1. In the adjoining figure, the rule by which $riangle ABC \cong riangle ADC$

2. In the adjoining figure, BC = AC. If \angle ACD = 115° , the \angle A is

3. In fig, in $\triangle ABC$, AB = AC, then the value of x is:

- b. 100⁰
- c. 130⁰
- d. 80⁰
- 4. In $\triangle ABC$, if $\angle B = 30^{\circ}$ and $\angle C = 70^{\circ}$, then which of the following is the longest side?
 - a. AC
 - b. BC
 - c. AB
 - d. AB or AC
- 5. If triangle PQR is right angled at Q, then
 - a. PR > PQ
 - b. PR < QR
 - c. PR = PQ
 - d. PR < PQ
- 6. Fill in the blanks:

The perimeter of a triangle is ______ than the sum of its three medians.

7. Fill in the blanks:

If the bisector of the vertical angle of a triangle bisects the base, then the triangle is an _____ angle.

- 8. Of the three angles of a triangle, one is twice the smallest and another is three times the smallest. Find the angles.
- 9. If each angle of a triangle is less than the sum of the other two, show that the triangle is acute-angled.
- 10. In Fig., AC > AB and D is the point on AC such that AB = AD. Prove that BC > CD.

11. \triangle ABC, AD is perpendicular bisector of BC. Show that \triangle ABC is an isosceles triangle in which AB = AC.

12. If AD = AE, AB = AC and \angle BAC = \angle EAD show that BD = CE.

- 13. Prove that the sum of any two sides of a triangle is greater than twice the median with respect to the third side.
- 14. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that:
 - i. AD bisects BC.

15. AB is a line segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B (See Figure). Show that the line PQ is the perpendicular bisector of AB.

CBSE Test Paper 05 CH-7 Triangles

Solution

1. (b) SSS

Explanation:In \triangle ABC and \triangle ADC,we have, AB = AD (4cm) BC = DC (2.7 cm) AC = AC (common in both) Hence, $\triangle ABC \cong \triangle ADC$, by SSS criterion. 2. (a) 50°

(c) 57.5°

Explanation:

As BC = AC, therefore triangle ABC is an isoscelestriangle. Given $\angle ACD = 115^{\circ}$, $\angle ACB = 180 - 115 = 65^{\circ}$ (Linear Pair) As AC = BC, therefore $\angle A = \angle B$ As sum of all the three angles of atriangle is 180°

Therefore, $\angle A + \angle B + \angle ACB = 180^{\circ}$ $\angle A = \angle B = 57.5$

3. (c) 130⁰

Explanation: Triangle ABC is an iscosceles triangle and hence in the triangle other two angles are 50 and 50

Therefore,

X = 180 - 50 = 130

4. (b) BC

Explanation:

Since the sum of all sides of a triangle is 180°.

So, angle C=70°, angle B=30°, angle A=80°.

We have a theorem which states that the side opposite to the greatest angle is the longest.

So, the side opposite to angle A is the longest.

5. (a) PR > PQ

Explanation: then the hypotnuse should be always greater than the remaining two sides.

- 6. greater
- 7. isosceles
- Let the smallest angle of the given triangle be of x°. Then, the other two angles are 2x° and 3x°.

So, x + 2x + 3x = 180 $\Rightarrow 6x = 180 \Rightarrow x = \frac{180}{6} = 30$

Hence, the angles are 30° , 60° and 90° .

9. ∵∠A < (∠B + ∠C)

 $\Rightarrow \angle A + \angle A < \angle A + \angle B + \angle C$

 $\Rightarrow 2 \ \angle A < 180^{o}$ ('.' sum of all angles of a triangle is equal to 180^o)

$$\Rightarrow \angle A < 90^{\circ}$$

Similarly, $\angle B < \angle 90^{\circ}$ and $\angle C < \angle 90^{\circ}$.

Hence, the triangle is acute-angled.

Given: In Fig., AC > AB and D is the point on AC such that AB = AD. To Prove: BC > CD. Proof: In \triangle ABD, we have AB = AD ...(i) In \triangle ABC, we have AB + BC > AC \Rightarrow AB + BC > AD + CD \Rightarrow AB + BC > AB + CD [\therefore AD = AB {from (i)}] \Rightarrow BC > CD Hence Proved.

11. Given : AD \perp BC.

To prove : ABC is an isosceles triangle in which AB = AC.

Proof : In \triangle ADB and \triangle ADC,

 $DB = DC \dots [As AD \perp bisector of BC]$

 $\angle ADB = \angle ADC \dots [Each 90^{\circ}]$

 $AD = AD \dots [Common]$

 $\therefore \triangle ADB \cong \triangle ADC \dots$ [By SAS property]

 \therefore AB = AC \dots [c.p.c.t]

 $\therefore \triangle ABC$ is an isosceles triangle in which AB = AC.

```
12. \angle BAC = \angle EAD \angle BAC = \angle EAD \text{ [given] ...(1)}

\therefore \angle BAC + \angle CAD = \angle EAD + \angle CAD \text{ [Adding angle CAD both side]}

\Rightarrow \angle BAD = \angle EAC \dots (2)

Now in,

\triangle ABD \& \triangle EAC

AB = AC \text{ [given]}

AD = AE \text{ [given]}

\angle BAD = \angle EAC \dots \text{[from equation (2)]}

\Rightarrow BD = CE \Rightarrow BD = CE \text{ [CPCT]}
```


Given: AD is a median in riangle ABC.

To prove: AB + AC > 2AD

Construction: Produce AD to E such that AD = DE. Join EC

Proof: In triangles ADB and EDC, we have

AD = DE.....(1) (By construction)

BD = DC (:: AD is the median) and, \angle ADB = \angle EDC (Vertically opposite angles)

 $\therefore \triangle ADB \cong \triangle EDC$ (SAS congruency criterion)

 \Rightarrow AB = EC (CPCT) ...(2)

As sum of two sides in a triangle is greater than the third side. Hence, in \triangle AEC, we have

```
AC + EC > AE.
```

```
\Rightarrow AC + AB > AE [ from (2) ] .....(3)
```

```
Also, AE = 2AD [from (1)].....(4)
```

```
Now, from (3) and (4),
```

- AC + AB >2AD .Hence, proved.
- 14. In \triangle ABD and \triangle ACD, AB = AC [Given] \angle ADB = \angle ADC = 90° [AD \perp BC]

AD = AD [Common] $\therefore \triangle ABD \cong \triangle ACD$ [RHS rule of congruency]

 \Rightarrow BD = DC [By C.P.C.T.]

 \Rightarrow AD bisects BC

Also $\angle BAD \angle BAD = \angle CAD \angle CAD$ [By C.P.C.T.] \Rightarrow AD bisects $\angle A$

15. In \triangle PAQ and \triangle PBQ,

AP = BP (Given) AQ = BQ (Given) PQ = PQ (Common) So, $\triangle PAQ \cong \triangle PBQ$ (SSS rule) Therefore, $\angle APQ = \angle BPQ$ (CPCT). Now let us consider $\triangle PAC$ and $\triangle PBC$. You have: AP = BP (Given) $\angle APC = \angle BPC$ ($\angle APQ = \angle BPQ$ proved above) PC = PC (Common) So, $\triangle PAC \cong \triangle PBC$ (SAS rule) Therefore, AC = BC (CPCT)(i) $\angle ACP = \angle BCP$ (CPCT) and $\angle ACP + \angle BCP = 180^{\circ}$ (Linear pair) So, $2\angle ACP = 180^{\circ}$ Or, $\angle ACP = 90^{\circ}$(ii)

From (i) and (ii), we can easily conclude that PQ is the perpendicular bisector of AB.