CBSE Test Paper 02

Chapter 11 Construction

- 1. Point E bisects the line segment PQ in the ratio: (1)
 - a. 3:5
 - b. 3:6
 - c. 2:3
 - d. 1:1
- 2. If PT, QT are two tangents to a circle with centre O such that $\angle PTQ=42^o,$ then $\angle POQ=$ (1)

- a. 48°
- b. 84⁰
- c. 42°
- d. 138^o
- 3. In division of a line segment AB, any ray AX making angle with AB is: (1)
 - a. Right angle
 - b. Acute angle
 - c. Obtuse angle
 - d. Any arbitrary angle
- 4. By geometrical construction, which of the following is possible to divide a line segment in the given ratio? (1)
 - a. $(\sqrt{3}-2):(\sqrt{3}+2)$
 - b. $(2+\sqrt{3}):(2-\sqrt{3})$
 - c. $\sqrt{6}:2$
 - d. $\sqrt{5} : \frac{1}{\sqrt{5}}$
- 5. To draw a pair of tangents to a circle which are inclined to each other at an angle of 80° , it is required to draw tangents at endpoints of those two radii of the circle, the

10. To construct a triangle similar to a given $\triangle ABC$ with its sides $\frac{8}{5}$ times of the

corresponding sides of $\triangle ABC$, draw a ray BX such that $\angle CBX$ is an acute angle

and X is on the opposite side of A with respect to BC. How many minimum number of

- points to be located at equal distances on ray BX? (1)
- 11. In drawing a triangle, if AB = 3 cm, BC = 2 cm and AC = 6 cm. What is the possibility that a triangle cannot be drawn? (1)
- 12. Draw a pair of tangents to a circle of radius 5cm which are inclined to each other at 60° . (2)
- 13. Construct a triangle similar to a given equilateral \triangle PQR with side 5 cm such that each of its side is $\frac{6}{7}$ of the corresponding sides of \triangle PQR. **(2)**
- 14. Draw a circle of radius 4cm with centre O. Draw a diameter POQ. Through P or Q draw a tangent to the circle. (2)
- 15. Construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length. Also, verify the measurement by actual calculation. (2)
- 16. Draw a triangle ABC with sides BC = 6.3cm, AB = 5.2cm and $\angle ABC = 60^{\circ}$. Then construct a triangle whose sides are times $\frac{4}{3}$ the corresponding sides of $\triangle ABC$ (2)
- 17. Construct a \triangle ABC in which BC = 8 cm, $\angle B=45^\circ$ and $\angle C=30^\circ$. Construct another triangle, similar to \triangle ABC such that its sides are $\frac{3}{4}$ of corresponding sides of \triangle ABC. **(3)**
- 18. Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to (3/4)th of the corresponding sides of ΔABC . (3)
- 19. Construct a rhombus ABCD in which AB = 4 cm and \triangle ABC = 60°. Divide it into two triangles ABC and ADC. Construct the triangle AB'C' similar to \triangle ABC with scale factor $\frac{2}{3}$. Draw a line segment CD' parallel to CD, where D' lies on AD. Is AB'C'D' a rhombus? Give reasons. **(3)**
- 20. Take a point O on the plane of the paper. With O as centre, draw a circle of radius 3 cm. Take a point P on this circle and draw a tangent at P. (3)

Solution

1. d. 1:1

Explanation: We know that point E bisects line segment PQ so,

$$PE = QE$$

or,
$$\frac{PE}{QE} = \frac{1}{1}$$

or,
$$PE : QE = 1 : 1$$

2. d. 138^o

Explanation: As, OPTQ is a quadrilateral the sum of four angles are

 $\angle OPT$ and $\angle OQT$ are 90° as tangents makes 90° with radius of their touching points. So.

$$\angle POQ = ((360 - (90 + 90 + 42))$$

$$\Rightarrow$$
 $\angle POQ =$ (360° - 212°) = 138°

3. b. Acute angle

Explanation: In division of a line segment AB, any ray AX making angle with AB is an acute angle always because of path of ray.

4. d. $\sqrt{5}: \frac{1}{\sqrt{5}}$

Explanation: A line segment can be divided into the ratio $\sqrt{5}:\frac{1}{\sqrt{5}}$ because the ratio should be whole numbers.

$$\Rightarrow \sqrt{5}: \frac{1}{\sqrt{5}} = \frac{\sqrt{5} \times \sqrt{5}}{1} = \frac{5}{1}$$

- = 5:1
- 5. b. 100°

Explanation: As the sum of four angles of a quadrilateral is $360^\circ\,$ and each of, makes $90^\circ\,$

Then the angle at the centre ((360 - (90 + 90 + 80)))

$$=360-260$$

$$=100^{\circ}$$

6. d. 12

Explanation: According to the question, the minimum number of those points which are to be marked should be (Numerator + Denominator) i.e., 5 + 7 = 12

7. d. 110°

According to the question, the angle between the radii should be 180° - 70° = 110°

8. d. A_{11}

Explanation: According to the question, point B is joined to A11.

- 9. When construction of a triangle similar to a given triangle in the scale factor $\frac{5}{3}$, then the nature of a given triangle is new triangle is bigger than the original traingle.
- 10. Let's take corresponding sides of the new triangle be $\frac{m}{n}$

The minimum number of points to be located at an equal distance is equal to the greater of m and n, in $\frac{m}{n}$.

Here, $\frac{m}{n} = \frac{8}{5}$ and 8 > 5.

So, the minimum number of points to be located at equal distances on ray BX is 8.

11. When AB + BC < AC, triangle cannot be drawn, because in any triangle, sum of any two sides is greater than the third side.

3 cm + 2 cm < 6 cm.

Hence ΔABC cannot be drawn.

Steps of construction:

i. Draw a circle with centre O and radius 5 cm.

ii. Draw any radius OT.

iii. Construct. $\angle TOT' = 180^\circ - 60^\circ = 120^\circ$

iv. Draw and $TP\bot OT$ $T'P\bot OT'$. Then PT' and PT are the two required tangents such that. $\angle TPT'=60^\circ$ Here, PT = PT'.

13. We have to Construct a triangle similar to a given equilateral \triangle PQR with side 5 cm such that each of its side is $\frac{6}{7}$ of the corresponding sides of \triangle PQR. We write the steps of construction as follows:

Steps of construction:

- i. Draw a line segment QR = 5 cm.
- ii. With Q as centre and radius = PQ = 5 cm, draw an arc.
- iii. With R as centre and radius = PR = 5 cm, draw another arc meeting the arc drawn in step 2 at the point P.
- iv. Join PQ and PR to obtain \triangle PQR.
- v. Below QR, construct an acute ∠RQX,
- vi. Along QX, mark off seven points $Q_1,Q_2,\ldots Q_7$ such that $QQ_1=Q_1Q_2=Q_2Q_3\ldots Q_6Q_7$
- vii. Join Q₇R.
- viii. Draw $Q_6R' \mid Q_7R$.
 - ix. From R' draw R'P' | | RP.Hence, P'QR' is the required triangle.

Steps of construction:

- i. Draw a circle of radius 4 cm.
- ii. Draw diameter POQ.
- iii. Construct. $\angle PQT = 90^\circ$
- iv. Produce PQ to T', then TQT' is the required tangent at the point Q.
- 15. Required: To construct a tangent to a circle of radius 4 cm from a point on the concentric circle of radius 6 cm and measure its length, also to verify the measurement by actual by actual calculation.

Steps of construction:

i. join PO and bisect it, Let M be the mid-point of PO.

- ii. Taking M as centre and MO as radius, draw a circle. Let it intersect the given circle at the point Q and R.
- iii. Join PQ

Then PQ is the required tangent. By measurement, PQ = 4.5 cm By actual calculation,

$$PQ=\sqrt{OP^2-OQ^2}$$
 [By Pythagoras Theorem]
$$=\sqrt{(6)^2-(4)^2} \\ =\sqrt{36-16}=\sqrt{20} \\ =4.47~{\rm cm}$$

Justification: Join OQ. Then $\angle PQO$ is an angle in the semicircle and, therefore,

$$\angle PQO = 90^{\circ}$$

 $\Rightarrow PQ \perp 0Q$

Since OQ is a radius of the given circle, PQ has to be a tangent to the circle.

Steps of construction:

- i. Draw a line segment BC = 6.3cm.
- ii. At B make $\angle CBX = 60^\circ$
- iii. With B as centre and radius equal to 5.2cm, draw an arc intersecting BX at A.
- iv. Join AC, then \triangle ABC is the required triangle.
- v. Draw any ray by making an acute angle with BC on the opposite side to the vertex A.
- vi. Locate the points B_1 , B_2 , B_3 and B_4 on BY so that $BB_1 = B_1B_2 = B_2B_3 = B_3B4$.
- vii. Join B_3 to C and draw a line through B_4 parallel to B_3 C intersecting the extended line segment BC at C'.
- viii. Draw a line through C' parallel to CA intersecting the extended line segment BA at A'.

Thus, \triangle A'BC' is the required triangle.

Steps of construction:

i. Draw a line segment BC = 8 cm.

ii. Construct $\angle B$ = 45° at point B.

iii. Again construct $\angle C$ = 30 ° at point.

iv. Line segment from the angles B and C, when produced, meet at A.

v. Hence, \triangle ABC is constructed.

vi. Now, Draw an acute angle CBX opposite to point A.

vii. Take points B_1 , B_2 , B_3 & B_4 at ray BX such that $BB_1 = B_1B_2 = B_2B_3 = B_3B_4 = \frac{1}{4}BB_4....(1)$

viii. Join B₄C

ix. Draw B_3C' parallel to B_4C meeting BC at C'.

x. Draw C'A' parallel to CA, meeting BA at A'.

xi. A'B'C' is required triangle.

18. Steps of construction

- i. Draw a line segment BC of 6 cm.
- ii. With centres B and C, and radii 4 cm and 6 cm respectively draw two arcs which intersect each other at A.
- iii. Join AB and AC.
- iv. At B, draw $\angle CBX$ of any measure.
- v. Starting from B, cut 4 equal parts on BX such that $BX_1 = X_1X_2 = X_2X_3 = X_3X_4$
- vi. Join X₄C
- vii. Through X_3 , draw X_3 Q | | X_4 C
- viii. Through Q, draw QP $\mid \mid$ CA

$$\therefore \triangle PBQ \sim \triangle ABC$$

19. The steps of construction:

- a. The rhombus ABCD is drawn in which AB = 4 cm and \angle ABC = 60°.
- b. Join AC. ABCD is divided into two triangles ABC and ADC.
- c. Construct triangle AB'C' similar to ABC with scale factor $\frac{2}{3}$.
- d. Draw the line segment C'D' parallel to CD.

It can be observed that:

$$\frac{AB'}{AB} = \frac{2}{3} = \frac{AC'}{AC}$$
Also,
$$\frac{AC'}{AC} = \frac{CD'}{CD}$$

$$= \frac{AD'}{AD} = \frac{2}{3}$$

Therefore, AB' = B'C = CD' = AD' = $\frac{2}{3}$ AB

20. We follow the following steps:

Steps of construction

STEP I Take a point O on the plane of the paper and draw a circle of given radius 3 cm.

STEP II Take any point P on the circle and join OP.

STEP III Construct $\angle OPT$ = 90°.

STEP IV Produce TP to T $^{\prime}$ to obtain the required tangent TPT $^{\prime}.$