PHYSICS

DPP No. 49

Total Marks: 25

Max. Time: 26 min.

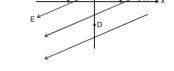
Topics: Electrostatics, Kinematics, Current Electrisity, Center of Mass, Newton's Law of Motion

Type of Questions
Single choice Objective ('-1' negative marking) Q.1 to Q.4
Subjective Questions ('-1' negative marking) Q.5

Comprehension ('-1' negative marking) Q.6 to Q.8

(3 marks, 3 min.) (4 marks, 5 min.) (3 marks, 3 min.)

[12, 12] [4, 5] [9, 9]


M.M., Min.

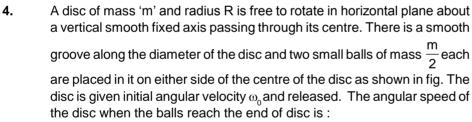
1. There exists a uniform electric field in the space as shown. Four points A, B, C and D are marked which are equidistant from the origin. If V_A, V_B, V_C and V_D are their potentials respectively, then

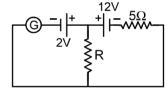
(B)
$$V_A > V_B > V_D > V_C$$

(D) $V_B > V_C > V_A > V_D$

2. The displacement time graphs of two bodies A and B are shown in figure. The ratio of velocity of A, v_A to velocity of B, v_B is :

(A)
$$\frac{1}{\sqrt{3}}$$


(B)
$$\sqrt{3}$$


(C)
$$\frac{1}{3}$$

(D) 3

3. In the circuit shown, the galvanometer shows zero current. The value of resistance R is:

m

oth ch he of

(A)
$$\frac{\omega_0}{2}$$

(B)
$$\frac{\omega_0}{3}$$

(C)
$$\frac{2\omega_0}{3}$$

(D)
$$\frac{\omega_0}{4}$$

5. A small block A is placed on a smooth inclined wedge B which is placed on a horizontal smooth surface. B is fixed and A is released from top of B. A slide down along the incline and reaches bottom in time t₁. In second case A is released from top of B, but B is also free to move on horizontal surface. The block A takes t₂ time to reach bottom. Without actually calculating the values of t₁ and t₂ find which is greater.

COMPREHENSION

A car battery with a 12 V emf and an internal resistance of 0.04 Ω is being charged with a current of 50 A.

6. The potential difference V across the terminals of the battery are

7. The rate at which energy is being dissipated as heat inside the battery is:

(A) 100 W

(B) 500 W

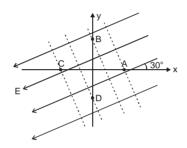
(C) 600 W

(D) 700 W

8. The rate of energy conversion from electrical form to chemical form is:

(A) 100 W

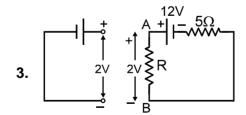
(B) 500 W


(C) 600 W

(D) 700 W

nswers Key

- **1.** (B) **2.** (C)
- **3.** (A)
- **4.** (B)
- **5.** $t_1 > t_2$ **6.** (C)
- **7.** (A)
- **8.** (C)


1. Four lines, perpendicular to lines of electric field and passing through A, B, C and D are drawn. These are equipotential lines. As potential decreases in the direction of electric field, therefore $V_A > V_B > V_D > V_C$

2. For A, $\frac{ds}{dt} = V_A = \frac{1}{\sqrt{3}}$

For B,
$$\frac{ds}{dt} = V_B = \sqrt{3}$$

$$\frac{V_A}{V_B} = \frac{1}{3}.$$

If pot. drop between A and B is also 2V, then no currrent will pass through the gelvanomter.

Pot. drop across R =
$$\left(\frac{12}{R+5}\right)$$
R = 2

$$12 R = 2R + 10$$

$$R = 1 \Omega$$

4. Let the angular speed of disc when the balls reach the end be ω .

From conservation of angular momentum

$$\frac{1}{2}$$
 mR² $\omega_0 = \frac{1}{2}$ mR² $\omega + \frac{m}{2}$ R² $\omega + \frac{m}{2}$ R² ω

or
$$\omega = \frac{\omega_0}{3}$$

5. In second case due to psuedo force acting on the block its acceleration will be more as compared to the first case.

Hence $t_1 > t_2$

Ans.
$$t_{1} > t_{2}$$

- 6. V = E + ir (during charging) = 14 V.
- 7. $P = I^2 r$ (Due to internal resistance) = $50^2 \times 4 \times 10^{-2} = 100 \text{ W}$
- **8.** Rate of charging = E.I.