Chapter 1. Some Basic Cioncepts of Chemistry

Question-1

Classify the following as pure substances or mixtures separate to pure substances into elements and compounds and divide the mixtures into homogeneous and heterogeneous categories:

(i) Bronze (ii) Smoke (iii) Pencil lead (iv) Antenna rod

Solution:

(i) Bronze = a mixture of Cu & Sn - Homogenous mixture.

(ii) Dust = a mixture of carbon particle and air - Heterogenous mixture.

(iii) Pencil lead = Pure element - Graphite. (iv) Antenna rod = Aluminium.

Question-2

Calculate number of moles for the following?

(i) 360 gms of H₂O (ii) 5.6 gms of Nitrogen (iii) 4 gms of NaOH.

Solution:

- (i) No. of moles of $H_2O = \frac{wt}{mwt} = \frac{360}{18} = 20$;
- (ii) Number of moles of $N_2 = \frac{5.6}{28} = 0.2$;
- (iii) Number of moles of NaOH = $\frac{4}{40}$ = 0.1.

Question-3

Calculate the number of moles of H₂SO₄ present in 50 ml of 0.2m H₂SO₄.

Solution:

0.2m means it contains 0.2 moles per litre.

1000 ml contains 0.2 moles at H₂SO₄

∴50 ml contains =
$$\frac{0.2}{1000}$$
 x 50 = $\frac{2 \times 10^{-1} \times 50}{10^{3}}$ = 10 ×10⁻² = 0.01 moles.

What is molarity of a solution contain 5.84 gms of NaCl in 200 ml of solution?

Solution:

Number of moles of NaCl =
$$\frac{\text{wt}}{\text{mwt}} = \frac{5.84}{58.48} = 0.1$$

Molarity = $\frac{\text{moles}}{\text{litre}}$

Volume of solution in litre = $\frac{200}{1000}$ = 0.2

: Molarity of the solution = $\frac{0.1}{0.2} = \frac{1 \times 10^{-1}}{2 \times 10^{-1}} = 0.5$ m.

Question-5

What is weight of NaOH present in 250 cc of a 2M solution?

Solution:

2M of NaOH solution means it contains 2 moles of NaOH per litre 1000ml = 2 moles of NaOH

Number of moles of NaOH present in 250cc = $\frac{2}{1000} \times 250 = \frac{2}{4} = 0.5$ Mole = $\frac{\text{wt}}{\text{rowt}}$; wt = mole x m.wt

∴ Weight of NaOH present in 250 ml of solution = 0.5 x 40 = 20 gm. / Through Formula /

Weight of substance in 1 lit solution = Molarity x m.wt Weight of NaOH present in 1 lit solution \downarrow = 2 x 40 gms \therefore Weight of NaOH present in 250cc solution = $\frac{2 \times 40 \times 250}{1000}$ = 20 gms.

In a reaction vessel 0.980 gm of H₂SO₄ is required to be added for completing the reaction. How many millilitre of 0.05 M H₂SO₄ solution should be added for this requirement?

Solution:

 $0.05 \text{ M} \text{ H}_2\text{SO}_4 \text{ means } 0.05 \text{ moles of H}_2\text{SO}_4 \text{ pressure in } 1000 \text{ mI};$ $1 \text{ litre of } 0.05 \text{ m} \text{ H}_2\text{SO}_4 \text{ contains = molarity x m.wt = } 0.05 \text{ x } 98 = 5 \text{ x } 10^{-2} \text{ x} 98 = 4.9 \text{ gms of H}_2\text{SO}_4$

Through formula:

Wt. of H_2SO_4 present in 1 It = Molarity x m.wt Wt.of H_2SO_4 present in 1 It of 0.05M = 0.05 x 98 gm = 98 x 5 x 10^{-2} gms = 4.9 gms.

..4.9 gms is present in 1000 ml

Hence, 0.980 gms is present in $\frac{1000}{4.9} \times 0.98$

$$= \frac{1000 \times 98 \times 10^{-2}}{49 \times 10^{-1}}$$
$$= 200 \text{ ml.}$$

Question-7

How much AgCl will be formed by adding 200ml of 5M HCl to the solution containing 1.7 gms of Ag No₃?

Solution:

AgNO3 + HCl
$$\rightarrow$$
 AgCl \downarrow + HNO3
200 ml of 5M HCl contains 1.7g of AgNO3
 \therefore 1000 ml of 1M HCl will contain $-\frac{1.7 \times 1000}{200 \times 5}$ = 1.7g
Hence 1M solution of HCl contains 1.7 g of AgNO3.

Calculate the weight of HCl in 10 ml of con. HCl of density 1.2 gm L⁻¹ container 35% HCl by weight. What is the molarity of the solution?

Solution:

35% HCl means 35 gm of HCl are present in 100 gms of HCl solution.

 \sim Volume of 100 gms of given HCl solution = $\frac{mass}{density} = \frac{100}{1.2} = 83.3$ ml 83.3 ml of con. HCl contains 35 gms of HCl

∴10 ml of con. HCl contains
$$\frac{35}{83.3} \times 10 = \frac{350}{83.3} = 4.20$$
 gms of HCl. Molarity of the solution = $\left(\frac{\text{wt}}{\text{mwt}}\right) \times \frac{1000}{10}$ (in litre)
$$= \frac{4.2}{36.45} \times \frac{1000}{10}$$
$$= \frac{420}{36.45} = 1.15 \text{ M}.$$

Question-9

The molarity of con. HCl is 1.15M; what volume of con. HCl is required to make 1.00 of 0.1M HCl.

Solution:

Known Unknown

$$V_1 M_1 = V_2 M_2$$

 $1000 \text{ ml x } 0.1 \text{ M} = V_2 \text{ x } 1.15 \text{ M}$
 $V_2 = \frac{1000 \times 0.1}{1.15} \text{ ml} = \frac{100}{1.15} = \frac{100 \times 10^2}{115} = 86.9 \text{ ml}.$

Aluminium and Sulphuric acid react according to the reaction:

$$^{2Al+3H_2SO_4}_{(aq)} \rightarrow ^{Al_2(SO_4)_3}_{(aq)^{+3H_2(g)}}$$

If 0.5 mol Al are added to H_2SO_4 solution containing 0.2 mole H_2SO_4 , how many moles of H_2 are produced.

Solution:

As per equation, 2 moles Al reacts with 3 moles of H_2SO_4 to produce 3 mole of H_2 .

- \cdot 0.5 ml Al reacts with 3 mole of H₂SO₄ $\frac{3}{0.5}$ moles of H₂.
- 0.5 ml of Al reacts with 0.2 mole of $H_2SO_4 = \frac{3}{0.5} \times \frac{1}{3} \times 0.2$ mole of H_2

=
$$\frac{0.2}{0.5}$$
 moles of H₂

$$=\frac{2}{5}$$
 = 0.4 moles of H₂.