2}{Z}$

30. (b)
$$r \propto n^2 \Rightarrow \frac{r_{(n=2)}}{r_{(n=3)}} = \frac{4}{9} \Rightarrow r_{(n=3)} = \frac{9}{4} R = 2.25 R$$

$$\Rightarrow \frac{ze^2}{r^2} = \frac{mv^2}{r} \Rightarrow mv^2 = \frac{ze^2}{r}$$

$$\therefore \text{ K.E.} = \frac{1}{2}mv^2 = \frac{ze^2}{2r}$$

32. (d) According to Bohr's theory
$$mvr = n \frac{h}{2\pi}$$

$$\Rightarrow \text{ Circumference } 2\pi r = n \left(\frac{h}{mv}\right) = n\lambda$$

33. (c)
$$K.E = \frac{kZe^2}{2r}$$
 and $P.E. = -\frac{kZe^2}{r}$; $\therefore \frac{K.E.}{P.E.} = -\frac{1}{2}$.

34. (d) Lyman series lies in the UV region.

35. (d) If
$$E$$
 is the energy radiated in transition

then
$$E_{R\to G} > E_{O\to S} > E_{R\to S} > E_{O\to R} > E_{P\to O}$$

For getting blue line energy radiated should be maximum $\left(E \propto \frac{1}{\lambda}\right)$. Hence (d) is the correct option.

36. (b) Energy released =
$$13.6 \left[\frac{1}{(2)^2} - \frac{1}{(4)^2} \right] = 2.55 \, eV$$

37. (c) The absorption lines are obtained when the electron jumps from ground state (n = 1) to the higher energy states. Thus only 1, 2 and 3 lines will be obtained.

38. (a) P.E.
$$\infty - \frac{1}{r}$$
 and K.E. $\infty \frac{1}{r}$

As r increases so K.E. decreases but P.E. increases.

39. (c) Wave number
$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R \left[\frac{1}{4} - \frac{1}{16} \right] = \frac{3R}{16}$$

40. (c) In hydrogen atom, the lowest orbit (n = 1) corresponds to minimum energy (-13.6 eV).

42. (d) Required energy
$$E_3 = \frac{+13.6}{3^2} = 1.51 eV$$

43. (d) As *n* increases P.E. also increases.

44. (a) When an electron jumps from the orbit of lower energy (*n*=1) to the orbit of higher energy (*n*=3), energy is absorbed.

45. (a) For Lyman series

$$v_{\text{Lymen}} = \frac{c}{\lambda_{\text{max}}} = Rc \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right] = \frac{3RC}{4}$$

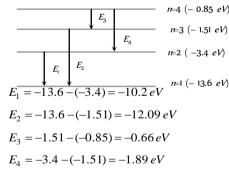
For Balmer series

$$v_{\text{Balmer}} = \frac{c}{\lambda_{\text{max}}} = Rc \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = \frac{5RC}{36}$$

$$\therefore \frac{v_{\text{Lymen}}}{v_{\text{Balmer}}} = \frac{27}{5}$$

16. (a)
$$:: E_1 > E_2$$
 $:: v_1 > v_2$

1.e. photons of higher frequency will be emitted if transition takes place from $n = 2$ to 1.


47. (c) Wave number $\stackrel{\longleftarrow}{}$ $= \frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$

For first Balmer line n=2, n=3

$$\therefore \text{ Wave number } = R \left(\frac{1}{2^2} - \frac{1}{3^2} \right) = R \left(\frac{9-4}{9 \times 4} \right) = \frac{5R}{36}$$

48. (a) Energy required to ionise helium atom = 24.6 eV

49. (b) From diagram

 E_3 is least *i.e.* frequency is lowest.

50. (a) P.E. =
$$-\frac{ke^2}{r} = -\frac{e^2}{4\pi\varepsilon_0 r}$$
; K.E. = $-\frac{1}{2}$ (P.E.) = $\frac{e^2}{8\pi\varepsilon_0 r}$

51. (b) Similar to Q. 49

52. (c)
$$mvr = \frac{nh}{2\pi}$$
, for $n = 1$ it is $\frac{h}{2\pi}$

53. (d) Minimum energy required to excite from ground state $= 13.6 \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = 10.2 \ eV$

54. (c)
$$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

For first line of Lymen series n = 1 and n = 2For first line of Balmer series n = 2 and n = 3

So,
$$\frac{\lambda_{\text{Lymen}}}{\lambda_{\text{Balmer}}} = \frac{5}{27}$$

55. (d)
$$R = \frac{2\pi^2 k^2 e^4 m}{ch^3} = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\pi^2 m e^4}{ch^3}$$

56. (a)
$$\frac{1}{\lambda} = R \left[\frac{1}{4} - \frac{1}{9} \right] = \frac{5R}{36}$$

$$\therefore R = \frac{36}{5\lambda} = \frac{36}{5 \times 6563 \times 10^{-10}} = 1.09 \times 10^7 m^{-1}$$

57. (c) Angular momentum
$$L = n \left(\frac{h}{2\pi} \right)$$
 For this case n =2, hence $L = 2 \times \frac{h}{2\pi} = \frac{h}{\pi}$

58. (d)
$$v_1 \propto \frac{1}{n} \Rightarrow \frac{v_5}{v_2} = \frac{2}{5} \Rightarrow v_5 = \frac{2}{5}v_2 = \frac{2}{5}v_3$$

59. (d) By using
$$N_E = \frac{n(n-1)}{2} \Rightarrow N_E = \frac{4(4-1)}{2} = 6$$

60. (d) Shortest wavelength comes from
$$n_1 = \infty$$
 to $n_2 = 1$ and longest wavelength comes from $n_1 = 6$ to $n_2 = 5$ in the given case. Hence $\frac{1}{\lambda_{\min}} = R\left(\frac{1}{1^2} - \frac{1}{\infty^2}\right) = R$
$$\frac{1}{\lambda_{\max}} = R\left(\frac{1}{5^2} - \frac{1}{6^2}\right) = R\left(\frac{36 - 25}{25 \times 36}\right) = \frac{11}{900}R$$

$$\therefore \frac{\lambda_{\max}}{\lambda_{\min}} = \frac{900}{11}$$

61. (c)
$$\frac{mv^2}{a_0} = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{a_0^2} \Rightarrow v = \frac{e}{\sqrt{4\pi\varepsilon_0 a_0 m}}$$

62. (a,d)
$$T \propto n^3$$
 . Given $T_{n_1} = 8 \ T_{n_2}$, hence $n_1 = 2n_2$ Therefore, option (a) and (d) both are correct.

63. (d)
$$E = -Z^2 \times 13.6 \ eV = -9 \times 13.6 \ eV = -122.4 \ eV$$

So ionisation energy = + 122.4 \ eV.

64. (b)

65. (b) As *n* increases P.E. increases and K.E. decreases.

66. (b)
$$r = \frac{n^2}{Z}(r_0)$$
; $\Rightarrow r_{(n=2)} = \frac{(2)^2}{2} \times 0.53 = 1.06 \,\text{Å}$

67. (c)

68. (a)
$$\overline{v} \propto \frac{1}{\lambda} \propto Z^2 \Rightarrow \lambda Z^2 = \text{constant} \Rightarrow \lambda = \frac{\lambda}{4} Z^2 \Rightarrow Z = 2$$

69. (b) In Paschen series
$$\frac{1}{\lambda_{\text{max}}} = R \left[\frac{1}{(3)^2} - \frac{1}{(4)^2} \right]$$

$$\Rightarrow \lambda_{\text{max}} = \frac{144}{7R} = \frac{144}{7 \times 1.1 \times 10^7} = 1.89 \times 10^{-6} m = 1.89 \, \mu\text{m}$$
Similarly $\lambda_{\text{min}} = \frac{9}{R} = \frac{9}{1.1 \times 10^7} = 0.818 \, \mu\text{m}$

70. (c) For third line of Balmer series $n_1 = 2$, $n_2 = 5$

$$\therefore \frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \text{ gives } Z^2 = \frac{n_1^2 n_2^2}{(n_2^2 - n_1^2)\lambda R}$$

On putting values Z = 2

From
$$E = -\frac{13.6Z^2}{n^2} = \frac{-13.6(2)^2}{(1)^2} = -54.4 \, eV$$

71. (a) Ionization energy = Binding energy.

72. (b)
$$E = -Rch \Rightarrow R = -\frac{E}{ch} = -\frac{13.6 \times 1.6 \times 10^{-19}}{3 \times 10^8 \times 6.6 \times 10^{-34}}$$

= 1.098 × 10⁷ per m

73. (b) Bohr postulated that the angular momentum of the electron is conserved.

74. (d)
$$E_3 = -\frac{13.6}{9} = -1.51 \ eV; \ E_4 = -\frac{13.6}{16} = -0.85 \ eV$$

 $\therefore E_4 - E_3 = 0.66 \ eV$

75. (b) Number of spectral lines
$$N_E = \frac{n(n-1)}{2} = \frac{4(4-1)}{2} = 6$$

76. (d) In the transition from orbit $5 \rightarrow 2$, more energy is liberated as compared to transition from $4 \rightarrow 2$.

77. (d) Impact parameter $b \propto \cot \frac{\theta}{2}$ Here b = 0, hence $\theta = 180^{\circ}$

78. (b)
$$r \propto n^2$$
 i.e. $\frac{r_f}{r_i} = \left(\frac{n_f}{n_i}\right)^2$

$$\Rightarrow \frac{21.2 \times 10^{-11}}{5.3 \times 10^{-11}} = \left(\frac{n}{1}\right)^2 \Rightarrow n^2 = 4 \Rightarrow n = 2$$

79. (a)

80. (d)
$$E_n = \frac{-13.6}{n^2} = \frac{-13.6}{4} = -3.4 eV$$

81. (a)
$$\frac{1}{\lambda_{\text{Balmer}}} = R \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = \frac{5R}{36}, \frac{1}{\lambda_{\text{Lyman}}} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3R}{4}$$

 $\therefore \lambda_{\text{Lyman}} = \lambda_{\text{Balmer}} \times \frac{5}{27} = 1215.4 \text{ Å}$

82. (a)
$$\frac{1}{\lambda} = R_H \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
. For Lyman series $n=1$ and $n=2$, 3, 4, When $n=2$, we get $\lambda = \frac{4}{3R_H} = \frac{4}{3 \times 10967} cm$

83. (b) $r \propto n^2$. For ground state n=1 and for first excited state n=2.

84. (b) No. of lines
$$N_E = \frac{n(n-1)}{2} = \frac{3(3-1)}{2} = 3$$

85. (d) Infinitely large transitions are possible (in principle) for the hydrogen atom.

86. (c)
$$r_n \propto n^2$$

87. (a)
$$E\left(=\frac{hc}{\lambda}\right) \propto \frac{Z^2}{n^2} \Rightarrow \lambda \propto \frac{1}{Z^2}$$

Hence
$$\lambda_{He^+} = \frac{20.397}{4} = 5.099 \, cm$$

88. (c) Excitation potential =
$$\frac{\text{Excitationenergy}}{e}$$

Minimum excitation energy corresponds to excitation from n=1 to n=2

 \therefore Minimum excitation energy in hydrogen atom = $-3.4 - (-13.6) = +10.2 \, eV$

so minimum excitation potential = 10.2 eV.

90. (b)
$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \Rightarrow \frac{1}{\lambda_{3 \to 2}} = R \left[\frac{1}{(2)^2} - \frac{1}{(3)^2} \right] = \frac{5R}{36}$$

and $\frac{1}{\lambda_{4 \to 2}} = R \left[\frac{1}{(2)^2} - \frac{1}{(4)^2} \right] = \frac{3R}{16}$
 $\therefore \frac{\lambda_{4 \to 2}}{\lambda_{3 \to 2}} = \frac{20}{27} \Rightarrow \lambda_{4 \to 2} = \frac{20}{27} \lambda_0$

93. (c) Energy to excite the
$$e^-$$
 from $n=1$ to $n=2$

First excited state
$$n = 2 (-3.4 \text{ eV})$$

Ground state
$$n = 1 \text{ (-13.6 eV)}$$

(For
$$H_2$$
 - atom)

$$E = -3.4 - (-13.6) = 10.2 \text{ eV} = 10.2 \times 1.6 \times 10^{-19}$$

$$=1.632\times10^{-18} J$$

$$N \propto \frac{1}{\sin^4(\theta/2)} \Rightarrow \frac{N_2}{N_1} = \left[\frac{\sin(\theta_1/2)}{\sin(\theta_2/2)}\right]^4$$
$$\Rightarrow \frac{N_2}{N_1} = \left[\frac{\sin\frac{90^\circ}{2}}{\sin\frac{60^\circ}{2}}\right]^4 = \left[\frac{\sin45^\circ}{\sin30^\circ}\right]^4$$

$$\Rightarrow N_2 = (\sqrt{2})^4 \times N_1 = 4 \times 56 = 224$$

$$\Delta L = L_2 - L_1 = \frac{n_2 h}{2\pi} - \frac{n_1 h}{2\pi} \Rightarrow \Delta L = \frac{h}{2\pi} (n_2 - n_1)$$
$$= \frac{6.6 \times 10^{-34}}{2 \times 3.14} (5 - 4) = 1.05 \times 10^{-34} J - S$$

98. (b)
$$E_n = -\frac{13.6}{r^2} eV$$

99. (a)

100. (b)
$$F = \frac{9 \times 10^9 \times 1.6 \times 10^{-19} \times 1.6 \times 10^{-19}}{(2.5 \times 10^{-11})^2} = 3.7 \times 10^{-7} N$$

101. (a) For Balmer series
$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{n^2}\right)$$
 where $n = 3, 4, 5$

For second line n = 4

So
$$\frac{1}{\lambda} = R\left(\frac{1}{2^2} - \frac{1}{4^2}\right) = \frac{3}{16}R \Rightarrow \lambda = \frac{16}{3R}$$

102. (c) Energy of electron in
$$H$$
 atom $E_n = \frac{-13.6}{n^2} eV$

$$\Rightarrow -1.5 = \frac{-13.6}{n^2} \Rightarrow n^2 = \frac{13.6}{1.5} = 3$$

Now angular momentum

$$p = n \frac{h}{2\pi} = \frac{3 \times 6.6 \times 10^{-34}}{2 \times 3.14} = 3.15 \times 10^{-34} J \times \text{sec}$$

104. (b)
$$T = \frac{2\pi r}{v}$$
; $r = \text{ radius of } r \text{ orbit} = \frac{n^2 h^2}{\pi n Z e^2}$

$$v = \text{speed of } e^- \text{ in } n \text{ orbit } = \frac{ze^2}{2\varepsilon_0 nh}$$

$$\therefore T = \frac{4\varepsilon_0^2 n^3 h^3}{mZ^2 e^4} \Rightarrow T \propto \frac{n^3}{Z^2}$$

105. (d)
$$r_n \propto n^2 \Rightarrow \frac{r_4}{r_1} = \left(\frac{4}{1}\right)^2 = \frac{16}{1} \Rightarrow r_4 = 16 \ r_1 \Rightarrow r_4 = 16 \ r_0$$

106. (b) For Lyman series

$$\overline{v} = \frac{1}{\lambda} = R\left(\frac{1}{1^2} - \frac{1}{n^2}\right)$$
 here *n*=2, 3, 4, 5.....

For first line

$$\overline{v} = R\left(\frac{1}{1^2} - \frac{1}{2^2}\right) \Rightarrow \overline{v} = R\left(1 - \frac{1}{4}\right) = \frac{3R}{4}$$

107. (b) Energy
$$E = K \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
 (*K* = constant)

$$n = 2$$
 and $n = 3$, so $E = K \left[\frac{1}{2^2} - \frac{1}{3^2} \right] = K \left[\frac{5}{36} \right]$

For removing an electron n = 1 to $n_2 = \infty$

Energy
$$E_1 = K[1] = \frac{36}{5}E = 7.2 E$$

∴ lonization energy = 7.2 E

108. (c) For Paschen series
$$\overline{v} = \frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{n^2} \right]$$
; *n*=4, 5, 6....

For first member of Paschen series n = 4

$$\frac{1}{\lambda_1} = R \left[\frac{1}{3^2} - \frac{1}{4^2} \right] \Rightarrow \frac{1}{\lambda_1} = \frac{7R}{144}$$
$$\Rightarrow R = \frac{144}{7\lambda_1} = \frac{144}{7 \times 18800 \times 10^{-10}} = 1.1 \times 10^{-7}$$

For shortest wave length $n = \infty$

So
$$\frac{1}{\lambda} = R \left[\frac{1}{3^2} - \frac{1}{\infty^2} \right] = \frac{R}{9}$$

$$\Rightarrow \lambda = \frac{9}{R} = \frac{9}{1.1 \times 10^{-7}} = 8.225 \times 10^{-7} m = 8225 \text{ Å}$$

109. (d) For Lyman series
$$\frac{1}{\lambda_{\text{max}}} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3}{4} R$$
 and

$$\frac{1}{\lambda_{\min}} = R \left[\frac{1}{1^2} - \frac{1}{\infty^2} \right] = \frac{R}{1} \Rightarrow \frac{\lambda_{\max}}{\lambda_{\min}} = \frac{4}{3}$$

110. (c)
$$T \propto n^3 \Rightarrow \frac{T_2}{T_1} = \frac{2^3}{1^3} = \frac{8}{1}$$

III. (a) For Bracket series
$$\frac{1}{\lambda_{\text{max}}} = R \left[\frac{1}{4^2} - \frac{1}{5^2} \right] = \frac{9}{25 \times 16} R$$
and $\frac{1}{\lambda_{\text{min}}} = R \left[\frac{1}{4^2} - \frac{1}{\infty^2} \right] = \frac{R}{16} \Rightarrow \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} = \frac{25}{9}$

112. (a) For hydrogen and hydrogen like atoms
$$E_n = -13.6 \frac{z^2}{n^2} eV$$

$$U_n = 2E_n = -27.2 \frac{z^2}{n^2} eV$$
 and $K_n = |E_n| = 13.6 \frac{z^2}{n^2} eV$

From these three relations we can see that as n decreases, K will increase but E and U will decreases.

113. (a)
$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \Rightarrow \frac{\lambda_{\min}}{\lambda_{\max}} = \frac{\left[\frac{1}{2^2} - \frac{1}{3^2} \right]}{\left[\frac{1}{2^2} - \frac{1}{\infty} \right]} = \frac{5}{9}$$

114. (b) By using
$$r_n = r_0 \frac{n^2}{Z}$$
; Where $r_1 = \text{Radius of the Bohr orbit in}$ the ground state atom . So for He^+ third excited state $n = 4$, $Z = 2$, $r_0 = 0.5 \text{ Å} \Rightarrow r_4 = 0.5 \times \frac{4^2}{2} = 4 \text{ Å}$

115. (d) Speed of electron in
$$n$$
 orbit (in CGS)
$$v_n = \frac{2\pi Z e^2}{nh} (k=1)$$
 For first orbit H_2 ; $n=1$ and $Z=1$

So
$$v = \frac{2\pi e^2}{h} \implies \frac{v}{c} = \frac{2\pi e^2}{hc}$$

117. (d)
$$E_n = -\frac{13.6}{n^2} eV \Rightarrow E_5 = \frac{-13.6}{5^2} = \frac{-13.6}{25} = -0.54 \ eV$$

118. (a)

119. (b

120. (a)
$$mvr = \frac{nh}{2\pi} \Rightarrow v = \frac{nh}{2\pi nr} \Rightarrow \frac{v^2}{r} = \frac{n^2h^2}{4\pi^2m^2r^3}$$

121. (b) Maximum number of spectral lines are observed in Lymer series

122. (b) Wave number
$$\overline{v} = \frac{1}{\lambda} = \frac{1}{5896 \times 10^{-8}} = 16961 \,\text{per } cm$$

123. (b)
$$r_n \propto n^2 \Rightarrow \frac{r_3}{r_1} = \frac{3^2}{1} \Rightarrow r_3 = 9r_1 = 9 \times 0.53 = 4.77 \text{ Å}$$

124. (d) For first line in Lyman series
$$\lambda_{L_1} = \frac{4}{3 R}$$
 (i

For first line in Balmer series
$$\lambda_{B_1} = \frac{36}{5 R}$$
 (ii)

From equation (i) and (ii)

$$\frac{\lambda_{B_1}}{\lambda_{I_1}} = \frac{27}{5} \Rightarrow \lambda_{B_1} = \frac{27}{5} \lambda_{L_1} \Rightarrow \lambda_{B_1} = \frac{27}{5} \lambda$$

125. (a)

126. (d) 3 – 1 transition has higher energy so it has higher frequency
$$\left(v = \frac{E}{h}\right)$$

127. (d) α -particles cannot be attracted by the nucleus.

128. (c) By using
$$v = RC \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\Rightarrow v = 10^7 \times (3 \times 10^8) \left[\frac{1}{4^2} - \frac{1}{5^2} \right] = 6.75 \times 10^9 \ Hz$$

129. (c) For
$$M$$
 shell $(n = 3)$, orbital quantum number $l = 0$, 1, 2.

130. (d) Number of possible emission lines
$$=\frac{n(n-1)}{2}$$

Where $n=4$; Number $=\frac{4(4-1)}{2}=6$.

131. (a) Diameter of nucleus is of the order of 10 $^{\circ}m$ and radius of first Bohr orbit of hydrogen atom $r = 0.53 \times 10^{-10} m$.

132. (c) The electron is in the second orbit (*n*=2)
 Hence
$$L = \frac{nh}{2\pi} = \frac{2h}{2\pi} = \frac{6.6 \times 10^{-34}}{\pi} = 2.11 \times 10^{-34} J - sec$$

133. (c)
$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \Rightarrow \lambda \propto \frac{1}{Z^2}$$

 $\lambda_{I_1^{++}} : \lambda_{H_2^{+}} : \lambda_H = 4 : 9 : 36$

134. (a) Energy radiated
$$E=10.2\,eV=10.2\times1.6\times10^{-19}\,J$$

$$\Rightarrow E=\frac{hc}{\lambda} \Rightarrow \lambda=1.215\times10^{-7}\,m$$

135. (c) For
$$n = 1$$
, $E_1 = -\frac{13.6}{(1)^2} = -13.6 \text{ eV}$
and for $n = 3$, $E_3 = -\frac{13.6}{(3)^2} = -1.51 \text{ eV}$

So required energy $= E_3 - E_1 = -1.51 - (-13.6) = 12.09 \text{ eV}$

136. (a) Similar to Q. 115

137. (c) Since in spectral series of hydrogen atom, Lymen series lies

138. (d)
$$mvr_n = \frac{nh}{2\pi} \Rightarrow pr_n = \frac{nh}{2\pi} \Rightarrow \frac{h}{\lambda} \times r_n = \frac{nh}{2\pi}$$

 $\Rightarrow \lambda = \frac{2\pi r_n}{n}$, for first orbit $n = 1$ so $\lambda = 2\pi r_1$

= circumference of first orbit

139. (d)
$$E_{n_1 \to n_2} = -13.6 \left[\frac{1}{n_2^2} - \frac{1}{n_1^2} \right]; n_1 = 2 \& n_2 = 1$$

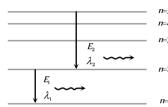
$$\Rightarrow E_{II} \to E_I = -13.6 \times \frac{3}{4} = -10.2 \text{ eV}$$

140. (b)
$$E_n = -\frac{13.6z^2}{n^2}eV \Rightarrow E_1 = -\frac{13.6\times(2)^2}{(1)^2} = -54.4 \ eV$$

141. (b)
$$v \propto Z^2 \Rightarrow \frac{v_{H_2}}{v_{He}} = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \Rightarrow v_{He} = 4v_{H_2} = 4v_{H_2}$$

142. (a)
$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

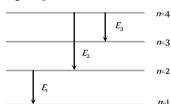
First condition
$$\frac{1}{\lambda} = R \left[\frac{1}{1^2} - \frac{1}{2^2} \right] \Rightarrow R = \frac{4}{3\lambda}$$


Second condition
$$\frac{1}{\lambda'} = R \left[\frac{1}{1^2} - \frac{1}{3^2} \right]$$

$$\Rightarrow \lambda' = \frac{9}{8R} \Rightarrow \lambda' = \frac{9}{8 \times \frac{4}{3\lambda}} = \frac{27\lambda}{32}$$

143. (b)

144. (a)
$$r_n \propto n^2$$


145. (d)
$$:: E_2 < E_1 \Rightarrow \lambda_2 > \lambda_1$$

146. (a) Wave number
$$\overline{v} = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]; n_2 = \infty$$
 and $n_1 = 1$

$$\Rightarrow \overline{v} = R = 1.097 \times 10^7 m^{-1} = 109700 cm^{-1}$$

147. (b)
$$E_1 > E_2 > E_3$$

148. (d) $r \propto \frac{1}{Z}$, for double ionized lithium Z(=3) will be maximum. So r will be minimum

149. (b)
$$E_n = \frac{13.6}{n^2} \times Z^2$$
. For first excited state $n = 2$ and for $Li^{++}, z = 3 \Rightarrow E = \frac{13.6}{4} \times 9 = 30.6 \ eV$

150. (b)

151. (a) In Lyman series
$$(\lambda_{\min})_L = \frac{1}{R}$$
 and $(\lambda_{\min})_B = \frac{4}{R}$

$$\Rightarrow (\lambda_{\min})_B = 4 \times (\lambda_{\min})_L = 4 \times 912 = 3648 \text{ Å}$$
152. (d)

152. (d)
$$n = 3 \ (-1.51 \ eV)$$
 $n = 2 \ (-1.51 \ eV)$ $n = 2 \ (-1.51 \ eV)$

$$E_{3\to 2} = -3.4 - (-1.51) = -1.89 \, eV \implies |E_{3\to 2}| \approx 1.9 \, eV$$

153. (a)

154. (a)

155. (c) Radius of n orbit for any hydrogen like atom

$$r_n = r_0 \left(\frac{n^2}{Z} \right)$$
 (r_0 = radius of first orbit of H_2 -atom)

If $r_n = r_0 \implies n = \sqrt{Z}$. For Be^- , $Z = 4 \implies n = 2$

156. (d)
$$r_n \propto n^4 \implies A_n \propto n^4 \implies \frac{A_1}{A_0} = \left(\frac{2}{1}\right)^4 = \frac{16}{1}$$

157. (d)

158. (d)
$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
. For first wavelength, $n_1 = 2$, $n_2 = 3$ $\Rightarrow \lambda_1 = 6563 \, \text{Å}$. For second wavelength, $n_1 = 2$, $n_2 = 4$ $\Rightarrow \lambda_2 = 4861 \, \text{Å}$

159. (c) K.E. =
$$-$$
 (Total energy) = $-$ ($-13.6 eV$) = $+ 13.6 eV$

160. (a) In Lyman series
$$\lambda_{\max} = \frac{4}{3R}$$
In Balmer series $\lambda_{\max} = \frac{36}{5R}$. So required ratio $=\frac{5}{27}$

161. (c)

162. (b)
$$E = 13.6 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$
. For highest energy in Balmer series $n_1 = 2$ and $n_2 = \infty \Rightarrow E = 13.6 \left[\frac{1}{(2)^2} - \frac{1}{(\infty)^2} \right] = 3.4 \text{ eV}$

163. (a)

164. (c)
$$T \propto n^3$$

165. (b)
$$\frac{1}{\lambda} = R \left| \frac{1}{n_1^2} - \frac{1}{n_2^2} \right| = R \left[\frac{1}{(2)^2} - \frac{1}{(4)^2} \right] \Rightarrow \lambda = \frac{16}{3R}$$

166. (a)
$$E_n \propto Z^2 \Rightarrow \frac{(E_n)_{He}}{(E_n)_H} = \frac{Z_{He}^2}{Z_{He}^2} = 4 \Rightarrow (E_n)_{He} = 4 \times (E_n)_H$$

167. (b) By using
$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

168. (a)
$$\frac{1}{\lambda_{\text{max}}} = R \left[\frac{1}{(1)^2} - \frac{1}{(2)^2} \right] \Rightarrow \lambda_{\text{max}} = \frac{4}{3R} \approx 1213 \,\mathring{A}$$
 and
$$\frac{1}{\lambda_{\text{min}}} = R \left[\frac{1}{(1)^2} - \frac{1}{\infty} \right] \Rightarrow \lambda_{\text{min}} = \frac{1}{R} \approx 910 \,\mathring{A}$$

169. (b) P.E. =
$$2 \times \text{Total energy} = 2 \times (-13.6) = -27.2 \text{ eV}$$

170. (c) Emitted energy
$$\Delta E = \frac{hc}{\lambda} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$
.

171. (c)
$$U = 2E$$
, $K = -E$ and $E = -\frac{13.6}{n^2} = eV$.

172. (a)

173. (d)

174. (c)
$$r \propto n^2$$

Nucleus, Nuclear Reaction

1. (b)

2. (c) Neutrons are neutral particles.

3. (c) James Chadwick discovered the neutron.

- **4.** (d) In hydrogen, atomic number and mass number are equal.
- **5.** (d) $E = mc^2 = 1 \times (3 \times 10^8)^2 = 9 \times 10^{16} \approx 10^{17} J$
- **6.** (d) *B.E.* = Δm amu = $\Delta m \times 931$ MeV.
- 7. (d) Mass defect $\Delta m = \frac{2.23}{931} = 0.0024$.
- **8.** (b) Positron is the antiparticle of electron.
- **9.** (b)
- **10.** (c)
- 11. (a) B.E.= $\Delta mc = [2(1.0087 + 1.0073) 4.0015] = 28.4 \text{ MeV}$
- 12. (b) $\frac{\text{Binding energy}}{\text{Nucleon}} = \frac{0.0303 \times 931}{4} \approx 7$
- 13. (d) Energy / day = $200 \times 10^6 \times 24 \times 3600$ = $2 \times 2.4 \times 3.6 \times 10^{12} = 1728 \times 10^{10} J$
- 14. (c) $E = \Delta mc^2 = 10^{-6} \times (3 \times 10^8)^2 = 9 \times 10^{10} J$
- 15. (c)
- **16.** (c) Mass of $_1H^2 = 2.01478 \ a.m.u.$

Mass of $_{2}He^{4} = 4.00388 \ a.m.u.$

Mass of two deuterium $= 2 \times 2.01478 = 4.02956$

Energy equivalent to $2_1 H^2$

 $=4.02956\times1.112\ MeV=4.48\ MeV$

Energy equivalent to $_{2}H^{4}$

$$=4.00388 \times 7.047 \; MeV = 28.21 \; MeV$$

Energy released = $28.21 - 4.48 = 23.73 \; MeV = 24 \; MeV$

- (c) Energy released while forming a nucleus is known as binding energy (by definition).
- 18. (c) Nuclear force is stronger than coulomb force.
- **19.** (d)
- **20.** (c)
- **21.** (b) Q = 4(x x)
- **22.** (d)
- **23.** (a) Rest energy of an electron = $m_e c^2$

Here $m_e = 9.1 \times 10^{-31} kg$ and c = velocity of light

 \therefore Rest energy = $9.1 \times 10^{-31} \times (3 \times 10^8)^2$ joule

$$= \frac{9.1 \times 10^{-31} \times (3 \times 10^8)^2}{1.6 \times 10^{-19}} eV = 510 \text{ keV}$$

24. (b) $_{7}X^{A} = _{88}Ra^{226}$

Number of protons = Z = 88

Number of neutrons = A - Z = 226 - 88 = 138.

- **25.** (c) Out side the Nucleus, neutron is unstable (life $\approx 932 \ sec$).
- **26.** (b) The order of magnitude of mass and volume of uranium nucleus will be

$$m \simeq A(1.67 \times 10^{\circ} \text{ kg})$$
 (A is atomic number $V = \frac{4}{3} \pi r^3 \simeq \frac{4}{3} \pi \left[(1.25 \times 10^{-15} \text{ m}) A^{1/3} \right]^3$

$$\approx (8.2 \times 10^{-45} \, m^3) A$$

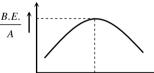
Hence,
$$\rho = \frac{m}{V} = \frac{A(1.67 \times 10^{-27} kg)}{(8.2 \times 10^{-45} m^3)A}$$

$$\approx 2.0 \times 10^{17} kg/m^3$$
.

27. (c) We have
$$r \propto A^{1/3} \Rightarrow \frac{r_2}{r_1} = \left(\frac{A_2}{A_1}\right)^{1/3} = \left(\frac{206}{4}\right)^{1/3}$$

$$\therefore r_2 = 3 \left(\frac{206}{4}\right)^{1/3} = 11.6 \ Fermi.$$

- 28. (c) Nucleus does not contains electron.
- **29.** (a) Let the percentage of B^{10} atoms be x, then Average atomic weight


$$= \frac{10x + 11(100 - x)}{100} = 10.81 \implies x = 19 \quad \therefore \frac{N_{B^{10}}}{N_{R^{11}}} = \frac{19}{81}$$

- **30.** (a)
- **31.** (b)
- **32.** (a) Nuclear force is charge independent, it also acts between two neutrons.
- **33.** (d) $p \to \pi^+ + n$, $n \to p + \pi^-$ and $n \to n' + \pi^0$
- **34.** (c) Helium nucleus $\rightarrow {}_{2}He^{4}$.

Number of protons = Z = 2

Number of Neutrons = A - Z = 2.

- **35.** (c)
- **36.** (b) Binding energy per nucleon increases with atomic number and is maximum for iron. After that it decrease.

- 37. (a) For isotopes Z is same $\operatorname{and}_{56} A$ is different. Therefore the number of neutrons A Z will also be different.
- **38.** (a) This is due to mass defect because a part of mass is used in keeping the neutrons and protons bound as α particle.
- **39.** (d) B.E. of $Li^7 = 39.20 \ MeV$ and $He^4 = 28.24 \ MeV$

Hence binding energy of $2He^4 = 56.48 \ MeV$

Energy of reaction = $56.48 - 39.20 = 17.28 \ MeV$.

- **40.** (c) $r \propto (A)^{1/3}$
- **41.** (b) $r \propto A^{1/3}$
- **42.** (a) $E = mc^2 = (1 \times 10^{-3})(3 \times 10^8)^2 = 9 \times 10^{13} J$.
- **43.** (c) $\Delta E = 8.5 \times 234 7.6 \times 236 = 195.4 \ MeV = 200 \ MeV$.
- **44.** (a) N = M Z = Total no. of nucleons no. of protons.
- **45.** (c)
- **46.** (c) Both coulomb and nuclear force act inside the nucleus.
- **47.** (d) For stability in case of lighter nuclei $\frac{N}{Z} = 1$ and for heavier nuclei $\frac{N}{Z} > 1$.
- 48. (b) Nuclear forces are charge independent.

Actual mass of the nucleus is always less than total mass of 49. (a) nucleons so

 $M < (NM_n + Zm_n)$.

- (b) Mass of H nucleus =mass of proton =1 amu energy equivalent 50. to 1 amu is 931 MeV so correct option is (b).
- $R = R A^{\circ} \Longrightarrow R \propto A^{\circ}$. 51.

(b) 52.

- (d) Number of neutrons = A Z = 23 11 = 12. 53.
- (c) For ${}_{6}C^{12}$, p = 6, e = 6, n = 654.

For $_{6}C^{14}$, p=6, e=6, n=8

- (a) 55.
- (a) The mass of nucleus formed is always less than the sum of the 56. masses of the constituent protons and neutrons i.e. $m < (A-Z)m_n + zm_n$.
- (d) $E = \Delta m.c^2 \implies E = \frac{0.3}{1000} \times (3 \times 10^8)^2 = 2.7 \times 10^{13} J$ 57. $=\frac{2.7\times10^{13}}{3.6\times10^6}=7.5\times10^6 kWh.$

- 58.
- (c) ${}_{5}B^{10} + {}_{0}n^{1} \rightarrow {}_{3}Li^{7} + {}_{2}He^{4}$. 59.

60. (a)

- (c) $_{92}U^{235}$ is normally fissionable. 61.
- 62.
- 63. (a)
- In atom bomb nuclear fission takes place with huge 64. temperature.
- (d) The given equation is $_{2}He^{4} + _{_{z}}X^{A} \rightarrow _{_{z+2}}Y^{A+3} + A$ 65. Applying charge and mass conservation $4 + A = A + 3 + x \Rightarrow x = 1 \Rightarrow 2 + z = z + 2 + n \Rightarrow n = 0$ Hence A is a neutron.
- (c) Energy of stars is due to the fusion of light hydrogen nuclei 66. into He. In this process much energy is released.
- (a) $_{1}H^{2} +_{1}H^{2} \rightarrow_{2} He^{4} + 24 MeV$. 67.
- (b) Energy $\propto c^2$; \therefore Decrease in energy $\propto \frac{4}{c}$. 68.
- (b) Fusion reaction requires a very high temperature 69.
- (d) ${}_{4}Be^{9} + {}_{2}He^{4} \rightarrow {}_{6}C^{12} + {}_{0}n^{1}$. 70.
- (b) 71.
- (d) 72.
- (b, c) 73.
- (d) 74.
- (c) Cadmium rods absorb the neutrons so they are used to control 75. the chain reaction process.
- 76. (d)
- No energy and mass enters or goes out of the system of the 77. reaction and no external force is assumed to act.
- 78. (c)
- 79. (b)
- 80. (b) Energy of γ -ray photon = $0.5 + 0.5 + 0.78 = 1.78 \; MeV$.

- 81. (c)
- 82. (d)
- 83. (c) When fast moving neutrons pass through a moderator, they collide with the molecules of the moderator. As a result of this the neutrons are in thermal equilibrium with the surrounding molecules of moderator. These neutrons are called thermal neutrons.
- (b) $E_b + E_c > E_a$ 84.
- 85. (d) Because sound waves require medium to travel through and there is no medium (air) on moon's surface.
- 86. Heavy water is used as moderators in nuclear reactions to slow down the neutrons.
- (a) $m = \frac{E}{c^2} = \frac{931 \times 1.6 \times 10^{-13}}{(3 \times 10^8)^2} = 1.66 \times 10^{-27} kg.$ 87.
- (d) $E = \Delta mc^2$, $\Delta m = \frac{0.1}{100} = 10^{-3} kg$ 88.

 $\therefore E = 10^{-3} \times (3 \times 10^{8})^{2} = 10^{-3} \times 9 \times 10^{16} = 9 \times 10^{13} J.$

- (d) Energy released by $\gamma-{\rm rays}$ for pair production must be 89. greater than 1.02 MeV.
- (a) ${}_{\circ}O^{18} + {}_{1}H^{1} \rightarrow {}_{\circ}F^{18} + {}_{\circ}n^{1}$ 90.
- (c) Power = $1000 \, kW = 10^6 \, J / s$ 91.

Rate of nuclear fission = $\frac{10^6}{200 \times 1.6 \times 10^{-13}} = 3.125 \times 10$.

- (b) A = 238 4 = 234 and Z = 92 2 = 90. 92.
- (a) $P = n \left(\frac{E}{t} \right) \Rightarrow 1000 = \frac{n \times 200 \times 10^6 \times 1.6 \times 10^{-19}}{t}$ 93.

 $\Rightarrow \frac{n}{t} = 3.125 \times 10^{13}$.

- Due to the production of neutrons, a chain of nuclear fission is 94. established which continues until the whole of the source substance is consumed.
- (a) $_{92}U^{235} +_{0}n^{1} \rightarrow_{38} Sr^{90} +_{54} Xe^{143} + 3_{0}n^{1}$ 95.
- (b) $_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{4} + Q$. 96.
- (c) Fast neutrons can escape from the reaction. So as to proceed 97. the chain reaction. Slow neutrons are best.
- $_{1}H^{2} + _{1}H^{2} \rightarrow _{1}H^{3} + _{1}H^{1}$ 98.
- (d) 99.
- (b) $\Delta m = 1 0.993 = 0.007 \ gm$ 100.

 $\therefore E = (\Delta m)c^2 = (0.007 \times 10^{-3})(3 \times 10^8)^2 = 63 \times 10^{10} J.$

- (c) $_{85}X^{297} \rightarrow_{77}Y^{281} + 4(_{5}He^4)$ 101.
- 102. (b) $x+1=24+4 \Rightarrow x=27$.
- (a) 103.
- $_{6}C^{11} \rightarrow_{5} B^{11} + \beta^{+} + \gamma \text{ because } \beta^{+} =_{1} e^{0}$ (d) 104.
- 105. (c)
- $\frac{\text{Energy}}{\text{Fission}} = 200 \ MeV = 200 \times 10^6 \times 1.6 \times 10^{-19} \ J$ 106.

- **107.** (a)
- 108. (b) Energy is released in the sun due to fusion.
- **109.** (d)
- 110. (c) In nuclear fission, neutrons are released.
- III. (c) ${}_{1}H^{1} + {}_{1}H^{1} + {}_{1}H^{2} \rightarrow {}_{2}He^{4} + {}_{+1}e^{0} + \text{energy}.$
- 112. (c)
- **113.** (b) $_{0}n^{1} =_{1} p^{1} +_{-1} e^{0} + \overline{v}$

Antineutrino is required for conservation of spin.

- **114.** (b)
- **115.** (d) Fusion is the main process of energy production in the sun.
- **116.** (a)
- 117. (b) Mass of proton = mass of antiproton $= 1.67 \times 10^{-27} \, kg = 1 amu$

Energy equivalent to 1 amu = 931 MeV

So energy equivalent to 2 $amu = 2 \times 931 MeV$

$$=1862\times10^{6}\times1.6\times10^{-19}=2.97\times10^{-10}\,J=3\times10^{-10}\,J.$$

- 118. (a) In fusion reaction, two lighter nuclei combines.
- 119. (c)
- **120.** (b) Hydrogen bomb is based on nuclear fusion.
- 121. (d) $_{92}U^{235} +_0 n^1 \rightarrow_{92} U^{236}$ and $_{92}U^{236} \rightarrow_{56} Ba^{144} +_{36} Kr^{89} + 3_0 n^1 + Q$.
- 122. (d) Fusion reaction of deuterium is

$$_{1}H^{2} + _{1}H^{2} \rightarrow _{2}He^{3} + _{0}n^{1} + 3.27 MeV$$

So
$$E = \frac{6.02 \times 10^{23} \times 10^3 \times 3.27 \times 1.6 \times 10^{-13}}{2 \times 2} = 7.8 \times 10^{13} J$$

$$= 8 \times 10^{13} J$$
.

- **123.** (a)
- 124. (a)
- 1**24.** (a)
- 125. (c)
- **126.** (c)

127.

(b)

128. (d) Energy released in the fission of one nucleus = 200 *MeV*

$$=200\times10^{6}\times1.6\times10^{-19} J=3.2\times10^{-11} J$$

$$P = 16KW = 16 \times 10^{3} Watt$$

Now, number of nuclei required per second

$$n = \frac{P}{E} = \frac{16 \times 10^3}{3.2 \times 10^{-11}} = 5 \times 10^{14}$$
.

- 129. (c)
- **130.** (a) Number of fissions per second

$$= \frac{Power output}{Energy released per fission}$$

$$= \frac{3.2 \times 10^6}{200 \times 10^6 \times 1.6 \times 10^{-19}} = 1 \times 10^{17}$$

 \Rightarrow Number of fission per minute $= 60 \times 10^{17} = 6 \times 10^{18}$

131.

(c)

- 132. (a) $X(n, \alpha) {}_{3}^{7}Li \Rightarrow_{Z} X^{A} +_{0} n^{1} \rightarrow 3Li^{7} +_{2} He^{4}$ Z = 3 + 2 = 5 and A = 7 + 4 - 1 = 10 $\therefore_{s} X^{10} =_{s} B^{10}$
- **133.** (a)
- 134. (b) Mass of electron = mass of positron = $9.1 \times 10^{\circ} kg$ Energy released $E = (2m).c^2$ = $2 \times 9.1 \times 10^{-31} \times (3 \times 10^8)^2 = 1.6 \times 10^{\circ} l$.
- **135.** (b) $_{1}H^{2} +_{1}H^{2} \rightarrow_{2}He^{4} + \text{energy}$

Binding energy of a $(_1H^2)$ deuterium nuclei

$$= 2 \times 1.1 = 2.2 \; MeV$$

Total binding energy of two deuterium nuclei

$$= 2.2 \times 2 = 4.4 \; MeV$$

Binding energy of a $({}_{2}He^{4})$ nuclei = $4 \times 7 = 28 \ MeV$

So, energy released in fusion = 28 - 4.4 = 23.6 MeV

136. (c) Mass of a uranium nucleus

$$=92\times1.6725\times10^{-27}+143\times1.6747\times10^{-27}$$

$$=393.35\times10^{-27} kg$$

Number of nuclei in the given mass

$$=\frac{1}{393.35\times10^{-27}}=2.542\times10^{24}$$

Energy released = $200 \times 2.542 \times 10^{24} MeV$

$$=5.08\times10^{26} MeV = 8.135\times10^{13} J = 8.2\times10^{13} J$$

- **137.** (a)
- 138. (c)
- 139. (b) In a material medium, when a positron meets an electron both the particles annihilate leading to the emission of two γ ray photons. This process forms the basis of an important diagnestic procedure called PET.
- 140. (a) Total mass of reactants

$$=(2.0141)\times 2=4.0282$$
 amu

Total mass of products $= 4.0024 \ amu$

Mass defect = $4.0282 \ amu - 4.0024 \ amu$

 $= 0.0258 \ amu$

 \therefore Energy released $E = 931 \times 0.0258 = 24 \; MeV$

- **141.** (b) ${}_{7}N^{14} + {}_{2}He^{4} \rightarrow {}_{8}O^{17} + {}_{1}H^{1}$
- **142.** (b)
- **143.** (b)
- **144.** (d) $_{8}O^{16} +_{1}H^{2} \rightarrow_{7} N^{14} +_{2}He^{4}$

- **145.** (d)
- **146.** (a)
- 147. (b) Nuclear fusion takes place in stars which results in joining of nuclei accompanied by release of tremendous amount of energy.
- **148.** (b)
- **149.** (d) *B.E.* per nucleon ∝ stability.
- **150.** (a) Nuclei of different elements having the same mass number are called isotones eg, $_4Be^9$ and $_5B^{10}$
- **151.** (c)
- **152.** (b)
- **153.** (d) Packing fraction = $\frac{M-A}{A}$
- **154.** (c) $B = [ZM_p + NM_n M(N, Z)]c^2$ $\Rightarrow M(M, Z) = ZM_p + NM_n - B/c^2$
- 155. (c)
- **156.** (a) In nuclear reacter, nuclear fission can be carried out through a sustained and a controlled chain reaction.
- **157.** (b) ${}_{6}C^{12} + {}_{o}n^{1} \rightarrow {}_{7}N^{13} + {}_{-1}\beta^{o}$
- **158.** (a) $_{o}n^{1} +_{92}U^{235} \rightarrow_{56}Ba^{144} +_{36}Kr^{89} + 3_{o}n^{1}$
- **159.** (c) The energy released in sun and hydrogen bomb are due to nuclear fusion.
- **160.** (c)
- **161.** (a)
- **162.** (a) $_{84}Po^{210} \rightarrow_{82}X^{206} +_{2}He^{4}$

Using conservation of linear moments

$$206v' + 4v = 0 \Rightarrow v' = -\frac{4v}{(206)} \Rightarrow |v'| = \frac{4v}{206}$$

- **163.** (b) Power $P = \frac{\text{Energy}}{\text{time}} = \frac{mc^2}{t}$, = 1 × 10·× (3 × 10·)
 - $= 9 \times 10^{\circ} W = 9 \times 10^{\circ} kW$
- **164.** (b)
- **165.** (c)
- **166.** (b) The elements high on the *B.E.* versus mass number plot are very tightly bound and hence, are stable. And the elements those are lower on this plot, are less tightly bound and hence, are unstable

Since helium nucleus shows a peak on this plot so, it is very stable.

- **167.** (d)
- **168.** (d) $E = \Delta mc^2 = 1 \times (3 \times 10^8)^2 = 9 \times 10^{10} J$ $\Rightarrow E = \frac{9 \times 10^{16}}{1.6 \times 10^{-19}} = 5.625 \times 10^{35} eV = 5.625 \times 10^{29} MeV.$

169. (a)
$$E = \Delta mc^2 = 0.5 \times 10^{-3} \times (3 \times 10^8)^2 = 4.5 \times 10^{13} j$$

$$\Rightarrow E = \frac{4.5 \times 10^{13}}{3.6 \times 10^6} = 1.25 \times 10^7 \, kWH.$$

- 170. (b) $_{0}n^{1} +_{92}U^{235} \rightarrow_{36}Kr^{94} +_{56}Ba^{139} + 3_{0}n^{1}$
- **171.** (b)
- 172. (a) Number of protons = 2 + 2 + 6 + 2 + 6 = 18Number of neutrons = 40 - 18 = 22.
- 173. (c) Neutrons are unstable and having mean life time of 32 sec, decaying by emitting an electron and antineutrino to become proton.
- **174.** (b) During fusion binding energy of daughter nucleus is always greater than the total energy of the parent nuclei so energy released = c (a + b) = c a b
- **175.** (a) These nuclei having different Z and A but equal (A Z) are called isotones.
- 176. (b) $\underbrace{B.E.}_{A} \uparrow$ Fusion Fission
- **177.** (a)
- **178.** (c) $r \propto A^{1/3} \Rightarrow \frac{r_1}{r_2} = \left(\frac{A_1}{A_2}\right)^{1/3}$
 - $\Rightarrow \frac{3.6}{r_2} = \left(\frac{27}{125}\right)^{1/3} = \frac{3}{5} \Rightarrow r_2 = 6 Fermi$
- **179.** (b)

Radioactivity

- **I.** (a)
- **2.** (a) By formula $N = N_0 \left(\frac{1}{2}\right)^{t/T}$ or $10^4 = 8 \times 10^4 \left(\frac{1}{2}\right)^{t/3}$

or
$$\left(\frac{1}{8}\right) = \left(\frac{1}{2}\right)^{t/3}$$
 or $\left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{t/3} \implies 3 = \frac{t}{3}$

Hence t = 9 years.

- (d) Fraction $=\frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{6400}{1600}} = \left(\frac{1}{2}\right)^4 = \frac{1}{16}$
- **4.** (c) Negative β decay is expressed by the equation $n = p^+ + e^- + v^-$
- 5. (a) No radioactive substance emit both α and β particles simultaneously. Some substances emit α particles and some other emits β particles. γ rays are emitted along with both α and β particles.
- **6.** (c) *γ*-rays are highly penetrating.

7. (c) Average life
$$\frac{1}{\lambda} = \frac{1600}{0.693} = 2308 \approx 2319$$
 years.

$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} = \left(\frac{1}{2}\right)^{5T/T} = \frac{1}{32}$$

$$\Rightarrow$$
 Percentage atom remains $=\frac{1}{32} \times 100 = 3.125\%$

9. (c)
$$\beta$$
-rays emitted from nucleus and they carry negative charge.

11. (b)
$$_{7}X^{A} \xrightarrow{-1\beta^{0}} _{7,1}Y^{A} \xrightarrow{2He^{4}(\alpha)}$$

$$_{Z-1}K^{A-4} \xrightarrow{0 \gamma^0} \longrightarrow _{Z-1}K^{A-4}$$

12. (c)
$$N_t = N_0 \left(\frac{1}{2}\right)^{t/T} = 50000 \left(\frac{1}{2}\right)^{10/5} = 12500$$

13. (c)
$${}_{Z}X^{A} \xrightarrow{-1} {}^{0}{}_{Z+1}X^{A}$$

14. (c)
$$N = N_0 \left(\frac{1}{2}\right)^{t/T} \Rightarrow \frac{N_0}{64} = N_0 \left(\frac{1}{2}\right)^{30/T} \Rightarrow T = \frac{30}{6} = 5 \text{ sec}$$

17. (a) Average life
$$T = \frac{\text{Sum of all lives of all the atom}}{\text{Total number of atoms}} = \frac{1}{\lambda}$$

$$\Rightarrow 7\lambda = 1$$

18. (c) Fraction remains after *n* half lives
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{t/2}$$

$$\therefore \frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{T/2}{T}} = \left(\frac{1}{2}\right)^{1/2} = \frac{1}{\sqrt{2}}$$

20. (a) Penetration power of γ is 100 times of β , while that of β is 100 times of α

21. (a)
$$\frac{N_0}{32} = N_0 \left(\frac{1}{2}\right)^{60/T} \Rightarrow 5 = \frac{60}{T} \Rightarrow T = 12 \text{ days}$$

22. (c) By using
$$N = N_0 \left(\frac{1}{2}\right)^{t/T}$$
; where $N = \left(1 - \frac{7}{8}\right) N_0 = \frac{1}{8} N_0$

So
$$\frac{1}{8}N_0 = N_0 \left(\frac{1}{2}\right)^{t/T} \Rightarrow \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{t/5} \Rightarrow t = 15 \text{ days.}$$

23. (a)
$$_{72}A^{180} \xrightarrow{\alpha} _{70}A_1^{176} \xrightarrow{\beta} _{71}A_2^{176} \xrightarrow{\alpha} _{69}A_3^{172}$$

$$\xrightarrow{\gamma}_{69} A_4^{172}$$

25. (d) Half life of a substance doesn't depends upon Amount, temperature and pressure. It depends upon the nature of the substance.

26. (d)
$$T = \frac{0.6931 \times 1}{\lambda} = \frac{0.6931 \times 1}{4.28 \times 10^{-4}} \text{ year} = 1620 \text{ years}$$

27. (c) In fusion two lighter nuclei combines, it is not the radioactive decay.

28. (b)
$$n_{\alpha} = \frac{A - A'}{4} = \frac{232 - 208}{4} = 6$$

and $n_{\beta} = (2n_{\alpha} - Z + Z') = (2 \times 6 - 90 + 82) = 4$

$$=16 \times \left(\frac{1}{2}\right)^{32/2} = 16 \times \left(\frac{1}{2}\right)^{16} = \left(\frac{1}{2}\right)^{12} < 1 \ mg$$

30. (c)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{15/5} = \frac{1}{8} \implies \text{Decayed fraction} = 1 - \frac{1}{8} = \frac{7}{8}$$

32. (c) By using
$$n_{\alpha} = \frac{A - A'}{4}$$
 and $n_{\beta} = 2n_{\alpha} - Z + Z'$

$$\Rightarrow A' = A - 4n_{\alpha} = 236 - 4 \times 3 = 224$$
and $Z' = (n_{\beta} - 2n_{\alpha} + Z) = (1 - 2 \times 3 + 88) = 83$

 (d) Uncertain, because it is infinite. No radioactive element can be disintegrated fully.

34. (c)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/140} \Rightarrow \frac{1}{16} = \left(\frac{1}{2}\right)^{t/140}$$
. $\Rightarrow \frac{t}{140} = 4 \Rightarrow t = 560 \ days$

35. (c)
$$\frac{C_{14}}{C_{12}} = \frac{1}{4} = \left(\frac{1}{2}\right)^{t/5700} \Rightarrow \frac{t}{5700} = 2 \Rightarrow t = 11400 \text{ years}$$

36. (b) Ionising property depends upon the charge and mass.

37. (b)
$$R = \frac{dN}{dt} \propto N \Rightarrow \frac{R_2}{R_1} = \frac{N_2}{N_1}$$

But $\frac{N_2}{N_1} = \left(\frac{1}{2}\right)^{t_{1/2}} \Rightarrow \frac{25}{200} = \frac{1}{8} = \left(\frac{1}{2}\right)^3 \Rightarrow \frac{t}{t_{1/2}} = 3$
 $\therefore t_{1/2} = \frac{t}{3} = \frac{3}{3} = 1 \text{ hour} = 60 \text{ minutes}$

38. (d)
$$t_{1/2} = \frac{0.6931}{0.01} = 69.31$$
 seconds.

39. (d) Because radioactivity is a spontaneous phenomenon.

40. (d) Undecayed isotope
$$= 1 - \frac{7}{8} = \frac{1}{8}$$

$$\therefore \frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} \Rightarrow \left(\frac{1}{8}\right) = \left(\frac{1}{2}\right)^{t/15} \Rightarrow \frac{t}{15} = 3$$
or $t = 45$ hours

41. (a) Mean life
$$=\frac{\text{Half life}}{0.6931} = \frac{10}{0.6931} = 14.4 \text{ hours}$$

42. (b) 20 gm substance reduces to 10 gm (i.e. becomes half in 4 min.

So
$$T_{1/2}=4 \ \mathrm{min}$$
 . Again $M=M_0 igg(rac{1}{2}igg)^{t/T_1}$

$$\Rightarrow 10 = 80 \left(\frac{1}{2}\right)^{t/4} \Rightarrow \frac{1}{8} = \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^{t/4} \Rightarrow t = 12 \text{ min.}$$

43. (c)
$$N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow 1 = 16 \left(\frac{1}{2}\right)^{\frac{2}{T_{1/2}}} \Rightarrow T_{1/2} = \frac{1}{2} hour$$

- **44.** (d)
- **45.** (b) β decay from nuclei based on this process only.

46. (b)
$$A = A_0 \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow 5 = A_0 \left(\frac{1}{2}\right)^{\frac{2 \times 60}{30}} = \frac{A_0}{16} \Rightarrow A_0 = 80 \ sec^{-1}$$

47. (d)
$$n_{\alpha} = \frac{A - A'}{4} = \frac{200 - 168}{4} = 8$$

$$n_{\beta} = 2n_a - Z + Z' = 2 \times 8 - 90 + 80 = 6$$

- **48.** (d) Similar to Q. 47
- **49.** (b) $N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$. Hence fraction of atoms decayed

$$= 1 - \frac{N}{N_0} = 1 - \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} = 1 - \left(\frac{1}{2}\right)^{\frac{3 \times 60}{60}} = \frac{7}{8}$$

In percentage it is $\frac{7}{8} \times 100 = 87.5\%$

50. (a) *C*-14 is carbon dating substance

51. (b)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} \Rightarrow \left(\frac{1}{16}\right) = \left(\frac{1}{2}\right)^{2/T} \Rightarrow \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{2/T}$$

 \Rightarrow T = 0.5 hour = 30 minutes.

52. (c)
$$\frac{dN}{dt} = -\lambda N \Rightarrow n = -\lambda N$$
 (Given $\frac{dN}{dt} = n$)

$$\therefore \lambda = -\frac{n}{N} \therefore \text{Half life } = \frac{0.693}{\lambda} = \frac{0.693}{\lambda} = \frac{0.693}{n} \text{ sec}$$

53. (a)
$$_{92}X^{235} \xrightarrow{\alpha} _{90}X^{231} \xrightarrow{-1e^0} _{91}Y^{231}$$

54. (d)
$$_{7}N^{13} \rightarrow {}_{6}C^{13} + {}_{+1}e^{0}$$

55. (c)
$$A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} \Rightarrow 100 = 1600 \left(\frac{1}{2}\right)^{\frac{8}{T_{1/2}}} \Rightarrow T_{1/2} = 2sec$$

Again at
$$t = 6$$
 sec, $A = 1600 \left(\frac{1}{2}\right)^{\frac{6}{2}} = 200$ counts/sec

- **56.** (d) $_{92}U^{238} \rightarrow _{92}Th^{234} + _{2}He^{4}$
- **57.** (b)
- **58.** (d)
- **59.** (d)

60. (b) By using $N = N_0 e^{-\lambda t} \Rightarrow \frac{N_0}{2} = N_0 e^{-\lambda T_{1/2}} \Rightarrow 2 = e^{\lambda T_{1/2}}$ By taking log both the side $\log_e 2 = \lambda T_{1/2} \Rightarrow \lambda T_{1/2} = 0.693$

61. (a) Number of half lives in 20 min =
$$n = \frac{20}{5} = 4$$

Fraction of material remains after four half lives $=\frac{1}{16}$

Hence fraction that decays = $1 - \frac{1}{16} = \frac{15}{16} = 93.75\%$

62. (d) In the given case, 12 days = 3 half lives Number of atoms left after 3 half lives.

$$=6.4\times10^{10}\times\frac{1}{2^3}=0.8\times10^{10}$$

63. (a) Decay constant remains unchanged in a chemical reaction.

64. (d)
$$n_{\alpha} = \frac{A - A'}{4} = \frac{238 - 206}{4} = 8$$

- **65.** (b) ${}_{Z}X^{A} \xrightarrow{\alpha} {}_{Z-2} Y^{A-4} \xrightarrow{2\beta} {}_{Z} X^{A-4}$
- 66. (a) Both the β-rays and the cathode rays are made up of electrons.
 γ-rays are EM waves, α-particles are doubly ionized helium atoms and protons and neutrons have approximately the same mass.
- **67.** (b) $^{22}_{10}Ne \rightarrow ^{4}_{2}He + ^{4}_{2}He + ^{14}_{6}X$; hence *X* is carbon.
- **68.** (c) For 80 minutes, number of half lives of sample $A = n_A = \frac{80}{20} = 4 \quad \text{and number of half lives of sample}$

$$B = n_B = \frac{80}{40} = 2$$
. Also by using $N = N_0 \left(\frac{1}{2}\right)^n$

$$\Rightarrow N \propto \frac{1}{2^n} \Rightarrow \frac{N_A}{N_B} = \frac{2^{n_B}}{2^{n_A}} = \frac{2^2}{2^4} = \frac{1}{4}$$

- **69.** (d) ${}_{n}X^{m} \xrightarrow{\alpha} {}_{n-2}X^{m-4} \xrightarrow{-\beta} {}_{n-1}X^{m-4}$
- **70.** (c) Half-life $T_{1/2} = \frac{0.693}{\lambda} = \frac{0.693}{1.07 \times 10^{-4}} = 6476 \ years$
- 71. (d) Number of nuclei decreases exponentially

$$N = N_0 e^{-\lambda t}$$
 and Rate of decay $\left(-\frac{dN}{dt}\right) = \lambda N_0$

Therefore, decay process losts up to $t = \infty$.

Therefore, a given nucleus may decay at any time after t = 0.

72. (a) To becomes $\frac{1}{4}$ th, it requires time of two half lives

i.e.,
$$t = 2(T_{1/2}) = 2 \times 5800 = 2 \times 58$$
 centuries

- 73. (a) Carbon dating
- **74.** (d) $_{7}X^{15} +_{2}He^{4} \rightarrow_{1} P^{1} +_{8} Y^{18}$
- **75.** (c)
- **76.** (d) $_{92}U^{238} \xrightarrow{\alpha} _{90}X^{234} \xrightarrow{\beta^-} _{91}Y^{234}$
- **77.** (d)

- **78.** (c) After three half lives (*i.e.*, 30 days) it remains $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$, so it will remain $\frac{1}{10}th$, approximately in 33 days.
- **79.** (a) $_{92}U^{238} \xrightarrow{\alpha} _{90}Th^{234} \xrightarrow{\beta} _{91}Pa^{234}$ $\xrightarrow{E(_{-1}\beta^o)} _{92}U^{234}$
- **80.** (d) By using $A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} \Rightarrow \frac{A}{A_0} = \left(\frac{1}{2}\right)^{9/3} = \frac{1}{8}$
- **81.** (d) $_{48}$ $Cd^{115} \xrightarrow{2(-1\beta^o)} _{50} Sn^{115}$
- **82.** (b) In two half lives, the activity becomes one fourth.
- **83.** (a) α decay decreases the mass number by 4 and atomic number by 2, β decay increases the atomic number by 1. Here atomic number of C is same as that of A.
- **84.** (a) Number of half lives in two days four substance 1 and 2 respectively are $n = \frac{2 \times 24}{12} = 4$ and $n_2 = \frac{2 \times 24}{1.6} = 3$
 - By using $N = N_0 \left(\frac{1}{2}\right)^n \implies \frac{N_1}{N_2} = \frac{(N_0)_1}{(N_0)_2} \times \frac{\left(\frac{1}{2}\right)^{n_1}}{\left(\frac{1}{2}\right)^{n_2}}$
 - $=\frac{2}{1}\times\frac{\left(\frac{1}{2}\right)^4}{\left(\frac{1}{2}\right)^3}=\frac{1}{1}$
- **85.** (b
- **86.** (c) $\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{2.3} = 0.3$
- 87. (d) Number of α particles emitted = $\frac{238-222}{4}=4$ This decreases atomic number to $90-4\times 2=82$ Since atomic number of $_{83}Y^{222}$ is 83, this is possible if one β particle is emitted.
- **88.** (d) Number of half lives in 150 years $n = \frac{150}{75} = 2$ Fraction of the atom of decayed $= 1 \left(\frac{1}{2}\right)^n$ $= 1 \left(\frac{1}{2}\right)^2 = \frac{3}{4} = 0.75 \implies \text{Percentage decay} = 75\%$
- **89.** (b) $A = A_0 e^{-\lambda t} \Rightarrow 975 = 9750 e^{-\lambda \times 5} \Rightarrow e^{5\lambda} = 10$ $\Rightarrow 5\lambda = \log_e 10 = 2.3026 \log_{10} 10 = 2.3026$ $\Rightarrow \lambda = 0.461$
- **90.** (a) Mass number decreases by $8 \times 4 = 32$

Atomic number decreases by $8 \times 2 - 5 = 11$

- **92.** (d) $A = A_0 \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow 5 \times 10^{-6} = 64 \times 10^{-5} \left(\frac{1}{2}\right)^{t/3}$
 - $\Rightarrow \frac{1}{128} = \left(\frac{1}{2}\right)^{t/3} \Rightarrow t = 21 \ days$
- **93.** (c) Decayed fraction $=\frac{3}{4}$, so undecayed fraction $=\frac{1}{4}$

Now
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{4} = \left(\frac{1}{2}\right)^n \Rightarrow n = 2$$

- $\Rightarrow t = n \times T_{1/2} = 2 \times 3.8 = 7.6 \ days$
- **94.** (c) $_{84}X^{202} \xrightarrow{\alpha \text{decay}} {}_{82}Y^{198} +_{2}He^{4} \text{ and}$ $_{82}Y^{198} \xrightarrow{\beta \text{decay}} {}_{83}Z^{198} +_{-1}\beta^{0}$
- **95.** (a) $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{8} = \left(\frac{1}{2}\right)^n \Rightarrow n = 3$ Now $t = n \times T_{1/2} = 3 \times 3.8 = 11.4 \ days$
- **96.** (d) $n = \frac{72000}{24000} = 3$; Now $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \frac{1}{8}$
- **97.** (d)
- **98.** (a
- **99.** (b) $n_{\alpha} = \frac{A A'}{4} = \frac{232 208}{4} = 6$ $n_{\beta} = 2n_{\alpha} Z + Z' = 2 \times 6 90 + 82 = 4$
- **100.** (c
- 101. (a) Number of half lives $n = \frac{5}{1} = 5$

Now
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{N}{N_0} = \left(\frac{1}{2}\right)^5 = \frac{1}{32}$$

- **102.** (d)
- 103. (b) Number of half lives $n = \frac{10}{5} = 2$, now $\frac{N}{N_0} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ Fraction decayed $= 1 \frac{N}{N_0} = 1 \frac{1}{4} = \frac{3}{4}$ \Rightarrow In percentage $= \frac{3}{4} \times 100 = 75\%$
- **104.** (b) Number of half lives $n = \frac{19}{3.8} = 5$; Now $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n$ $\Rightarrow \frac{N}{10.38} = \left(\frac{1}{2}\right)^5 \Rightarrow N = 10.38 \times \left(\frac{1}{2}\right)^5 = 0.32gm$
- **105.** (b) $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{\frac{1}{2}}$
- **106.** (d) $T_{1/2} = \frac{\log_e 2}{\lambda} = \frac{2.303 \log_{10} 2}{\lambda}$

107. (a)
$${}_{Z}^{A}X \rightarrow_{Z-2}^{A-4} Y + {}_{2}^{4} He \rightarrow_{Z-3}^{A-4} Z + {}_{1}^{0} B$$

108. (d)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n, n = 2 \Rightarrow \frac{N}{N_0} = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$$

So disintegrated part = $1 - \frac{N}{N_0} = 1 - \frac{1}{4} = \frac{3}{4}$

109. (c) Number of half lives
$$n = \frac{10}{2.5} = 4$$

$$\Rightarrow \frac{A}{A_0} = \frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow A = 1.6 \times \left(\frac{1}{2}\right)^4 = 0.1 \ curie$$

110. (b) By using
$$N = N_0 e^{-\lambda t}$$
 and $t = \tau = \frac{1}{\lambda}$

Substance remains = $N = \frac{N_0}{e} = 0.37 N_0 \simeq \frac{N_0}{3}$

 \therefore Substance disintegrated = $N_0 - \frac{N_0}{3} = \frac{2N_0}{3}$

III. (c)
$$\frac{3}{4}th$$
 active decay takes place in time

$$t = 2(T_{1/2}) \Rightarrow \frac{3}{4} = 2(T_{1/2}) \Rightarrow T_{1/2} = \frac{3}{8} \sec t$$

112. (c) By using
$$N = N_0 e^{-\lambda t}$$
 and average life time $t = \frac{1}{\lambda}$

So
$$N = N_0 e^{-\lambda \times 1/\lambda} = N_0 e^{-1} \Rightarrow \frac{N}{N_0} = e^{-1} = \frac{1}{e}$$

Now disintegrated fraction $=1-\frac{N}{N_0}=1-\frac{1}{e}=\frac{e-1}{e}$

$$_{92}X^{235} \rightarrow_{82} Y^{207} + 7_2 He^4 + 4_{-1}e^0$$

i.e., seven α – particles and four β – particles will be emitted.

114. (d)
$$n_{\alpha} = \frac{A - A'}{4} = \frac{235 - 207}{4} = 7$$

 $n_{\beta} = (2n_{\alpha} - Z + Z') = (2 \times 7 - 92 + 82) = 4$

(c) During
$$\beta$$
-decay, a neutron is transformed into a proton and an

116. (b)
$$_ZX^A \xrightarrow{\alpha} _{Z-2}X^{A-4}$$

117. (a)

115.

118. (a)

119. (d) After emitting β -particle (e) mass of nucleus doesn't change.

120. (a)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \implies \frac{1}{16} = \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^n \implies n = 4.$$

Also
$$n = \frac{t}{T_{1/2}} \implies T_{1/2} = \frac{40}{4} = 10 \ days$$

121. (c) As the
$$\gamma$$
 – particle has no charge and mass.

122. (d) With emission of an
$$\alpha$$
 particle $({}_{2}He^{4})$ mass number decreases by 4 unit and atomic number decrease by 2 units and with emission of $2\beta^{-1}$ particle atomic number increases by 2 units. So Z will remain same and N will become $N-4$.

123. (a)
$$N = N_0 \left(\frac{1}{2}\right)^n \Rightarrow \frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{100} = \left(\frac{1}{2}\right)^n \Rightarrow 2^n = 100$$

n comes out in between 6 and 7.

124. (d)
$$N = N_0 \left(\frac{1}{2}\right)^n \Rightarrow N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}}$$

$$\Rightarrow N = 1 \times \left(\frac{1}{2}\right)^{\frac{8.1}{2.7}} = \left(\frac{1}{2}\right)^3 = \frac{1}{8} \Rightarrow N = \frac{1}{8} mg = 0.125 mg$$

125. (d)
$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T}} \Rightarrow \frac{N_0}{4} = N_0 \left(\frac{1}{2}\right)^{\frac{16}{T}} \Rightarrow T = 8 \text{ days.}$$

126. (d)
$$_{92}U^{238} \rightarrow_2 He^4 +_{90} X^{234} \rightarrow_{-1} e^0 +_{91} U^{234}$$

Hence, $A = 234$, $Z = 91$

127. (c) Mean life
$$=\frac{1}{\lambda} = 6.67 \times 10^8 \text{ sec}$$
.

128. (d)
$$\frac{dN}{dt} = -\lambda N \Rightarrow \left| \frac{dN}{dt} \right| = \frac{0.693}{T_{1/2}} \times N$$

= $\frac{0.693}{1.2 \times 10^7} \times 4 \times 10^{15} = 2.3 \times 10^8 \ atoms / \sec^{-1}$

129. (c) Remaining material
$$N = \frac{N_0}{2^{t/T}}$$

$$\Rightarrow N = \frac{10}{(2)^{20/15}} = \frac{10}{2.15} = 3.96 \text{ gm}$$

So decayed material = 10 - 3.96 = 6.04 gm

130. (b) Number of atoms remains undecayed $N=N_0e^{-\lambda t}$ Number of atoms decayed = $N_0(1-e^{-\lambda t})$

$$= N_0 \left(1 - e^{-\lambda \times \frac{1}{\lambda}} \right) = N_0 \left(1 - \frac{1}{e} \right) = 0.63 \ N_0 = 63\% \text{ of } N_0.$$

132. (b)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \left(\frac{1}{16}\right) = \left(\frac{1}{2}\right)^n \Rightarrow n = 4$$

also
$$n = \frac{t}{T_{1/2}} \Rightarrow T_{1/2} = \frac{120}{4} = 30 \ days$$

133. (c)
$$N = N_0 e^{-t/T_{1/2}} \Rightarrow \frac{1}{4} = e^{-t/10}$$

$$\Rightarrow \left(\frac{1}{2}\right)^2 = \frac{1}{e^{t/10}} \Rightarrow t = 20 \text{ years}$$

134. (a)
$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} = N_0 \left(\frac{1}{2}\right)^{\frac{15}{5}} = \frac{N_0}{8}$$

136. (b)
$$A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} \Rightarrow \frac{1}{64} = \left(\frac{1}{2}\right)^{\frac{60}{T_{1/2}}}$$

$$\Rightarrow \left(\frac{1}{2}\right)^6 = \left(\frac{1}{2}\right)^{\frac{60}{T_{1/2}}} \Rightarrow T_{1/2} = 10 \sec$$

137. (a, c)

138. (b)
$$_{(Z=92)}U^{(A=238)} \xrightarrow{(8\alpha,6\beta)} _{Z'}X^{A'}$$

so $A' = A - 4n_{\alpha} = 238 - 4 \times 8 = 206$
and $Z' = n_{\beta} - 2n_{\alpha} + z = 6 - 2 \times 8 + 92 = 82$.

139. (c)
$$A = A_0 e^{-\lambda t} = A_0 e^{-t/\tau}$$
; where $\tau =$ mean life
So $A_1 = A_0 e^{-t_1/T} \Rightarrow A_0 = \frac{A_1}{e^{-t_1/T}} = A_1 e^{t_1/T}$
 $\therefore A_2 = A_0 e^{-t/T} = (A_1 e^{t_1/T}) e^{-t_2/T} \Rightarrow A_2 = A_1 e^{(t_1 - t_2)/T}$

140. (c)

141. (d)
$$n_{\alpha} = \frac{228 - 212}{4} = 4$$
 and $n_{\beta} = 2 \times 4 - 90 + 83 = 1$

142. (c) In a gamma decay process. There is no change in either A or Z.

143. (a) The radioactivity of a sample decays to
$$\frac{1}{16}th$$
 of its initial value in four half lives.

144. (d)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T} \Rightarrow \frac{1}{16} = \left(\frac{1}{2}\right)^{t/48}$$
$$\Rightarrow \left(\frac{1}{2}\right)^4 = \left(\frac{1}{2}\right)^{t/48} \Rightarrow t = 192 \text{ hour.}$$

145. (c) If λ is the decay constant of a radioactive substance than average life = $\frac{1}{\lambda}$

Also half life
$$= \frac{0.693}{\lambda} = 0.693 \times (A \text{ verage life})$$

in single average life, more than 63% of radioactive nuclei decay

146. (b)

147. (d)
$$M = M_0 e^{-\lambda t}$$
; given $t = 2\left(\frac{1}{\lambda}\right)$

$$\Rightarrow M = 10e^{-\lambda \left(\frac{2}{\lambda}\right)} = 10\left(\frac{1}{e}\right)^2 \Rightarrow M = 1.35 \text{ gm}$$

148. (b)

149. (b)
$$\lambda = \frac{\log_e \frac{A_1}{A_2}}{1 + \frac{1}{2}} = \frac{\log_e \frac{5000}{1250}}{\frac{5}{2}} = 0.4 \ln 2$$

150. (c)
$$Z_{\text{Resuting nucleus}} = 92 - 8 \times 2 + 4 \times 1 - 2 \times 1 = 78$$

151. (c) Radioactive nuclei that are injected into a patient collected at certain sites within it's body, undergoing radioactive decay and emitting electromagnetic radiation. These radiation can than be recorded by a detector. This procedure provides an important diagnostic tool called radio tracer technique.

152. (a) By using
$$n_{\alpha} = \frac{A - A'}{4}$$
 and $n_{\beta} = 2n_{\alpha} - Z + Z'$

153. (b)
$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}}$$

No of atoms at
$$t = 2hr$$
, $N_1 = 8 \times 10^{10} \left(\frac{1}{2}\right)^{\frac{2}{1}} = 2 \times 10^{10}$

No. of atoms at
$$t = 4hr$$
, $N_2 = 8 \times 10^{10} \left(\frac{1}{2}\right)^{\frac{4}{1}} = \frac{1}{2} \times 10^{10}$

.. No. of atoms decayed in given duration

$$= \left(2 - \frac{1}{2}\right) \times 10^{10} = 1.5 \times 10^{10}$$

154. (b)

155. (d)
$$A = A_0 \left(\frac{1}{2}\right)^n \Rightarrow 30 = 240 \left(\frac{1}{2}\right)^n \Rightarrow \left(\frac{1}{2}\right)^3 = \left(\frac{1}{2}\right)^n \Rightarrow n=3$$

 $\therefore \frac{t}{T_{1/2}} = 3 \Rightarrow T_{1/2} = \frac{t}{3} = \frac{1}{3} hr = 20 \text{ min.}$

156. (b)
$$M = M_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} \Rightarrow 25 = 100 \left(\frac{1}{2}\right)^{\frac{t}{1600}} \Rightarrow t = 3200 \text{ years.}$$

157. (c) Activity
$$R = R_0 e^{-\lambda t}$$

$$\frac{R_0}{2} = R_0 e^{-\lambda \times 9} \Longrightarrow e^{-9\lambda} = \frac{1}{2} \qquad ...(i)$$

After further 9 years
$$R' = R e^{-\lambda t} = \frac{R_0}{3} \times e^{-\lambda \times 9}$$
 ...(ii)

From equation (i) and (ii) $R' = \frac{R_0}{9}$.

158. (c) To reduce one fourth it takes time $t = 2(T_{1/2}) = 2 \times 40$ = 80 *years*.

Decay constant
$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{40} = 0.0173 \ years$$

159. (d)
$$M = M_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} = 20 \times \left(\frac{1}{2}\right)^{\frac{3.6}{3.6}} = 20 \times \left(\frac{1}{2}\right)^{10} = 0.019 \, mg$$

160. (c)
$$N = N_0 \left(\frac{1}{2}\right)^{\frac{t}{T_{1/2}}} \Rightarrow \frac{N}{N_0} = \left(\frac{1}{2}\right)^{\frac{30}{10}} = \frac{1}{8} = 0.125$$
.

161. (a)
$$\frac{7}{8}$$
 part decays *i.e.* remaining part is $\frac{1}{8}$

$$N=N_0\bigg(\frac{1}{2}\bigg)^{\frac{I}{T_{1/2}}} \Rightarrow \frac{1}{8}=\bigg(\frac{1}{2}\bigg)^{\frac{15}{T_{1/2}}} \Rightarrow T_{1/2} = 5 \text{ min.}$$

162. (d)
$$\frac{A}{A_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow \frac{1}{8} = \left(\frac{1}{2}\right)^{t/8} \Rightarrow t = 24 \text{ years.}$$

163. (c) After $\beta^+(_{+1}e^0)$ emission atomic number decreases by one and mass number remain unchanged. γ -emission, there will be no change on mass number and atomic number.

164. (c) New mass number
$$A' = A - 4n_{\alpha} = 232 - 4 \times 6 = 208$$

atomic number
$$Z' = Z + n_{\beta} - 2n_{\alpha} = 90 + 4 - 2 \times 6 = 82$$

165. (d)

166. (d) Using conservation of momentum $P_{daughter} = P_{\alpha}$

$$\Rightarrow \frac{E_d}{E_\alpha} = \frac{m_\alpha}{m_d} \Rightarrow E_d = \frac{E_\alpha \times m_\alpha}{m_d} = \frac{6.7 \times 4}{214} = 0.125 \, MeV$$

167. (c)

168. (c)

169. (b)
$$N = N_0 \times \left(\frac{1}{2}\right)^{11400/5700} = N_0 \left(\frac{1}{2}\right)^2 = 0.25 N_0$$
.

170. (d) Mean life $(T) = 1 / \lambda = 100 \ second$

Half-life =
$$\frac{0.693}{\lambda} = \frac{0.693 \times 100}{60}$$
 =1.155 *min*.

171. (b) By using
$$n_{\alpha} = \frac{A-A'}{4}$$
 and $n_{\beta} = 2n_{\alpha} - Z + Z'$

172. (c)

173. (b)
$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{77} = 9 \times 10^{-3} / day$$
.

174. (a) By using
$$n_{\alpha} = \frac{A - A'}{4} = \frac{232 - 204}{4} = 7$$
.

175. (c)
$$\therefore \frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}} \left(\frac{1}{2}\right)^{1/2} = \frac{1}{\sqrt{2}}$$
.

176. (d)

Critical Thinking Questions

1. (c) At closest distance of approach

Kinetic energy = Potential energy

$$\Rightarrow 5 \times 10^6 \times 1.6 \times 10^{-19} = \frac{1}{4\pi\varepsilon_0} \times \frac{(ze)(2e)}{r}$$

For uranium z=92, so $r=5.3 \times 10^{-12} \, cm$

2. (c) Speed of electron in π orbit of hydrogen atom $v = \frac{e^2}{2\varepsilon_0 nh}$

In ground state
$$n = 1 \Rightarrow v = \frac{e^2}{2\varepsilon_0 h}$$

$$\Rightarrow \frac{v}{c} = \frac{e^2}{2\varepsilon_0 ch} = \frac{(1.6 \times 10^{-19})^2}{2 \times 8.85 \times 10^{-12} \times 3 \times 10^8 \times 6.6 \times 10^{-34}}$$

$$=\frac{1}{137}$$

3. (b) Recoil momentum = momentum of photon = $\frac{h}{\lambda}$

$$= hR\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right) = \frac{hR \times 15}{16} = 6.8 \times 10^{-27} N \times \text{sec}$$

4. (a) The average time that the atom spends in this excited state is equal to Δt , so by using ΔE . $\Delta t = \frac{h}{2\pi}$

$$\Rightarrow \text{Uncertainty in energy} = \frac{h/2\pi}{\Delta t}$$

$$= \frac{6.6 \times 10^{-34}}{2 \times 3.14 \times 10^{-8}} = 1.05 \times 10^{-26} J = 6.56 \times 10^{-8} eV$$

5. (a) After the removal of first electron remaining atom will be hydrogen like atom.

So energy required to remove second electron from the atom

$$E = 13.6 \times \frac{2^2}{1} = 54.4 \, eV$$

... Total energy required = 24.6 + 54.4 = 79 eV.

6. (a) Electron after absorbing 10.2 eV energy goes to its first excited state (n=2) from ground state (n=1).

$$\therefore$$
 Increase in momentum $=\frac{h}{2\pi}$

$$=\frac{6.6\times10^{-34}}{6.28}=1.05\times10^{-34}\,\text{J-s}\,.$$

7. (a) Using $\Delta E \propto Z^2$ (: n_1 and n_2 are same)

$$\Rightarrow \frac{hc}{\lambda} \propto Z^2 \Rightarrow \lambda Z^2 = \text{constant}$$

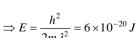
$$\Rightarrow \lambda_1 Z_1^2 = \lambda_2 Z_2^2 = \lambda_3 Z_3^2 = \lambda_4 Z_4^2$$

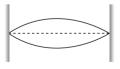
$$\Rightarrow \lambda_1 \times 1 = \lambda_2 \times 1^2 = \lambda_3 \times 2^2 = \lambda_4 \times 3^3$$

$$\Rightarrow \lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$$
.

8. (d) $mvr = \frac{h}{2\pi}$ (for first orbit)

$$\Rightarrow m \, \omega r^2 = \frac{h}{2\pi} \Rightarrow m \times 2\pi v \times r^2 = \frac{h}{2\pi} \Rightarrow v = \frac{h}{4\pi^2 m r^2}$$


$$=\frac{6.6\times10^{-34}}{4(3.14)^2\times9.1\times10^{-31}\times(0.53\times10^{-10})^2}=6.5\times10^{15}\frac{rev}{sec}$$


9. (b) It will form a stationary wave

$$\lambda = 2l = 2 \times 10^{-9} m$$

$$\Rightarrow \lambda = \frac{h}{\sqrt{2mE}}$$

10.

$$400 \times 10^{3} \times 1.6 \times 10^{-19} = 9 \times 10^{9} \frac{(ze)(2e)}{}$$

$$\Rightarrow 6.4 \times 10^{-14} = \frac{9 \times 10^9 \times (82 \times 1.6 \times 10^{-19}) \times (2 \times 1.6 \times 10^{-19})}{100 \times 10^{-14}}$$

$$\Rightarrow r = 5.9 \times 10^{-13} \, m = 0.59 \, pm$$
.

(a) Here radius of electron orbit $r \propto 1/m$ and energy $E \propto m$, where m is the mass of the electron.

Hence energy of hypothetical atom

$$E_0 = 2 \times (-13.6 \, eV) = -27.2 \, eV$$
 and radius $r_0 = \frac{a_0}{2}$

12. (a) Electronic configuration of iodine is 2, 8, 18, 18, 7,

Here
$$r_n = (0.053 \times 10^{-9} m) \frac{n^2}{7}$$

Here n = 5 and Z = 53, hence $r_n = 2.5 \times 10^{-11} m$.

13. (a) $N \propto \left[\frac{1}{\sin^4 \theta / 2} \right] \Rightarrow N_1 = 7 \times \frac{1}{(\sin 30^\circ)^4} = 112$

and
$$N_2 = 7 \times \frac{1}{(\sin 60^\circ)^4} = 12.5$$
.

14. (d) $E_n = -13.6 \frac{Z^2}{n^2} eV$. Required energy for said transition

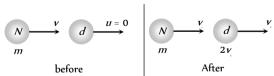
$$\Delta E = E_3 - E_1 = 13.6 \ Z^2 \left[\frac{1}{1^2} - \frac{1}{3^2} \right]$$

$$\Rightarrow \Delta E = 13.6 \times 3^2 \left[\frac{8}{9} \right] = 108.8 \ eV$$

$$\Rightarrow \Delta E = 108.8 \times 1.6 \times 10^{-19} J$$

Now
$$\Delta E = \frac{hc}{\lambda} = 108.8 \times 1.6 \times 10^{-19}$$

$$\Rightarrow \lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{108.8 \times 1.6 \times 10^{-19}} = 0.11374 \times 10^{-7} m = 113.74 \mathring{A}$$


15. (c) $\frac{1}{\lambda} = R \left| \frac{1}{n_1^2} - \frac{1}{n_2^2} \right|$

$$\Rightarrow \frac{1}{970.6 \times 10^{-10}} = 1.097 \times 10^7 \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right] \Rightarrow n_2 = 4$$

 \therefore Number of emission lines $N = \frac{n(n-1)}{2} = \frac{4 \times 3}{2} = 6$

16. (d) Neutron velocity = v, mass = m

Deuteron contains 1 neutron and 1 proton, mass = 2m

In elastic collision both momentum and *K.E.* are conserved $p_i = p_i$

$$mv = mv + mv \implies mv = mv + 2mv$$
 ... (i)

By conservation of kinetic energy

$$\frac{1}{2}mv^2 = \frac{1}{2}mv_1^2 + \frac{1}{2}(2m)v_2^2 \qquad \dots (ii)$$

By solving (i) and (ii) we get

$$v_1 = \frac{m_1 - m_2}{m_1 + m_2} v + \frac{2m_2}{(m_1 + m_2)} v \implies v_1 = \frac{m_1 + 2m}{3m} = -\frac{v}{3}$$

$$K_i = \frac{1}{2}mv^2$$
, $K_f = \frac{1}{2}mv_1^2 \implies \frac{K_i - K_f}{K_i} = 1 - \frac{v_1^2}{v^2}$

$$=1-\frac{1}{9}=\frac{8}{9}$$
 (Fractional change in *K.E.*)

17. (c) In hydrogen atom $E_n = -\frac{Rhc}{n^2}$

Also $E_n \propto m$; where m is the mass of the electron. Here the electron has been replaced by a particle whose mass is double of an electron. Therefore, for this hypothetical atom energy in

n orbit will be given by
$$E_n = -\frac{2Rhc}{n^2}$$

The longest wavelength λ_{\max} (or minimum energy) photon will correspond to the transition of particle from n=3 to n=2

$$\Rightarrow \frac{hc}{\lambda_{\text{max}}} = E_3 - E_2 = Rhc \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$

This gives $\lambda_{\text{max}} = \frac{18}{5R}$

- 18. (d) As the transition n = 4 and n = 3, results in UV radiation and infrared radiation involves smaller amounts of energy UV. So we require a transition involving initial values of n greater than 4 e.g. 5 → 4.
- 19. (c) $\frac{hc}{\lambda} = E = eV$ $\Rightarrow \lambda = \frac{hc}{eV} - \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{1.6 \times 10^{-19} \times 4.9} = 2525 \mathring{A}$
- **20.** (d) Rydberg constant $R = \frac{\varepsilon_0 n^2 h^2}{\pi m Z e^2}$

Velocity
$$v=\frac{Ze^2}{2\varepsilon_0nh}$$
 and energy $E=-\frac{mZ^2e^4}{8\varepsilon_0^2n^2h^2}$

Now, it is clear from above expressions $R.v \propto n$

21. (b) In second excited state n = 3

So
$$l_H = l_{Li} = 3\left(\frac{h}{2\pi}\right)$$

While $E \propto Z$ and $Z_{i} = 1$, $Z_{i} = 3$

So |E| = 9|E| or |E| < |E|

- **22.** (c) Since the ${}^{133}_{55}$ Cs has larger size among the four atoms gives, thus the electrons present in the outermost orbit will be away from the nucleus and the electrostatic force experienced by electrons due to nucleus will be minimum. Therefore the energy required to liberate electron from outer will be minimum in the case of ${}^{133}_{55}$ Cs.
- **23.** (d)
- **24.** (a) Potential energy $U = eV = eV_0 \ln \frac{r}{r_0}$

$$\therefore \quad \text{Force } F = -\left|\frac{dU}{dr}\right| = \frac{eV_0}{r} \ .$$

 \therefore The force will provide the necessary centripetal force.

Hence
$$\frac{mv^2}{r} = \frac{eV_0}{r} \implies v = \sqrt{\frac{eV_0}{m}}$$
(i)

and
$$mvr = \frac{nh}{2\pi}$$
(ii)

From equation (i) and(ii) $mr = \left(\frac{nh}{2\pi}\right)\sqrt{\frac{m}{eV_0}}$ or $r \propto n$

25. (d)
$$(r_m) = \left(\frac{m^2}{Z}\right)(0.53\text{Å}) = (n \times 0.53\text{Å}) \implies \frac{m^2}{Z} = n$$

m = 5 for $_{100} Fm^{257}$ (the outermost shell)

and
$$z = 100 \implies n = \frac{(5)^2}{100} = \frac{1}{4}$$

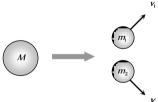
26. (d) Energy radiated = $1.4 \, kW / m^2$

$$= 1.4 \ kJ / \sec m^2 = \frac{1.4 \ kJ}{\frac{1}{86400} day m^2} = \frac{1.4 \times 86400}{day m^2}$$

Total energy radiated/day

$$\begin{split} &= \frac{4\pi \times (1.5 \times 10^{11})^2 \times 1.4 \times 86400}{1} \frac{kJ}{day} = E \\ &\therefore E = mc^2 \Rightarrow m = \frac{E}{c^2} \\ &= \frac{4\pi (1.5 \times 10^{11})^2 \times 1.4 \times 86400}{(3 \times 10^8)^2} = 3.8 \times 10^{14} \, kg \; . \end{split}$$

- **27.** (c) The equation is $O^{17} \to_0 n^1 + O^{16}$ \therefore Energy required = B.E. of O – B.E. of O= 17 × 7.75 – 16 × 7.97 = 4.23 MeV
- 28. (c) $\Delta = mc^2 m_0 c^2 = \frac{m_0 c^2}{\sqrt{1 (v^2 / c^2)}} m_0 c^2$ $= m_0 c^2 \left(\frac{1}{\sqrt{1 - (v^2 / c^2)}} - 1 \right) = 0.511 \left(\frac{1}{\sqrt{0.75}} - 1 \right)$ = 0.079 MeV
- **29.** (c,d) Due to mass defect (which is finally responsible for the binding energy of the nucleus), mass of a nucleus is always less then the sum of masses of it's constituent particles $^{20}_{10}\,Ne$ is made up of 10 protons plus 10 neutrons. Therefore, mass of $^{20}_{10}\,Ne$ nucleus $M_1 < 10\,(m_p + m_n)$


Also heavier the nucleus, more is he mass defect thus $20(m_n + m_p) - M_2 > 10(m_p + m_n) - M_1$

or
$$10(m_p + m_n) > M_2 - M_1$$

$$\Rightarrow M_2 < M_1 + 10(m_p + m_n) \Rightarrow M_2 < M_1 + M_1$$

$$\Rightarrow M_2 < 2M_1$$
.

30. (a)

By conservation of momentum mv = mv

$$\Rightarrow \frac{v_1}{v_2} = \frac{8}{1} = \frac{m_2}{m_1}$$
 (i)

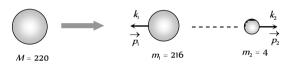
Also from $r \propto A^{1/3} \implies \frac{r_1}{r_2} = \left(\frac{A_1}{A_2}\right)^{1/3} = \left(\frac{1}{8}\right)^{1/3} = \frac{1}{2}$.

- 31. (a) Since nuclear density is constant hence mass ∞ volume.
- 32. (c) Mass defect = $3 \times 2.014 4.001 1.007 1.008$ = $0.026 \ amu = 0.026 \times 931 \times 10^6 \times 1.6 \times 10^{-19} \ J$ = $3.82 \times 10^{-12} \ J$

Power of star =10°W

Number of deuterons used $=\frac{10^{16}}{\Delta M} = 0.26 \times 10^{28}$

Deuteron supply exhausts in $\frac{10^{40}}{0.26 \times 10^{28}} = 10^{12} \, s \, .$


33. (a) Since electron and positron annihilate

$$\lambda = \frac{hc}{E_{Total}} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{(0.51 + 0.51) \times 10^6 \times 1.6 \times 10^{-19}}$$
$$= 1.21 \times 10^{-12} m = 0.012 \text{Å}.$$

34. (a) Kinetic energy of the molecules of a gas at a temp. T is $\frac{3}{2}kT$ \therefore To initiate the reaction $\frac{3}{2}kT = 7.7 \times 10^{-14} J$

$$\Rightarrow \frac{3}{2} \times 1.38 \times 10^{-23} \, T = 7.7 \times 10^{-14} \Rightarrow T = 3.7 \times 10^9 \, K.$$

35. (b)

Q-value of the reaction is 5.5 eV

i.e.
$$k_1 + k_2 = 5.5 \, MeV$$
(i)

By conservation of linear momentum

$$p_1 = p_2 \Rightarrow \sqrt{2(216)k_1} = \sqrt{2(4)k_2}$$

 $\Rightarrow k = 54 \ k$ (ii

On solving equation (i) and (ii) we get k = 5.4 MeV.

36. (b) By the formula $N = N_0 e^{-\lambda t}$

Given
$$\frac{N}{N_0} = \frac{1}{20}$$
 and $\lambda = \frac{0.6931}{3.8} \implies 20 = e^{\frac{0.6931 \times t}{3.8}}$

Taking log of both sides

or
$$\log 20 = \frac{0.6931 \times t}{3.8} \log_{10} e$$

or 1.3010 =
$$\frac{0.6931 \times t \times 0.4343}{3.8}$$
 $\Rightarrow t = 16.5$ days.

37. (b) $N = N_0 e^{-\lambda t}$

38.

$$\therefore 0.9N_0 = N_0 e^{-\lambda \times 5} \Rightarrow 5\lambda = \log_e \frac{1}{0.9} \qquad \dots \dots (i)$$

and
$$xN_0 = N_0 e^{-\lambda \times 20} \Rightarrow 20\lambda = \log_e \left(\frac{1}{x}\right)$$
 (ii)

Dividing (i) by (ii), we get

$$\frac{1}{4} = \frac{\log_e(1/0.9)}{\log_e(1/x)} = \frac{\log_{10}(1/0.9)}{\log_{10}(1/x)} = \frac{\log_{10}0.9}{\log_{10}x}$$

$$\Rightarrow \log_{10}x = 4\log_{10}0.9 \Rightarrow x = 0.658 = 65.8\%$$

(c) If in the rock there is no
$$Y$$
 element, then the time taken by

element X to reduce to $\frac{1}{8}th$ the initial value will be equal to

$$\frac{1}{8} = \left(\frac{1}{2}\right)^n \text{ or } n = 3$$

Therefore, from the beginning three half life time is spent. Hence the age of the rock is

 $= 3 \times 1.37 \times 10^9 = 4.11 \times 10^9 \text{ years}.$

39. (b)
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n \Rightarrow \frac{1}{64} = \left(\frac{1}{2}\right)^6 = \left(\frac{1}{2}\right)^n \Rightarrow n = 6.$$

After 6 half lives intensity emitted will be safe.

 \therefore Total time taken = $6 \times 2 = 12 hrs$.

40. (a)
$$\frac{dN}{dt} = \lambda N$$
; $\lambda = \frac{0.6931}{t_{12}} = \frac{0.6931}{1620 \times 365 \times 24 \times 60 \times 60}$, $N = \frac{6.023 \times 10^{23}}{226}$

$$\therefore \frac{dN}{dt} = \frac{0.6931 \times 6.023 \times 10^{23}}{1620 \times 365 \times 24 \times 60 \times 60 \times 226} = 3.61 \times 10^{10}$$

41. (a)
$$\lambda = \lambda_1 + \lambda_2 \Rightarrow \frac{1}{T} = \frac{1}{T_1} + \frac{1}{T_2}$$

$$\therefore T = \frac{T_1 T_2}{T_1 + T_2} = \frac{810 \times 1620}{810 + 1620} = 540 \text{ years}$$

Hence $\frac{1}{4}$ th of material remain after 1080 years.

42. (b) Similar to Q. 40.

43. (c)
$$(T_{1/2})_x = (t_{\text{mean}})_y$$

$$\Rightarrow \frac{0.693}{\lambda_x} = \frac{1}{\lambda_y} \Rightarrow \lambda_x = 0.693 \,\lambda_y \text{ or } \lambda_x < \lambda_y$$

Also rate of decay = λN

44. (c) $\lambda_{\alpha} = \frac{1}{1620}$ per year and $\lambda_{\beta} = \frac{1}{405}$ per year and it is given

that the fraction of the remained activity $\frac{A}{A_0} = \frac{1}{4}$

Total decay constant

$$\lambda = \lambda_{\alpha} + \lambda_{\beta} = \frac{1}{1620} + \frac{1}{405} = \frac{1}{324} per year$$

We know that $A = A_0 e^{-\lambda t} \Rightarrow t = \frac{1}{\lambda} \log_e \frac{A_0}{A}$

$$\Rightarrow t = \frac{1}{\lambda} \log_e 4 = \frac{2}{\lambda} \log_e 2 = 324 \times 2 \times 0.693$$
 = 449 years

(d)
$$n = \frac{24}{24 \times 138.6} = \frac{1}{138.6}$$
; Now $\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{1/138.6}$
 $\Rightarrow N = 10,00000 \left(\frac{1}{2}\right)^{1/138.6} = 995011$

So number of disintegration

 $=1000000-995011=4989\approx5000$.

46. (a)
$$\stackrel{m'}{\longleftarrow}$$
 $\stackrel{m'}{\longleftarrow}$ $\stackrel{m}{\longleftarrow}$

Rest

According to conservation of momentum $4v = (A - 4)v' \implies v' = \frac{4v}{A - 4}$.

47. (b)
$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{20} = 0.03465$$

Now time of decay $t = \frac{2.303}{\lambda} \log \frac{N_0}{N}$

$$\Rightarrow t_1 = \frac{2.303}{0.03465} \log \frac{100}{67} = 11.6 \text{ min } min$$

and
$$t_2 = \frac{2.303}{0.03465} \log \frac{100}{33} = 32min$$

Thus time difference between points of time $t - t = 32 - 11.6 = 20.4 \ min \approx 20 \ min.$

48. (d)
$$N_1 = N_0 e^{-10\lambda t}$$
 and $N_2 = N_0 e^{-\lambda t}$

$$\Rightarrow \frac{N_1}{N} = \frac{1}{a} = e^{-1} = e^{(-10\lambda + \lambda)t} = e^{-9\lambda t} \Rightarrow t = \frac{1}{9\lambda}.$$

49. (a)
$$N = N_0 \left(\frac{1}{2}\right)^{t/T_{1/2}} \Rightarrow N_A = 10 \left(\frac{1}{2}\right)^{t/1}$$
 and $N_B = 1 \left(\frac{1}{2}\right)^{t/2}$

Given
$$N_A = N_B \Rightarrow 10 \left(\frac{1}{2}\right)^t = \left(\frac{1}{2}\right)^{t/2}$$

$$\Rightarrow 10 = \left(\frac{1}{2}\right)^{-t/2} \Rightarrow 10 = 2^{t/2}$$
. Taking log both the sides.

$$\log_{10} 10 = \frac{t}{2} \log_{10} 2 \Rightarrow 1 = \frac{t}{2} \times 0.3010 \implies t = 6.62 \text{ years.}$$

50. (b) Here
$$T_{1/2} = 20$$
 minutes; we know $\frac{N}{N_0} = \left(\frac{1}{2}\right)^{t/T_{1/2}}$

For 20% decay
$$\frac{N}{N_0} = \frac{80}{100} = \left(\frac{1}{2}\right)^{t_1/20}$$
 (i)

For 80% decay
$$\frac{N}{N_0} = \frac{20}{100} = \left(\frac{1}{2}\right)^{t_2/20}$$
 (ii)

Dividing (ii) by (i)

$$\frac{1}{4} = \left(\frac{1}{2}\right)^{\frac{(t_2-t_1)}{20}}$$
; on solving we get $t_2 - t_1 = 40$ min.

51. (d) Here the activity of the radioactive sample reduces to half in 140 days. Therefore, the half life of the sample is 140 days. 280 days is it's two half lives. So before two half lives it's activity was $(2^2 \times \text{present activity})$.

 \therefore Initial activity = $2^2 \times 6000 = 24000 \, dps$.

52. (a) Excitation energy
$$\Delta E = E_2 - E_1 = 13.6 \ Z^2 \left[\frac{1}{1^2} - \frac{1}{2^2} \right]$$
 $\Rightarrow 40.8 = 13.6 \times \frac{3}{4} \times Z^2 \Rightarrow Z = 2.$

Now required energy to remove the electron from ground state $= \frac{+13.6Z^2}{(1)^2} = 13.6(Z)^2 = 54.4 \text{ eV}.$

53. (b) Rate of disintegration
$$\frac{dN}{dt} = 10^{17} s^{-1}$$

Half life $T_{1/2} = 1445$ year

= $1445 \times 365 \times 24 \times 60 \times 60 = 4.55 \times 10^{\circ} sec$

Now decay constant

$$\lambda = \frac{0.693}{T_{1/2}} = \frac{0.693}{4.55 \times 10^{10}} = 1.5 \times 10^{-11} \text{ per sec}$$

The rate of disintegration

$$\frac{dN}{dt} = \lambda \times N_0 \Rightarrow 10^{17} = 1.5 \times 10^{-11} \times N_0$$

 $\Rightarrow N = 6.6 \times 10^{\circ}$

54. (b)
$$P = \frac{nE}{t} \Rightarrow 300 \times 10^6 = \frac{n \times 170 \times 10^6 \times 1.6 \times 10^{-19}}{t}$$

 \therefore Number of atoms per sec $\frac{n}{t} = 1.102 \times 10^{19}$

Number of atoms per hour = $1.02 \times 10^{\circ} \times 3600$ = $3.97 \times 10^{\circ}$.

55. (a) According to kinetic interpretation of temperature

$$K.E. = \left(\frac{1}{2}mv^{2}\right) = \frac{3}{2}kT.$$

$$\Rightarrow 10.2 \times 1.6 \times 10^{-19} = \frac{3}{2} \times (1.38 \times 10^{-23})T$$

$$\Rightarrow T = 7.9 \times 10 \cdot K$$

56. (a) $R = \text{Initial activity} = 1 \text{ micro curie} = 3.7 \times 10^{\circ} d \text{ ps}$ r = Activity in 1 cm of blood at t = 5 hrs

$$=\frac{296}{60}\,dps = 4.93\,dps$$

R =Activity of whole blood at time t = 5 hr,

Total volume should be $V = \frac{R}{r} = \frac{R_0 e^{-\lambda t}}{r}$

$$=\frac{3.7\times10^4\times0.7927}{4.93}=5.94\times10^{\circ} cm=5.94 \ Litre.$$

57. (b) Let ground state energy (in eV) be E_1

Then from the given condition

$$E_{2n} - E_1 = 204 \ eV$$
 or $\frac{E_1}{4n^2} - E_1 = 204 \ eV$ $\Rightarrow E_1 \left(\frac{1}{4n^2} - 1\right) = 204 \ eV$ (i)

and $E_{2n} - E_n = 40.8 \, eV$

$$\Rightarrow \frac{E_1}{4n^2} - \frac{E_1}{n^2} = E_1 \left(-\frac{3}{4n^2} \right) = 40.8 \text{ eV} \qquad \dots \text{(ii)}$$

From equation (i) and (ii), $\frac{1 - \frac{1}{4n^2}}{\frac{3}{4n^2}} = 5 \implies n = 2$

58. (b) Here
$$\frac{N}{N_0} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{1/3}$$

where $n = \text{Number of half lives} = \frac{1}{3}$

$$\Rightarrow \frac{N}{N_0} = \frac{1}{1.26} \Rightarrow \frac{N_U}{N_{Pb} + N_U} = \frac{1}{1.26}$$

$$\Rightarrow N_{Pb} = 0.26 N_U \Rightarrow \frac{N_{Pb}}{N_U} = 0.26$$

59. (b) For K_{α} X-ray line

$$\frac{1}{\lambda_{\alpha}} = R(Z-1)^2 \left[\frac{1}{1^2} - \frac{1}{2^2} \right] = \frac{3R}{4} (Z-1)^2$$

On putting the given values

$$\frac{1}{0.76 \times 10^{-10}} = \frac{3}{4} \times 1.09 \times 10^7 (Z - 1)^2$$

$$\Rightarrow (Z-1)^2 \approx 1600 \Rightarrow Z-1 = 40 \Rightarrow Z = 41$$

60. (a) Maximum energy is liberated for transition $E_n \to 1$ and minimum energy for $E_n \to E_{n-1}$

Hence
$$\frac{E_1}{n^2} - E_1 = 52.224 \, eV$$
(i)

and
$$\frac{E_1}{n^2} - \frac{E_1}{(n-1)^2} = 1.224 \ eV$$
(ii)

Solving equations (i) and (ii) we get

$$E_1 = -54.4 \ eV$$
 and $n = 5$

Now
$$E_1 = -\frac{13.6 Z^2}{1^2} = -54.4 \ eV$$
. Hence $Z = 2$

61. (a) Activity of substance that has 2000 disintegration/sec

$$= \frac{2000}{3.7 \times 10^{10}} = 0.054 \times 10^{-6} ci = 0.054 \ \mu ci$$

The number of radioactive nuclei having activity A

$$N = \frac{A}{\lambda} = \frac{2000 \times T_{1/2}}{\log_e 2}$$

$$=\frac{2000\times138.6\times24\times3600}{0.693}=3.45\times10^{10}$$

62. (a) Maximum number of nuclei will be present when rate of decay = rate of formation $\Rightarrow \lambda N = \alpha \Rightarrow N = \frac{\alpha}{2}$

63. (b)
$$r \propto A^{1/3} \Rightarrow \frac{r_1}{r_2} = \left(\frac{A_1}{A_2}\right)^{1/3}$$

$$\Rightarrow \frac{3}{5} = \left(\frac{27}{A}\right)^{1/3} \Rightarrow \frac{27}{125} = \frac{27}{A} \Rightarrow A = 125$$

Number of nuclei in atom X = A - 52 = 125 - 52 = 73.

64. (c) 1 week \approx 7 days \sim 7 \times 24 hrs \simeq 14 half lives

Number of atoms left
$$=\frac{No}{(2)^{14}}$$
, Activity $=N\lambda$

 \therefore Activity left is $\frac{1}{(2)^{14}}$ times the initial

$$\Rightarrow \frac{1}{(2)^{14}} \times 1 \quad \textit{curie} = \frac{1}{16384} \times 1 \quad \text{curie} \cong 61 \times 10^{-6} \quad \text{curie}$$

≈ 60 µ curie.

65. (a) $m_0 c^2 = 0.54 \, MeV \text{ and K.E.} = mc^2 - m_0 c^2$

Also
$$m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{m_0}{\sqrt{1 - (0.8)^2}} = \frac{m_0}{0.6}$$

$$\therefore E = mc^2 = \frac{m_0}{0.6}c^2 = \frac{m_0c}{0.6} = \frac{0.5 H}{0.6} = 0.9 MeV$$

$$\therefore$$
 K.E.= $(0.9 - 0.54) = 0.36 MeV.$

Graphical Questions

1. (a) B.E. per nucleon is maximum for Fe^{56} . For further detail refer theory.

2. (a)
$$\omega = 2\pi v = \frac{2\pi c}{\lambda} = 2\pi c \, \overline{v} \implies \omega \propto \overline{v}$$
.

3. (c)

4. (d) The total number of atoms neither remains constant (as in option (a) nor can ever increase (as in option (b) and (c)). They will continuously decrease with time. Therefore option (d) is correct.

5. (c)
$$N = N_0 e^{-\lambda t} \Rightarrow \frac{dN}{dt} = -N_0 \lambda e^{-\lambda t}$$

i.e. Rate of decay $\left(\frac{dN}{dt}\right)$ varies exponentially with time (t).

6. (d) Rate
$$R = -\frac{dN}{dt} = \lambda N_0 e^{-\lambda t} = \lambda N$$
 $\Rightarrow \frac{R}{N} = \lambda$ (constant)

i.e. graph between $\frac{R}{N}$ and t, be a straight line parallel to the time axis.

7. (b) Read time for 50 count rate, it gives half life period of 3 hrs, one small square gives 600 counts (10 \times 60). The number of small squares between graph and time axis are approx 24

Hence count rate = $24 \times 600 = 14400$

8. (b) Number of atoms undecayed $N = N_0 e^{-\lambda t}$

Number of atoms decayed = $N_0 - N = N_0 (1 - e^{-\lambda t})$

$$\Rightarrow$$
 Decayed fraction $f = \frac{N_0 - N}{N_0} = 1 - e^{-\lambda t}$

i.e. fraction will rise up to 1, following exponential path as shown in graph (*B*).

9. (c) Energy is released in a process when total Binding energy (B.E.) of the nucleus is increased or we can say when total *B.E.* of products is more than the reactants. By calculation we can see that only in case of option (*c*), this happens.

Given
$$W \rightarrow 2Y$$

B.E. of reactants =
$$120 \times 75 = 900 \text{ MeV}$$

and *B.E.* of products =
$$2 \times (60 \times 85) = 1020 \, MeV$$

i.e. B.E. of products > B.E. of reactants.

10. (d)
$$N = N_0 e^{-\lambda t}$$
 and $A = A_0 e^{-\lambda t} = \lambda N_0 e^{-\lambda t}$

$$\therefore N_{\text{\tiny local}} = N_{\text{\tiny local}} - N = N_{\text{\tiny local}} - N_{\text{\tiny e}}^{\lambda} \Rightarrow N_{\text{\tiny local}} = N_{0} - \frac{A}{\lambda}$$

This is equation of straight line with negative slope.

11. (d) Radius of r orbit $r_n \propto n^2$, graph between r and r is a parabola. Also, $\frac{r_n}{r_1} = \left(\frac{n}{1}\right)^2 \Rightarrow \log_e\left(\frac{r_n}{r_1}\right) = 2\log_e(n)$

Comparing this equation with y = mx + c,

Graph between $\log_e\left(\frac{r_n}{r_1}\right)$ and $\log_e(n)$ will be a straight line,

Similarly it can be proved that graph between $\log_e\!\left(\frac{f_n}{f_1}\right)$ and $\log n$ is not a straight line.

12. (d) By using $N = N_0 e^{-\lambda t}$ and $\frac{dN}{dt} = -\lambda N$.

It shows that N decreases exponentially with time.

- 13. (b) Activity $=-\frac{dN}{dt}=\lambda N=\lambda\ N_0e^{-\lambda t}$ i.e., graph between activity and t, be exponential having
- 14. (d) Activity $A = \lambda N_0 e^{-\lambda t} \Rightarrow \log_e A = \log_e \lambda N_0 + \log_e e^{-\lambda t}$ $\Rightarrow \log_e A = \log_e C - \lambda t$ (Take $\lambda N = C$) $\Rightarrow \log_e A = -\lambda t + \log_e C$

This is the equation of a straight line having negative slope (= $-\lambda$) and positive intercept on log A axis.

- **15.** (c) Charge density is uniform inside and then falls rapidly near the surface of the nucleus.
- **16.** (a) $R = R_0 A^{1/3}$; where $R_0 = 1.2 \times 10^{-15} m$. $\Rightarrow \log_e R = \log_e R_e + \frac{1}{3} \log_e A$

This is the equation of a straight line with positive slope.

- 17. (b) $\left| \frac{dN}{dt} \right| = \lambda N \Rightarrow \left| \frac{dN}{dt} \right| \propto N$
- **18.** (c) Number of atom decayed $N'=N_0(1-e^{-\lambda t})$ N' will increase with time (t) exponentially.
- 19. (a) $A_n = \pi r_n^2 \Rightarrow \frac{A_n}{A_1} = \left(\frac{r_n}{r_1}\right)^2 = \left(\frac{n}{1}\right)^4$ $(\because r_n \propto n^2)$

Taking log both the side $\log_e \frac{A_n}{A_1} = 4 \log_e(n)$

Comparing it with y = mx + c, graph (4) is correct.

Assertion and Reason

1. (c) In fusion, lighter nuclei are used so, fusion is not possible with 35 Cl. Also binding energy of 35 Cl is not too small.

2. (a) $^{90}_{38}Sr$ decays to $^{90}_{39}Y$ by the emission of β – rays. Sr gets absorbed in bones along with calcium.

Reason is also true. $^{90}Sr \xrightarrow{\beta} ^{90}Y$ which emits β – rays of very high energy. Sr does not emit γ – rays. The damage is by the β – rays only.

- 3. (b) Neutron is about 0.1 more massive than proton. But the unique thing about the neutron is that while it is heavy, it has no charge (it is neutral). This lack of charge gives it the ability to penetrate matter without interacting as quickly as the beta particles or alpha particles.
- **4.** (b) Bohr postulated that electrons in stationary orbits around the nucleus do not radiate.

This is the one of Bohr's postulate. According to this the moving electrons radiate only when they go from one orbit to the next lower orbit.

5. (c) Nuclear stability depends upon the ratio of neutron to proton. If the n/p ratio is more than the critical value, then a neutron gets converted into a proton forming a β^- particle in the process. $n \to p + e^-$

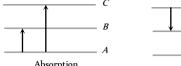
The β^- particle (e^-) is emitted from the nucleus in some radioactive transformation. So electrons do not exist in the nucleus but they result in some nuclear transformation.

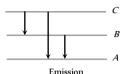
- **6.** (a) $_{Z}X^{A} \rightarrow 2(_{2}He^{4}) + 2(_{-1}e^{0}) + 2\gamma +_{z-2}X^{A-8}$
- **7.** (a) Experimentally, it is found that the average radius of a nucleus is given by

 $R = R_0 A^{1/3} \ \ \text{where} \ \ R_0 = 1.1 \times 10^{-15} \, m = 1.1 \, fm$

and A = mass number

- **8.** (b)
- 9. (b) Rutherford confirmed the repulsive force on α -particle due to nucleus varies with distance according to inverse square law and that the positive charges are concentrated at the centre and not distributed throughout the atom.
- 10. (a) In α -particle scattering experiment, Rutherford found a small number of α -particles which were scattered back through an angle approaching to 180° . This is possible only if the positive charges are concentrated at the centre or nucleus of the atom.
- 11. (e) According to classical electromagnetic theory, an accelerated charge continuously emits radiation. As electrons revolving in circular paths are constantly experiencing centripetal acceleration, hence they will be losing their energy continuously and the orbital radius will go on decreasing and form spiral and finally the electron will fall on the nucleus.
- 12. (c) According to postulates of Bohr's atom model, the electron revolve round the nucleus in fixed orbit of definite radii. As long as the electron is in a certain orbits it does not radiate any energy.
- 13. (b) Maximum number of photon is given by all the transitions possible = $4_{C_2} = 6$


Minimum number of transition = 1,


that is directly jump from 4 to 1.

14. (b) When the atom gets appropriate energy from outside, then this electron rises to some higher energy level. Now it can return either directly to the lower energy level or come to the lowest energy level after passing through other lower energy lends,

hence all possible transitions take place in the source and many lines are seen in the spectrum.

15. (d) Emission transitions can take place between any higher energy level and any energy level below it while absorption transitions start from the lowest energy level only and may end at any higher energy level. Hence number of absorptions transitions between two given energy levels is always less than the number of emission transitions between same two levels.

23.

- 16. (a) We knows that an electron is very light particle as compared to an α-particle. Hence electron cannot scatter the α-particle at large angles, according to law of conservation of momentum. On the other hand, mass of nucleus is comparable with the mass of α-particle, hence only the nucleus of atom is responsible for scattering of α-particles.
- 17. (c) All those elements which are heavier than lead are radioactive. This is because in the nuclei of heavy atoms, besides the nuclear attractive forces, repulsive forces between the protons are also effective and these forces reduce the stability of the nucleus. Hence, the nuclei of heavier elements are being converted into lighter and lighter elements by emission of radioactive radiation. When they are converted into lead, the emission is stopped because the nucleus of lead is stable (or lead is most stable elements in radioactive series).
- **18.** (d) The penetrating power is maximum in case of gamma rays because gamma rays are an electromagnetic radiation of very small wavelength.
- 19. (b) β-particles, being emitted with very high speed compared to α-particles, pass very little time near the atoms of the medium. So the probability of the atoms being ionised is comparatively less. But due to this reason, their loss of energy is very slow and they can penetrate the medium through a sufficient depth.
- 20. (b) β -particles are emitted with very high velocity (up to 0.99 c). So, according to Einstein's theory of relatively, the mass of a β -particle is much higher compared to is' its rest mass (m_0) . The velocity of electrons obtained by other means is very small compared to c (Velocity of light). So its mass remains nearly m_0 . But β -particle and electron both are similar particles.

21. (c) Radioactivity
$$= -\frac{dN}{dt} = \lambda N = \frac{0.693N}{T}$$

 $= \frac{0.693 \times 10^8}{50} = \frac{0.693 \times 1.2 \times 10^8}{60} = 0.693 \times 2 \times 10^6.$

Radioactivity is proportional to 1/T, and not to T.

22. (c) Fragments produced in the fission of U^{235} are radioactive. When uranium undergoes fission, barium and krypton are not the only products. Over 100 different isotopes of more than 20 different elements have been detected among fission products. All of these atoms are, however, in the middle of the periodic table, with atomic numbers ranging from 34 to 58. Because the neutron-proton ratio needed for stability in this range is much smaller than that of the original uranium nucleus, the residual nuclei called fission fragments, always have too many neutrons

for stability. A few free neutrons are liberated during fission and the fission fragments undergo a series of beta decays (each of which increases Z by one and decreases N by one) until a stable nucleus is reached. During decay of the fission fragments, an average of 15 MeV of additional energy is liberated.

- (b) Electron capture occurs more often than positron emission in heavy elements. This is because if position emission is energetically allowed, electron capture is necessarily allowed, but the reverse is not true *i.e.* when electron capture is energetically allowed, positron emission is not necessarily allowed.
- **24.** (e) The whole mass of the atom is concentrated at nucleus and M_{\perp} < (Sum of the masses of nucleous) because, when nucleous combines, some energy is wasted.

ET Self Evaluation Test - 26

- In Bohr model of hydrogen atom, the force on the electron depends on the principal quantum number as
 - (a) $F \propto 1/n^3$
- (b) $F \propto 1/n^4$
- (c) $F \propto 1/n^5$
- (d) Does not depend on *n*
- **2.** A nucleus X emits 9α -particles and 5p particle. The ratio of total protons and neutrons in the final nucleus is
 - (a) $\frac{Z-13}{(A-Z-23)}$
- (b) $\frac{(Z-18)}{(A-36)}$
- (c) $\frac{(Z-13)}{(A-36)}$
 - (d) $\frac{(Z-13)}{(A-Z-13)}$
- If t is the half life of a substance then t is the time in which substance
 - (a) Decays $\frac{3}{4}th$
- (b) Remains $\frac{3}{4}th$
- (c) Decays $\frac{1}{2}$
- (d) Remains $\frac{1}{2}$
- 4. The energy level diagram for an hydrogen like atom is shown in the figure. The radius of its first Bohr orbit is

$$0 \ eV$$
 $n = \infty$
 $-6.04 \ eV$ $n = 3$
 $-13.6 \ eV$ $n = 2$

- 54.4 eV ______ n =
- (a) 0.265 Å
- (b) 0.53 Å
- (c) 0.132 Å
- (d) None of these
- **5.** How much work must be done to pull apart the electron and the proton that make up the Hydrogen atom, if the atom is initially in the state with n = 2
 - (a) $13.6 \times 1.6 \times 10^{-19} J$
- (b) $3.4 \times 1.6 \times 10^{-19} J$
- (c) $1.51 \times 1.6 \times 10^{-19} J$
- (d) 0
- **6.** The nuclide ^{131}I is radioactive, with a half-life of 8.04 days. At noon on January 1, the activity of a certain sample is 60089. The activity at noon on January 24 will be
 - (a) 75 Bq
- (b) Less than 75 Bq
- (c) More than 75 Bq
- (d) 150 Bq
- 7. U^{238} decays into Th^{234} by the emission of an α particle. There follows a chain of further radioactive decays, either by α decay or by β decay. Eventually a stable nuclide is reached and after that,

no further radioactive decay is possible. Which of the following stable nuclides is the and product of the $\,U^{238}\,$ radioactive decay chain

- (a) Pb^{206}
- (b) Pb^{207}
- (c) Pb^{208}
- (d) Pb²⁰⁹
- **8.** If the mass of a radioactive sample is doubled, the activity of the sample and the disintegration constant of the sample are respectively
 - (a) Increases, remains the same
 - (b) Decreases, increases
 - (c) Decreases, remains same
 - (d) Increases, decreases
- **9.** When a sample of solid lithium is placed in a flask of hydrogen gas then following reaction happened

$${}_{1}^{1}H + {}_{3}Li^{7} \rightarrow {}_{2}He^{4} + {}_{2}He^{4}$$

This statement is

- (a) True
- (b) False
- (c) May be true at a particular pressure
- (d) None of these
- **10.** Consider an initially pure *M gm* sample of *X*, an isotope that has a half life of *T* hour, what is it's initial decay rate (*N*= Avogrado No.)

(a)
$$\frac{M N_A}{T}$$

(b)
$$\frac{0.693 \, M \, N_A}{T}$$

(c)
$$\frac{0.693 \, M \, N_A}{\Lambda \, T}$$

(d)
$$\frac{2.303 M N_A}{AT}$$

- **11.** At a given instant there are 25% undecayed radioactive nuclei in a same. After 10 *sec* the number of undecayed nuclei reduces to 6.25%, the mean life of the nuclei is
 - (a) 14.43 sec
- (b) 7.21 sec
- (c) 5 *sec*
- (d) 10 sec
- 12. Highly energetic electrons are bombarded on a target of an element containing 30 neutrons. The ratio of radii of nucleus to that of Helium nucleus is $14^{1/3}$. The atomic number of nucleus will be
 - (a) 25

(b) 26

(c) 56

- (d) 30
- **13.** The ratio of ionization energy of Bohr's hydrogen atom and Bohr's hydrogen like lithium atom is
 - (a) 1:1
- (b) 1:3

- (c) 1:9
- (d) None of these
- What is the angular momentum of an electron in Bohr's hydrogen 14. atom whose energy is - 0.544 eV.

- Consider a hypothetical annihilation of a stationary electron with a 15. stationary positron. What is the wavelength of resulting radiation.

- (d) $\frac{h}{m_0 c^2}$

(h = Plank's constant, c = speed of light, m = rest mass)

- Nuclear reactions are given as 16.
 - (i) \Box $(n, p)_{15} p^{32}$
- $(p,\alpha)_8 O^{16}$ (iii) $_7 \square^4$ (

missing particle or nuclide (in box \(\preceq\)) in these reactions are respectively

- (a) $S, F, 0n^1$
- (b) $F, S, {}_{0}n^{1}$
- (c) Be, F, $_{0}n^{1}$
- (d) None of these
- In a sample of hydrogen like atoms all of which are in ground state, 17. a photon beam containing photons of various energies is passed. In absorption spectrum, five dark lines, are observed. The number of bright lines in the emission spectrum will be (assume that all transitions takes place).
 - (a) 5

(b) 10

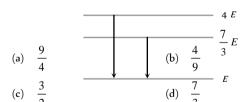
(c) 15

- (d) None of these
- 18. A hydrogen atom emits a photon corresponding to an electron transition from n = 5 to n = 1. The recoil speed of hydrogen atom is almost (mass of proton $\approx 1.6 \times 10^{-6} kg$).
 - (a) 10 ms
- (b) 2 × 10° ms
- (d) $8 \times 10^{\circ} ms$
- 19. Number of nuclei of a radioactive substance at time t = 0 are 1000 and 900 at time t = 2 s. Then number of nuclei at time t = 4 s will be

- 800 (a)
- (b) 810
- (c) 790
- (d) 700
- The ratio between total acceleration of the electron in singly ionized 20. helium atom and hydrogen atom (both in ground state) is
 - (a) 1

(b) 8

(c) 4


- (d) 16
- If the series limit of Lymen series for Hydrogen atom is equal to the 21. series limit of Balmer series for a hydrogen like atom, then atomic number o this hydrogen like atom will be
 - (a) 1

(c) 3

- (d) 4
- 22. Which sample contains greater number of nuclei :

a 5.00- μCi sample of "Pu (half-life 6560y) or a 4.45- μCi sample of **Am (half-life 7370 y)

- (a) "Pu
- (b) **Am
- (c) Equal in both
- (d) None of these
- The fission of ${}^{10}U$ can be triggered by the absorption of a slow 23. neutrons by a nucleus. Similarly a slow proton can also be used. This statement is
 - (a) Correct
- (b) Wrong
- (c) Information is insufficient
- (d) None of these
- The radioactivity of a given sample of whisky due to tritium (half life 24. 12.3 years) was found to be only 3% of that measured in a recently purchased bottle marked "7 years old". The sample must have been prepared about
 - (a) 220 years back
- (b) 300 years back
- (c) 400 years back
- (d) 70 years back
- The following diagram indicates the energy levels of a certain atom 25. when the system moves from 4E level to E. A photon of wavelength λ is emitted. The wavelength of photon produced during it's transition from $\frac{7}{3}E$ level to E is λ . The ratio $\frac{\lambda_1}{\lambda}$ will be

Answers and Solutions

(SET -26)

1. (b)
$$F \propto \frac{v^2}{r}$$
 also $v \propto \frac{1}{n}$ and $r \propto n^2 \implies F \propto \frac{1}{n^4}$

2. (a)
$${}_{Z}X^{A} \xrightarrow{-9\alpha} {}_{Z-18}X^{A-36} \xrightarrow{-5\beta} {}_{Z-13}X^{A-36}$$

Number of protons =
$$(Z = 13)$$

Number of neutrons =
$$(A - 36) - (Z - 13) = (A - Z - 23)$$

$$\therefore \frac{P}{N} = \frac{(Z-13)}{(A-Z-23)}$$

- **3.** (a) You must remember that \underline{t} is time in which substance decays half. Hence in \underline{t} time substance decays $\frac{3}{4}th$.
- **4.** (a) We know that $E_n = -13.6 \frac{Z^2}{n^2} eV$ and $r_n = 0.53 \frac{n^2}{Z} (\mathring{A})$

Here for n = 1, E = -54.4 eV

Therefore
$$-54.4 = -13.6 \frac{Z^2}{1^1} \implies Z = 2$$

Hence radius of first Bohr orbit $r = \frac{0.53(1)^2}{2} = 0.265 \text{ Å}$

5. (b) The electrostatic P.E. is zero when the electron and proton are far apart from each other. Work done in pulling electron and proton far away from each other

$$W = E_f - E_i = 0 - E_i = -\left(-\frac{13.6}{n^2}eV\right)$$

$$\Rightarrow W = \frac{13.6}{(2)^2} \times 1.6 \times 10^{-19} J = 3.4 \times 1.6 \times 10^{-1} J.$$

6. (c) Number of days from January 1- to January 24- = 23 days.

Number of half lives $n = \frac{23}{8.04} = 2.86 (< 3)$

In three half lives activity becomes 75 *Bq*, but the given number of half lives are lesser than 3 so activity becomes greater than 75 *Bq*.

- **7.** (a) (4n+2) series starts from U^* and it's stable end product is Pb^* .
- **8.** (a) Activity depends upon mass, but λ doesn't change.
- 9. (b) The given reaction is a nuclear reaction, which can take place only if a proton (a hydrogen nucleus) comes into contact with a lithium nucleus. If the hydrogen is in the atomic from, the interaction between it's electron cloud and the electron cloud of a lithium atom keeps the two nuclei from getting close to each other. Even if isolated protons are used, they must be fired at the *Li* atom with enough kinetic energy to over come the electric repulsion between the proton and *Li* atom.

10. (c)
$$N = N_0 e^{-\lambda t} \Rightarrow \left| \frac{dN}{dt} \right| = N_0 \lambda e^{-\lambda t}$$

Initially at
$$t = 0$$
, $\left| \frac{dN}{dt} \right|_{t=0} = N_0 \lambda$

where N = Initial number of undecayed atoms

$$= \frac{\text{Mass of the sample}}{\text{Mass of a singleatom of X}} = \frac{M}{A/N_A} = \frac{MN_A}{A}$$

$$\therefore \left| \frac{dN}{dt} \right|_{t=0} = \frac{MN_A \lambda}{A} = \frac{0.693 \, MN_A}{AT}$$

 (b) In 10 sec, number of nuclei has been reduced to one fourth (25% to 6.25%). Therefore it's half life is T = 5 sec.

$$\therefore$$
 Mean life $T = \frac{T_{1/2}}{0.693} = \frac{5}{0.693} = 7.21$ sec.

12. (b) By using $R = R_0 A^{1/3} \Rightarrow \frac{R_1}{R_2} = \left(\frac{A_1}{A_2}\right)^{1/3}$

$$\Rightarrow \frac{R}{R_{II}} = \left(\frac{A}{4}\right)^{1/3} \Rightarrow (14)^{1/3} = \left(\frac{A}{4}\right)^{1/3}$$

$$\Rightarrow$$
 A = 56 so Z = 56 - 30 = 26.

13. (c) Energy of an electron in ground state of an atom (Bohr's hydrogen like atom) is given as

$$E = -13.6 Z^2 eV$$
 (Z = atomic number of the atom)
 $\Rightarrow E = 13.6 Z$

$$\Rightarrow E_{\text{max}} = 13.6 Z$$

$$\Rightarrow \frac{(E_{ion})_H}{(E_{ion})_{Ii}} = \left(\frac{Z_H}{Z_{Ii}}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$$

14. (c) By using $E = -\frac{13.6}{n^2} eV$ (for *H* atom)

$$\Rightarrow$$
 - 0.544 = $-\frac{13.6}{n^2}$ \Rightarrow $n = 25$ \Rightarrow $n = 5$

$$\therefore$$
 Angular momentum = $n\frac{h}{2\pi} = \frac{5h}{2\pi}$

15. (b) From conservation of momentum, two identical photons must travel in opposite directions with equal magnitude of hc

momentum and energy
$$\frac{hc}{\lambda}$$

from conservation of energy $\frac{hc}{\lambda} + \frac{hc}{\lambda} = m_0c^2 + m_0c^2$

$$\Rightarrow \lambda = \frac{h}{m_0 c}.$$

16. (a) (i) ${}_{16}S^{32} + {}_{0}n^{1} \rightarrow {}_{15}p^{32} + {}_{1}H^{1}$

(ii)
$$_{0}F^{19} +_{1}H^{1} \rightarrow_{2}He^{4} +_{8}O^{16}$$

(iii)
$$_{7}N^{14} +_{0}n^{1} \rightarrow_{6}C^{14} +_{1}H^{1}$$

17. (c) Number of lines in absorption spectrum = (n-1)

$$\Rightarrow$$
 5 = $n-1 \Rightarrow n=6$

.. Number of bright lines in the emission spectrum

$$=\frac{n(n-1)}{2}=\frac{6(6-1)}{2}=15$$
.

18. (c) The Hydrogen atom before the transition was at rest. Therefore from conservation of momentum.

$$p_{H-\mathrm{atom}} = p_{\mathrm{photon}} = \frac{E_{\mathrm{radiated}}}{c} = \frac{13.6 \bigg(\frac{1}{n_1^2} - \frac{1}{n_2^2}\bigg) eV}{c}$$

$$1.6 \times 10^{-27} \times v = \frac{13.6 \left(\frac{1}{1^2} - \frac{1}{5^2}\right) \times 1.6 \times 10^{-19}}{3 \times 10^8}$$

$$\Rightarrow$$
 $v = 4.352 \ m/s \approx 4 \ m/sec.$

- **19.** (b) In 2 *sec* only 90% nuclei are left behind. Thus in next two second 90% of 900 or 810 nuclei will be left.
- $(4E E) = \frac{hc}{\lambda_1} \implies \lambda_1 = \frac{hc}{3E} \quad \dots \quad (i)$

20. (b) Acceleration $a \propto \frac{v^2}{r}$

Transition from $\frac{7}{3}E$ to E

where
$$v \propto \frac{Z}{n}$$
 and $r \propto \frac{n^2}{Z} \implies a \propto \frac{Z^3}{n^4}$

$$\left(\frac{7}{3}E - E\right) = \frac{hc}{\lambda_2} \implies \lambda_2 = \frac{3hc}{4E}$$
 (i)

Since both are in ground state *i.e.*, n = 1

From equation (i) and (ii) $\frac{\lambda_1}{\lambda_2} = \frac{4}{9}$

so
$$a \propto Z \Rightarrow \frac{a_{He^+}}{a_H} = \left(\frac{Z_{He^+}}{Z_H}\right)^3 = \left(\frac{2}{1}\right)^3 = \frac{8}{1}$$
.

21. (b) By using
$$\frac{1}{\lambda} = RZ^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

For Hydrogen atom
$$\frac{1}{(\lambda_{\min})_H} = R \left[\frac{1}{1^2} - \frac{1}{\infty} \right] = R$$

$$\Rightarrow (\lambda_{\min})_H = \frac{1}{R}$$
(i)

For hydrogen like atom
$$\left(\frac{1}{\lambda_{\min}}\right)_{\text{atom}} = RZ^2 \left(\frac{1}{2^2} - \frac{1}{\infty}\right)$$

$$\Rightarrow (\lambda_{\min})_{\text{atom}} = \frac{4}{R7^2}$$
(i

From equation (i) and (ii)
$$\frac{1}{R} = \frac{4}{RZ^2} \Rightarrow Z = 2$$
.

22. (c) The activity
$$\left(-\frac{dN}{dt}\right) = \lambda N \implies N = \left(-\frac{dN}{dt}\right) \left(\frac{T_{1/2}}{\log_e 2}\right)$$

Taking the ratio of this expression for $^{240}\,Pu$ to this same expression for $^{243}\,Am$,

$$\frac{N_{Pu}}{N_{Am}} = \frac{\left(-\frac{dN_{Pu}}{dt}\right)(T_{1/2})_{Pu}}{\left(-\frac{dN_{Am}}{dt}\right)(T_{1/2})_{Am}} = \frac{(5\,\mu\text{ci})\times(6560\,\text{y})}{(4.45\,\mu\text{ci})\times(7370\,\text{y})} = 1$$

i.e. the two samples contains equal number of nuclei.

- 23. (b) Because the neutron has no electric charge, it experience no electric repulsion from a U⁺ nucleus. Hence a slow moving neutron can approach and enter a U⁺ nucleus, thereby providing the excitation needed to trigger fission. By contrast a slow moving proton feels a strong repulsion from a U⁺ nucleus. It never get's close to the nucleus, so it cannot trigger fission.
- 24. (d) After one half life period, the activity of Tritium becomes 50%.After 2 half life period 25%

After 3 half life period 12.5%

After 4 half life period 6.25%

After 5 half life period 3.12% ≈ 3%

It is 5×12.5 years + 7 years *i.e.* approximately 70 years only .

25. (b) Transition from 4E to E