Chapter 3. Matrices

Matrix and Operations of Matrices

1 Mark Questions

1. If
$$2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$
, then find $(x - y)$. Delhi 2014

Given,
$$2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 6 & 8 \\ 10 & 2x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 7 & 8 + y \\ 10 & 2x + 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

On comparing the corresponding elements, we get

8 + y = 0 and 2x + 1 = 5
⇒ y = -8 and x =
$$\frac{5-1}{2}$$
 = 2
∴ x - y = 2 - (-8) = 10 (1)

2. Solve the following matrix equation for x.

$$\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$$
 Delhi 2014

We have,
$$\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$$

By using matrix multiplication, we get

$$[x-2 \ 0] = [0 \ 0]$$

On comparing the corresponding elements from both sides, we get

$$x - 2 = 0 \Rightarrow x = 2 \tag{1}$$

3. If A is a square matrix such that $A^2 = A$, then write the value of $7A - (I + A)^3$, where I is an identity matrix. All India 2014

We have,
$$A^{2} = A$$

Now,
 $7A - (l + A)^{3} = 7A - [l^{3} + A^{3} + 3lA(l + A)]$
 $[\because (x + y)^{3} = x^{3} + y^{3} + 3xy(x + y)]$
 $= 7A - [l + A^{2} \cdot A + 3A(l + A)]$ $[\because l^{3} = I]$
 $= 7A - [l + A \cdot A + 3Al + 3A^{2}] [\because A^{2} = A, \text{ given}]$
 $= 7A - [l + A + 3A + 3A]$ $[\because Al = A]$
 $= 7A - [l + 7A] = -1$ (1)

4. If
$$\begin{bmatrix} x - y & z \\ 2x - y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$
, then find the value of $x + y$. All India 2014

We have,
$$\begin{bmatrix} x-y & z \\ 2x-y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$

On comparing the corresponding elements, we get

$$x - y = -1$$
 ...(i)

and

$$2x - y = 0 \qquad \dots (ii)$$

On solving the above equations, we get

$$x = 1$$

and $y = 2$
Now, $x + y = 1 + 2 = 3$ (1)

5. If
$$\begin{bmatrix} a+4 & 3b \\ 8 & -6 \end{bmatrix} = \begin{bmatrix} 2a+2 & b+2 \\ 8 & a-8b \end{bmatrix}$$
, write the value of $a-2b$. Foreign 2014

Given,
$$\begin{bmatrix} a+4 & 3b \\ 8 & -6 \end{bmatrix} = \begin{bmatrix} 2a+2 & b+2 \\ 8 & a-8b \end{bmatrix}$$

We know that two matrices are equal, if its corresponding elements are equal.

..
$$a + 4 = 2a + 2$$
 ... (i)
 $3b = b + 2$... (ii)
and $-6 = a - 8b$... (iii)

-6 = a - 8band

On solving Eqs. (i), (ii) and (iii), we get

$$a = 2$$
 and $b = 1$
Now, $a - 2b = 2 - 2$ (1) $= 2 - 2 = 0$ (1)

6. If
$$\begin{bmatrix} x \cdot y & 4 \\ z + 6 & x + y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$$
, write the value of $(x + y + z)$. Delhi 2014C

Given,
$$\begin{bmatrix} x \cdot y & 4 \\ z + 6 & x + y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$$

We know that, if two matrices are equal, then their corresponding elements are equal.

$$\therefore \qquad x \cdot y = 8 \Rightarrow y = \frac{8}{x} \qquad \dots(i)$$

$$z + 6 = 0 \Rightarrow z = -6 \qquad \dots(ii)$$
and
$$x + y = 6 \qquad \dots(iii)$$

$$(1/2)$$

Now, put the value of y from Eq. (i), in Eq. (iii), we get

$$x + \frac{8}{x} = 6$$

$$\Rightarrow \qquad x^2 + 8 = 6x$$

$$\Rightarrow \qquad (x - 4)(x - 2) = 0$$

$$\Rightarrow \qquad x = 4, 2$$

On putting the values of x in Eq. (iii), we get

$$y = 2$$
, 4
Now, $(x + y + z) = (2 + 4 - 6) = 0$ (1/2)

7. The elements a_{ij} of a 3 × 3 matrix are given by $a_{ij} = \frac{1}{2} |-3i + j|$. Write the value of element a_{32} . All India 2014C

Given, for a 3×3 matrix.

$$a_{ij} = \frac{1}{2} \left| -3i + j \right|$$

Here, element a_{32} denotes the element of third row corresponding to second column.

So, to find a_{32} , put i = 3 and j = 2, we get

$$a_{32} = \frac{1}{2} \left| -3 \times 3 + 2 \right|$$

$$= \frac{1}{2} \left| -9 + 2 \right|$$

$$= \frac{7}{2}$$
(1)

8. If $\begin{bmatrix} 2x & 4 \end{bmatrix} \begin{bmatrix} x \\ -8 \end{bmatrix} = 0$, find the positive value of x.
All India 2014C

We have,
$$[2x \ 4]\begin{bmatrix} x \\ -8 \end{bmatrix} = 0$$

$$\Rightarrow (2x^2 - 32) = 0$$

$$\Rightarrow 2x^2 = 32$$

$$\Rightarrow x^2 = 16$$

$$\Rightarrow x = \pm 4$$

$$\therefore \text{ Positive value of } x = 4.$$
(1)

9. If
$$2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$$
, then find the value of $(x + y)$.

Delhi 2013C; All India 2012

Firstly, multiply each element of the first matrix by 2, then use property of matrix addition and equality of matrices, to calculate the values of x and y.

Given,
$$2 \begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2 & 6 \\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2+y & 6 \\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$$
(1/2)

On comparing corresponding elements, we

get
$$2+y=5$$
 and $2x+2=8$
 $\Rightarrow y=3$ and $2x=6$
 $\Rightarrow y=3$ and $x=3$

$$\therefore x + y = 3 + 3 = 6$$
 (1/2)

10. Find the value of a, if

$$\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}.$$
 Delhi 2013

Use the definition of equality of matrices.

We know that two matrices are equal, if their corresponding elements are equal. (1/2)

$$\therefore \qquad a-b=-1 \qquad \qquad \dots (i)$$

and
$$2a - b = 0$$
 ...(ii)

On subtracting Eq. (i) from Eq. (ii), we get

$$a=1 (1/2)$$

11. If
$$\begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} = A + \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix}$$
, then find the matrix A. Delhi 2013

Given matrix equation can be rewritten as

$$A = \begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix}$$
 (1/2)

$$\Rightarrow A = \begin{bmatrix} 9-1 & -1-2 & 4+1 \\ -2-0 & 1-4 & 3-9 \end{bmatrix}$$

[two matrices can be subtracted only when their orders are same]

$$= \begin{bmatrix} 8 & -3 & 5 \\ -2 & -3 & -6 \end{bmatrix}$$
 (1/2)

12. If matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $A^2 = kA$, then write the value of k.

All India 2013

Given,
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 ...(i)

and $A^2 = kA$

[multiplying row by column]

$$= \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 (1/2)

$$\Rightarrow A^2 = 2A$$
 [from Eq. (i)]

On comparing with Eq. (ii) we get

$$k=2 ag{1/2}$$

13. If matrix
$$A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$
 and $A^2 = pA$, then write the value of p .

All India 2013

Given,
$$A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$
 ...(i)

and
$$A^2 = pA$$
 ...(ii)

Now,
$$A^2 = A \cdot A$$

= $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$
= $\begin{bmatrix} 4+4 & -4-4 \\ -4-4 & 4+4 \end{bmatrix}$

[multiplying row by column]

$$= \begin{bmatrix} 8 & -8 \\ -8 & 8 \end{bmatrix}$$

$$= 4 \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$$
(1/2)

$$\Rightarrow$$
 $A^2 = 4A$ [from Eq.(i)]

On comparing with Eq. (ii), we get

$$p=4 (1/2)$$

14. If matrix
$$A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$$
 and $A^2 = \lambda A$, then write the value of λ . All India 2013

Given, matrix
$$A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$$
 ...(i)

Also,
$$A^2 = \lambda A$$
 ...(ii)
Now, $A^2 = A \cdot A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$

$$= \begin{bmatrix} 9+9 & -9-9 \\ -9-9 & 9+9 \end{bmatrix}$$

[multiplying row by column]

$$= \begin{bmatrix} 18 & -18 \\ -18 & 18 \end{bmatrix} = \begin{bmatrix} 6 \cdot 3 & -6 \cdot 3 \\ -6 \cdot 3 & 6 \cdot 3 \end{bmatrix}$$
$$= 6 \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$$
(1/2)

⇒
$$\lambda A = 6A$$
 [from Eqs. (i) and (ii)]
∴ $\lambda = 6$ (1/2)

15. Simplify

$$\cos\theta\begin{bmatrix}\cos\theta & \sin\theta\\ -\sin\theta & \cos\theta\end{bmatrix} + \sin\theta\begin{bmatrix}\sin\theta & -\cos\theta\\ \cos\theta & \sin\theta\end{bmatrix}.$$

Delhi 2012; HOTS

Firstly, we multiply each element of the first matrix by $\cos\theta$ and second matrix by $\sin\theta$ and then using the matrix addition.

We have,

$$\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2\theta & \sin\theta\cos\theta \\ -\sin\theta\cos\theta & \cos^2\theta \end{bmatrix}$$

$$+ \begin{bmatrix} \sin^2\theta & -\sin\theta\cos\theta \\ \sin\theta\cos\theta & \sin^2\theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^2\theta + \sin^2\theta \\ -\sin\theta\cos\theta + \sin\theta\cos\theta \\ \sin\theta\cos\theta - \sin\theta\cos\theta \end{bmatrix}$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

$$= [1 \ 0]$$

16. Find the value of y - x from following equation

$$2\begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}.$$

All India 2012

We have,

$$2 \begin{bmatrix} x & 5 \\ 7 & y - 3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2x & 10 \\ 14 & 2y - 6 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} - \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2x & 10 \\ 14 & 2y - 6 \end{bmatrix} = \begin{bmatrix} 7 - 3 & 6 + 4 \\ 15 - 1 & 14 - 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & 10 \\ 14 & 12 \end{bmatrix}$$
(1/2)

On equating the corresponding elements, we get

$$2x = 4 \text{ and } 2y - 6 = 12$$

$$\Rightarrow \qquad x = 2 \text{ and } 2y = 18$$

$$\Rightarrow \qquad x = 2 \text{ and } y = 9$$

$$\therefore \qquad y - x = 9 - 2 = 7 \qquad (1/2)$$

17. If $x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$, then write the value of x. Foreign 2012

We have,
$$x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2x \\ 3x \end{bmatrix} + \begin{bmatrix} -y \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 2x - y \\ 3x + y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

On comparing corresponding elements, we get

$$2x - y = 10$$
, $3x + y = 5$

On adding both equations, we get

$$5x = 15 \Rightarrow x = 3 \tag{1}$$

18. If
$$3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, then find the matrix A . Delhi 2012C

Given
$$B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$$
 and $3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$

$$\Rightarrow 3A = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix} + B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{put}\,B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 5+4 & 3 \\ 1+2 & 1+5 \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 3 & 6 \end{bmatrix} = 3 \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

On comparing both sides, we get

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix} \tag{1}$$

19. Write the value of x - y + z from following equation

$$\begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$$
 Foreign 2011

Use the definition of equality of matrices i.e. if two matrices are equal, then their corresponding elements are equal.

Given matrix equation is

$$\begin{bmatrix} x+y+z \\ x+z \\ y+z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$$

On equating the corresponding elements, we get

$$x + y + z = 9$$
 ...(i)
 $x + z = 5$...(ii)

and

$$y + z = 7$$
 ...(iii)

On putting the value of x + z from Eq. (ii) in Eq. (i), we get

$$y + 5 = 9 \implies y = 4$$

On putting y = 4 in Eq. (iii), we get z = 3

Again, putting z = 3 in Eq. (ii), we get x = 2

Now,
$$x-y+z=2-4+3=1$$
 (1)

20. Write the order of product matrix

Use the fact that if a matrix A has order $m \times n$ and other matrix B has order $n \times z$, then the matrix AB has order $m \times z$, that means if number of columns of matrix A is same as number of rows of matrix B, then matrix multiplication AB is possible.

Let
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $B = [2 \ 3 \ 4]$

Here, order of matrix $A = 3 \times 1$ and order of matri $x B = 1 \times 3$

$$\therefore$$
 Order of product matrix $AB = 3 \times 3$ (1)

21. If a matrix has 5 elements, then write all possible orders it can have. All India 2011

Use the result that a matrix has order $m \times n$, then total number of elements in that matrix is mn.

Given a matrix has 5 elements. So, possible order of this matrix are $5 \times 1, 1 \times 5$.

22. For a 2 \times 2 matrix, $A = [a_{ij}]$ whose elements are given by $a_{ij} = i/j$, write the value of a_{12} . Delhi 2011

Given, for a 2×2 matrix,

$$A = [a_{ij}], a_{ij} = \frac{i}{j}$$

To find a_{12} , put i = 1 and j = 2, we get

$$a_{12} = \frac{1}{2}$$
 (1)

23. If $\begin{bmatrix} x & x-y \\ 2x+y & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 8 & 7 \end{bmatrix}$, then find the value Delhi 2011C

Given,
$$\begin{bmatrix} x & x-y \\ 2x+y & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 8 & 7 \end{bmatrix}$$

On comparing corresponding elements, we get

$$x = 3$$
 and $x - y = 1 \Rightarrow y = x - 1 = 3 - 1 = 2$ (1)

24. From the following matrix equation, find the value of x.

$$\begin{bmatrix} x+y & 4 \\ -5 & 3y \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -5 & 6 \end{bmatrix}$$
 Foreign 2010

Do same as Que 10.

[Ans. 1]

25. Find *x* from the matrix equation

$$\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$$
 Foreign 2010; HOTS

) Firstly, we calculate the multiplication of matrices in LHS and then equate the corresponding elements of both sides.

Given matrix equation is $\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} x+6\\4x+10 \end{bmatrix} = \begin{bmatrix} 5\\6 \end{bmatrix}$$

[multiplying row by column]

On equating the corresponding elements, we get

$$x + 6 = 5$$

$$\Rightarrow \qquad x = -1 \tag{1}$$

26. If
$$\begin{bmatrix} 3 & 4 \\ 2 & x \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} 19 \\ 15 \end{bmatrix}$$
, then find the value of x. Foreign 2010; HOTS

Do same as Que 25. [Ans. 5]

27. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then for what value of α, A is an identity matrix? Delhi 2010; HOTS

Firstly, we put the given matrix A equal to an identity matrix and then equate the corresponding elements to get the value of α .

Given,
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

For A to be an identity matrix, we must have

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} \because & I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$

On equating element a_{11} from both sides, we get

$$\cos \alpha = 1$$

$$\Rightarrow \cos \alpha = \cos 0^{\circ} \quad [\because \cos 0^{\circ} = 1]$$

$$\therefore \quad \alpha = 0^{\circ}$$

So, for $\alpha = 0^{\circ}$, A is an identity matrix.

[:
$$\sin 0^{\circ} = 0$$
] (1)

28. If
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$$
, then write the value of k . Delhi 2010

Given,

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 3+4 & 1+10 \\ 9+8 & 3+20 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$$

[multiplying row by column]

$$\Rightarrow \begin{bmatrix} 7 & 11 \\ 17 & 23 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$$

On equating element a_{21} from both sides, we get

$$17 = k$$

$$k = 17 \tag{1}$$

29. If A is a matrix of order 3×4 and B is a matrix of order 4×3 , then find order of matrix (AB).

Delhi 2010C

Order of matrix $AB = 3 \times 3$

[if a matrix A has order $x \times y$ and B has order $y \times z$, then matrix AB has order $x \times z$](1)

30. If
$$\begin{bmatrix} x+y & 1 \\ 2y & 5 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 4 & 5 \end{bmatrix}$$
, then find the value of x. Delhi 2010C

Given matrix equation is
$$\begin{bmatrix} x+y & 1 \\ 2y & 5 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 4 & 5 \end{bmatrix}$$

On equating the corresponding elements, we get

$$x + y = 7$$
 ...(i)

and

$$2y = 4$$
 ...(ii)

From Eq. (ii), we get

$$y = \frac{4}{2} = 2$$

On putting the value of y in Eq. (i), we get

$$x + 2 = 7$$

$$\Rightarrow \qquad x = 5 \tag{1}$$

31. If
$$\begin{bmatrix} 2x + y & 3y \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}$$
, then find the value of x. All India 2010C

Do same as Que 30. [Ans. x = 3]

32. If
$$\begin{bmatrix} 3y - x & -2x \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ 3 & 7 \end{bmatrix}$$
, then find the value of y. All India 2010C

Do same as Que 30. [Ans. y = 2]

33. If
$$\begin{bmatrix} 2x & 1 \\ 5 & x + 2y \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix}$$
, then find the value of y. All India 2009C

Do same as Que 30. [Ans. y = -1]

34. If
$$\begin{bmatrix} y + 2x & 5 \\ -x & 3 \end{bmatrix} = \begin{bmatrix} 7 & 5 \\ -2 & 3 \end{bmatrix}$$
, then find the value of y. Foreign 2009

Do same as Que 30. [Ans. y = 3]

35. Find the value of x, if

$$\begin{bmatrix} 3x + y & -y \\ 2y - x & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -5 & 3 \end{bmatrix}.$$

All India 2009

Do same as Que 30. [Ans. x = 1]

NOTE Sometimes on solving an equation, we get more than one values of one variable. This means that such a matrix does not exist.

36. Find the value of y, if $\begin{bmatrix} x - y & 2 \\ x & 5 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}.$ All India 2009

Do same as Que 30. [Ans. y = 1]

37. Find the value of x, if
$$\begin{bmatrix} 2x - y & 5 \\ 3 & y \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 3 & -2 \end{bmatrix}$$
All India 2009

Do same as Que 30. [Ans. x = 2]

38. If
$$\begin{bmatrix} 15 & x+y \\ 2 & y \end{bmatrix} = \begin{bmatrix} 15 & 8 \\ x-y & 3 \end{bmatrix}$$
, then find the value of x. Delhi 2009C

Do same as Que 30. [Ans. x = 5]

39. If
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, then find $A - B$.

All India 2008C

For finding A - B, subtracting the corresponding elements.

Given,
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$

$$\therefore A - B = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$$

$$= \begin{bmatrix} 2 - 1 & 4 - 3 \\ 3 - (-2) & 2 - 5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ 5 & -3 \end{bmatrix}$$
(1)

40. If
$$\begin{bmatrix} x + 2y & 3y \\ 4x & 2 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 8 & 2 \end{bmatrix}$$
, then find x and y. All India 2008C

Do same as Que 30. [Ans. x = 2, y = 1]

41. Find x and y, if
$$2\begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$$
.

Delhi 2008; HOTS

Do same as Que 9. [Ans. x = 3, y = 3]

4 Marks Questions

42. If
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
, then find value of A² - 3A + 2I. All India 2010

Given,
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$

We have to find the value of $A^2 - 3A + 2I$.

Now,
$$A^2 = A \cdot A$$

$$= \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 4+0+1 & 0+0-1 & 2+0+0 \\ 4+2+3 & 0+1-3 & 2+3+0 \\ 2-2+0 & 0-1-0 & 1-3+0 \end{bmatrix}$$

[multiplying row by column]

$$\Rightarrow A^{2} = \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{bmatrix}$$
 (1½)

$$3A = 3 \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 3 \\ 6 & 3 & 9 \\ 3 & -3 & 0 \end{bmatrix}$$
 (1/2)

and
$$2I = 2\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 (1/2)

$$A^2 - 3A + 2I$$

$$= \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{bmatrix} - \begin{bmatrix} 6 & 0 & 3 \\ 6 & 3 & 9 \\ 3 & -3 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\Rightarrow A^{2} - 3A + 2I$$

$$= \begin{bmatrix} 5 - 6 + 2 & -1 - 0 + 0 & 2 - 3 + 0 \\ 9 - 6 + 0 & -2 - 3 + 2 & 5 - 9 + 0 \\ 0 - 3 + 0 & -1 + 3 + 0 & -2 - 0 + 2 \end{bmatrix}$$

$$\Rightarrow A^2 - 3A + 2I = \begin{bmatrix} 1 & -1 & -1 \\ 3 & -3 & -4 \\ -3 & 2 & 0 \end{bmatrix}$$
 (11/2)

43. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, then prove that $A^2 - 4A - 5I = 0$. Delhi 2008:

Now, LHS =
$$A^2 - 4A - 5I$$

$$= \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - 4 \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (1)
$$= \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} + \begin{bmatrix} -4 & -8 & -8 \\ -8 & -4 & -8 \\ -8 & -8 & -4 \end{bmatrix} + \begin{bmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O = RHS$$
 (1½) Hence proved.

Transpose of a Matrix and Symmetric Matrix

1 Mark Questions

 Write 2 × 2 matrix which is both symmetric and skew-symmetric matrices. Delhi 2014C

A null matrix of order 2×2 is both symmetric and skew-symmetric matrices.

For a symmetric matrix,

$$a_{ii} = a_{ii} \qquad \dots (i)$$

and for a skew-symmetric matrix,

$$a_{ij} = -a_{ji} \qquad ...(ii)$$

From Eqs. (i) and (ii), we get
$$a_{ii} = 0$$
 (1)

2. For what value of x, is the matrix

$$A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$$
 a skew-symmetric matrix?

All India 2013: HOTS

? If A is a skew-symmetric matrix, then $A = -A^{T}$, where A^{T} is transpose of matrix A.

Given,
$$A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$$

We know that, if A is a skew-symmetric matrix, then $A = -A^T$...(i)

From Eq. (i), we get

$$\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -1 & x \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -x \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix}$$
 (1/2)

On comparing the corresponding element, we get

$$x = 2 \tag{1/2}$$

3. If
$$A^{T} = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find $A^{T} - B^{T}$. All India 2012

Given,
$$B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

Transpose of $B = B^T = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$ (1/2)

Now,
$$A^{T} - B^{T} = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 3+1 & 4-1 \\ -1-2 & 2-2 \\ 0-1 & 1-3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}$$
(1/2)

4. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, then find $A + A'$.

All India 2010C

Firstly, we find the transpose of matrix A and then add the corresponding elements of both matrices A and A'.

Given,
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

$$A' = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
Now, $A + A' = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 5 & 8 \end{bmatrix}$ (1)

5. If $A = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$, then find A + A', where A' is transpose of A. All India 2009C

Do same as Que 4. $\begin{bmatrix} \mathbf{Ans.} \begin{bmatrix} 6 & 6 \\ 6 & 6 \end{bmatrix} \end{bmatrix}$

6. If matrix $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, then write AA'.

Delhi 2009; HOTS

Firstly, we write the transpose of matrix A of order 1×3 , whose order is 3×1 , then multiply if matrix multiplication is possible to get required answer.

Given, matrix is $A = \begin{bmatrix} 1 & 2 \end{bmatrix}$

$$\therefore \qquad A' = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Now,
$$AA' = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

= $\begin{bmatrix} (1 \times 1) + (2 \times 2) + (3 \times 3) \end{bmatrix}$
= $\begin{bmatrix} 1 + 4 + 9 \end{bmatrix} = \begin{bmatrix} 14 \end{bmatrix}$ (1)

4 Mark Questions

7. For the following matrices A and B, verify that

For the following matrices A and B, verify that
$$[AB]' = B'A'; A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$$
All India 2010

Given,
$$A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$

To verify (AB)' = B'A'

Here,
$$AB = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}_{3 \times 1} [-1 \ 2 \ 1]_{1 \times 3}$$

$$\Rightarrow AB = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$$

[multiplying row by column]

$$\therefore LHS = (AB)' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} \qquad \dots (i)$$

[interchanging rows and columns] (11/2)

Now,
$$B' = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$
 and $A' = \begin{bmatrix} 1 & -4 & 3 \end{bmatrix}$ (1)

$$\therefore RHS = B'A' = \begin{bmatrix} -1\\2\\1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 4 & -3\\2 & -8 & 6\\1 & -4 & 3 \end{bmatrix} \qquad \dots (ii)$$

[multiplying row by column](1)

From Eqs. (i) and (ii), we get

$$(AB)' = B'A'$$

$$\therefore LHS = RHS$$
 (1/2)

Express the following matrix as a sum of a symmetric and a skew-symmetric matrices and verify your result.

$$\begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$$
 All India 2010; HOTS

Write the given matrix A as
$$A = P + Q$$
, where $P = \frac{1}{2}(A + A')$ and $Q = \frac{1}{2}(A - A')$. Also, verify that P is a symmetric matrix and Q is a skew-symmetric matrix.

Let
$$A = \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$$

Let us introduce two matrices P and Q, such that

$$P = \frac{1}{2}(A + A')$$
 and $Q = \frac{1}{2}(A - A')$

We will show that A = (P + Q)

Now,
$$P = \frac{1}{2}(A + A')$$

$$\Rightarrow P = \frac{1}{2} \left[\begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} + \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} \right]$$

$$=\frac{1}{2}\begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix}$$
 (1)

and
$$P' = \frac{1}{2} \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} = P$$

$$P'=P$$

So, P is a symmetric matrix. (1)

Now,
$$Q = \frac{1}{2}(A - A')$$

$$= \frac{1}{2} \left\{ \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix} - \begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix} \right\}$$

$$= \frac{1}{2} \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 3 \\ 5 & 0 & 6 \end{bmatrix}$$

and
$$Q' = \frac{1}{2} \begin{bmatrix} -5 & 0 & 6 \\ -3 & -6 & 0 \end{bmatrix}$$

$$= -\frac{1}{2} \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix}$$

$$= -Q$$

$$\Rightarrow$$
 $Q' = -Q$

∴ Q is a skew-symmetric matrix. (1)

$$P + Q = \frac{1}{2} \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix}$$

$$= \frac{1}{2} \left\{ \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} + \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix} \right\}$$

$$= \frac{1}{2} \begin{bmatrix} 6 & -4 & -8 \\ 6 & -4 & -10 \\ -2 & 2 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$$

Thus,
$$P+Q=A$$
 (1)

Inverse of a Matrix by Elementary Operations

Previous Year Examination Question

4 Marks Questions

1. Use elementary column operations $C_2 \rightarrow C_2 - 2C_1$ in the matrix equation

$$\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

Foreign 2014

We write the matrix A as A = AI for applying elementary column operations. So, apply column operation on the matrix of LHS and on the second matrix of RHS.

Given matrix equation is

$$\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

On applying $C_2 \rightarrow C_2 - C_1$, we get

$$\begin{bmatrix} 4 & 2 - 8 \\ 3 & 3 - 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 - 4 \\ 1 & 1 - 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 4 & -6 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & -4 \\ 1 & -1 \end{bmatrix}$$

which is the required answer.

2. Using elementary row transformation (ERT), find inverse of matrix $A = \begin{bmatrix} 6 & 5 \\ 5 & 4 \end{bmatrix}$

Foreign 2010; HOTS

ζ?

Firstly, put A = IA. Then, by applying elementary row transformation on A of LHS and I of RHS, convert this matrix in the form I = BA, where B gives the inverse of A.

Given matrix is
$$A = \begin{bmatrix} 6 & 5 \\ 5 & 4 \end{bmatrix}$$
.

Let

$$A = IA$$

$$\Rightarrow \begin{bmatrix} 6 & 5 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A \tag{1/2}$$

Applying $R_1 \rightarrow R_1 - R_2$, we get

$$\begin{bmatrix} 1 & 1 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A \tag{1}$$

Applying $R_2 \rightarrow R_2 - 5R_1$, we get

$$\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -5 & 6 \end{bmatrix} A \tag{1}$$

Applying $R_1 \rightarrow R_1 + R_2$, we get

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -4 & 5 \\ -5 & 6 \end{bmatrix} A \tag{1/2}$$

Now, applying $R_2 \rightarrow (-1)R_2$, we get

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 5 \\ 5 & -6 \end{bmatrix} A \tag{1/2}$$

Hence,
$$A^{-1} = \begin{bmatrix} -4 & 5 \\ 5 & -6 \end{bmatrix} \ [\because A^{-1}A = I] \ (1/2)$$

3. Find A^{-1} , by using elementary row transformation for matrix $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$.

Foreign 2010

Do same as Que 2.
$$\begin{bmatrix} \mathbf{Ans.} \ A^{-1} = \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix} \end{bmatrix}$$

4. Using elementary row transformation, find inverse of matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$ Delhi 2010

Do same as Que 2.
$$\begin{bmatrix} \mathbf{Ans.} \ A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \end{bmatrix}$$

6 Marks Questions

Delhi 2012

Given matrix is
$$A = \begin{bmatrix} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
.

Let
$$A = IA$$

$$\Rightarrow \begin{bmatrix} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \tag{1}$$

Applying $R_2 \rightarrow R_2 + R_1$, $R_3 \rightarrow R_3 + 3R_1$, we get

$$\begin{bmatrix} -1 & 1 & 2 \\ 0 & 3 & 5 \\ 0 & 4 & 7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} A \tag{1}$$

Applying $R_1 \rightarrow (-1) R_1$, we get

$$\begin{bmatrix} 1 & -1 & -2 \\ 0 & 3 & 5 \\ 0 & 4 & 7 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} A$$

Applying $R_2 \rightarrow R_2 - R_3$, we get

$$\begin{bmatrix} 1 & -1 & -2 \\ 0 & -1 & -2 \\ 0 & 4 & 7 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ -2 & 1 & -1 \\ 3 & 0 & 1 \end{bmatrix} A$$
 (1)

Applying $R_1 \rightarrow R_1 - R_2$ and $R_3 \rightarrow R_3 + 4R_2$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 1 & -1 \\ -5 & 4 & -3 \end{bmatrix} A \tag{1}$$

Applying $R_2 \rightarrow (-1) R_2$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 1 \\ -5 & 4 & -3 \end{bmatrix} A$$

Applying $R_2 \rightarrow R_2 + 2 R_3$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ -5 & 4 & -3 \end{bmatrix} A$$
 (1)

Applying $R_3 \rightarrow (-1) R_3$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ 5 & -4 & 3 \end{bmatrix} A$$

which is of the form I = BA.

Hence,
$$A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ 5 & -4 & 3 \end{bmatrix}$$
 (1)

$$6. \begin{vmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{vmatrix}$$

Foreign 2011

Given matrix is
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
.

Let
$$A = IA$$

$$\Rightarrow \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \tag{1}$$

Applying $R_1 \rightarrow 3R_1$, we get

$$\begin{bmatrix} 6 & 0 & -3 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$
 (1/2)

Applying $R_1 \rightarrow R_1 - R_2$, we get

$$\begin{bmatrix} 1 & -1 & -3 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \tag{1}$$

Applying $R_1 \rightarrow R_1 + R_3$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$
 (1/2)

Applying $R_2 \rightarrow R_2 - 5R_1$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 0 & 0 & 1 \end{bmatrix} A$$
 (1)

Applying $R_3 \rightarrow R_3 - R_2$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 15 & -6 & 6 \end{bmatrix} A \quad (1/2)$$

Applying $R_3 \to \frac{1}{3} R_3$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} A \quad (1/2)$$

Hence,
$$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$$
 (1)

Delhi 2010

Given matrix is
$$A = \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$$
. (1)

Let
$$A = IA$$

$$\Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \tag{1}$$

Applying $R_2 \rightarrow R_2 + 3R_1$ and $R_3 \rightarrow R_3 - 2R_1$, we get

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 9 & -7 \\ 0 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A$$
 (1)

Applying
$$R_2 \rightarrow \frac{R_2}{9}$$
, we get

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -7/9 \\ 0 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1/9 & 0 \\ -2 & 0 & 1 \end{bmatrix} A \quad (1/2)$$

Applying $R_3 \rightarrow R_3 + 5R_2$, we get

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -7/9 \\ 0 & 0 & 1/9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1/9 & 0 \\ -1/3 & 5/9 & 1 \end{bmatrix} A(1/2)$$

Applying $R_3 \rightarrow 9R_3$, we get

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 1 & -7/9 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1/3 & 1/9 & 0 \\ -3 & 5 & 9 \end{bmatrix} A \quad (1/2)$$

Applying $R_1 \rightarrow R_1 - 3R_2$, we get

$$\begin{bmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -7/9 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1/3 & 0 \\ 1/3 & 1/9 & 0 \\ -3 & 5 & 9 \end{bmatrix} A (1/2)$$

Applying $R_1 \rightarrow R_1 - \frac{1}{3}R_3$ and $R_2 \rightarrow R_2 + \frac{7}{9}R_3$,

we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -2 & -3 \\ -2 & 4 & 7 \\ -3 & 5 & 9 \end{bmatrix} A$$
Hence, $A^{-1} = \begin{bmatrix} 1 & -2 & -3 \\ -2 & 4 & 7 \\ -3 & 5 & 9 \end{bmatrix}$ (1)

All India 2010

Do same as Que 7.
$$\begin{bmatrix} \mathbf{Ans.} \ A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} \end{bmatrix}$$

$$\mathbf{9.} \begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$

All India 2009

Do same as Que 7.
$$\begin{bmatrix} \mathbf{Ans.} \ A^{-1} = \begin{bmatrix} 3 & -4 & 3 \\ -2 & 3 & -2 \\ 8 & -12 & 9 \end{bmatrix}$$

10.
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$$

All India 2008

. Do same as Que 7. Ans.
$$A^{-1} = \begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$