

Objective Questions

Oxidation, Reduction

- H_2O_2 reduces MnO_4 ion to [KCET (Med.) 2000]
 - (a) Mn⁺
- (b) Mn^{2+}
- (c) Mn^{3+}
- (d) Mn^-
- When a sulphur atom becomes a sulphide ion 2.

[AMU 1999]

- (a) There is no change in the composition of atom
- (b) It gains two electrons
- (c) The mass number changes
- (d) None of these
- The ultimate products of oxidation of most of 3. hydrogen and carbon in food stuffs are [DCE 2001]
 - (a) H_2O alone
- (b) CO2 alone
- (c) H_2O and CO_2
- (d) None of these
- When P reacts with caustic soda, the products are PH_3 and NaH_2PO_2 . This reaction is an example of

[IIT 1980; Kurukshetra CEE 1993; CPMT 1997]

- (a) Oxidation
- (b) Reduction
- (c) Oxidation and reduction (Redox)
- (d) Neutralization
- Which one of the following does not get oxidised 5. by bromine water [MP PET/PMT 1988]
 - (a) Fe^{+2} to Fe^{+3}
- (b) Cu^+ to Cu^{+2}
- (c) Mn^{+2} to MnO_4^-
- (d) Sn^{+2} to Sn^{+4}
- In the reaction $H_2S + NO_2 \rightarrow H_2O + NO + S$. H_2S is
 - (a) Oxidised
- (b) Reduced
- (c) Precipitated
- (d) None of these
- The conversion of PbO_2 to $Pb(NO_3)_2$ is
 - (a) Oxidation
 - (b) Reduction
 - (c) Neither oxidation nor reduction
 - (d) Both oxidation and reduction
- 8. In the course of a chemical reaction an oxidant

[MP PMT 1986]

- (a) Loses electrons
- (b) Gains electrons
- (c) Both loses and gains electron
- (d) Electron change takes place
- $2CuI \rightarrow Cu + CuI_2$, the reaction is 9. [RPMT 1997]
 - (a) Redox
- (b) Neutralisation

- (c) Oxidation
- (d) Reduction
- 10. H_2S reacts with halogens, the halogens[JIPMER 2000]
 - (a) Form sulphur halides(b) Are oxidised
 - (c) Are reduced
- (d) None of these
- H_2O_2 reduces $K_4Fe(CN)_6$
- [MP PMT 1985]
- (a) In neutral solution (b) In acidic solution
- (c) In non-polar solvent (d) In alkaline solution
- Max. number of moles of electrons taken up by one mole of NO_3^- when it is reduced to [**DPMT 2002**]
 - (a) NH_3
- (b) NH_2OH
- (c) NO

11.

- (d) NO_2
- In the reaction $3Mg + N_2 \rightarrow Mg_3N_2$ [MP PMT 1999] 13.
 - (a) Magnesium is reduced (b) Magnesium is oxidized
 - (c) Nitrogen is oxidized (d) None of these
- When sodium metal is dissolved in liquid ammonia, blue colour solution is formed. The blue colour is due to

[NCERT 1981]

- (a) Solvated *Na*⁺ ions
 - (b) Solvated electrons
- (c) Solvated NH_{2}^{-} ions (d) Solvated protons
- Following reaction describes the rusting of iron $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$

Which one of the following statement is incorrect [NCERT 1981; MNR 1991; AIIMS 1998]

- (a) This is an example of a redox reaction
- (b) Metallic iron is reduced to Fe^{3+}
- (c) Fe^{3+} is an oxidising agent
- (d) Metallic iron is a reducing agent
- 16. SnCl, gives a precipitate with a solution of $HgCl_2$. In this process $HgCl_2$ is [CPMT 1983]
 - (a) Reduced
 - (b) Oxidised
 - (c) Converted into a complex compound containing both Sn and Hg
 - (d) Converted into a chloro complex of Hg
- Oxidation involves [NCERT 1971, 81; CPMT 1980, 82, 83; 17. MP PMT 1983]
 - (a) Loss of electrons
 - (b) Gain of electrons
 - (c) Increase in the valency of negative part
 - (d) Decrease in the valency of positive part
- Incorrect statement regarding rusting is [MP PET 2000] 18.
 - (a) Metallic iron is oxidised to Fe^{3+} ions
 - (b) Metallic iron is reduced to Fe^{2-} ions
 - (c) Oxygen gas is reduced to oxide ion
 - (d) Yellowish brown product is formed
- When copper turnings are added to silver nitrate solution, a blue coloured solution is formed after some time. It is because, copper[CPMT 1974, 79; DPMT 200 (a) Displaces silver from the solution

- (b) Forms a blue coloured complex with AgNO 3
- (c) Is oxidised to Cu^{2+}
- (d) Is reduced to Cu^{2+}
- Solution of sodium metal in liquid ammonia is strongly reducing due to the presence of the following in the solution

[NCERT 1977; KCET (Med.) 2000]

- (a) Sodium atoms
- (b) Solvated electrons
- (c) Sodium hydride
- (d) Sodium amide
- When Sn^{2+} changes to Sn^{4+} in a reaction [CPMT 1981]
- (a) It loses two electrons(b) It electrons
 - (c) It loses two protons (d) It gains two protons
- Oxidation of thiosulphate $(S_2O_3^{2-})$ ion by iodine gives

[NCERT 1976]

- (a) SO_3^{2-}
- (b) SO_4^{2-}
- (c) $S_4 O_6^{2-}$
- (d) $S_2O_6^{2-}$
- **23.** $Zn^{2+}(aq) + 2e \rightarrow Zn(s)$. This is

[CPMT 1985]

- (a) Oxidation
- (b) Reduction
- (c) Redox reaction
- (d) None of these
- 24. One gas bleaches the colour of flowers by reduction while the other by oxidation[EAMCET 1980]
 - (a) CO and Cl_2
- (b) SO_2 and Cl_2
- (c) H_2S and Br_2
- (d) NH_3 and SO_2
- 25. Reduction involves

NCERT 1972]

- (a) Loss of electrons
 - (b) Gain of electrons
 - (c) Increase in the valency of positive part
 - (d) Decrease in the valency of negative part
- In a reaction between zinc and iodine, in which zinc iodide is formed, what is being oxidised[NCERT 1975]
 - (a) Zinc ions
- (b) Iodide ions
- (c) Zinc atom
- (d) Iodine
- Which one of the following reactions does not involve either oxidation or reduction [EAMCET 1982]
 - (a) $VO_2^+ \to V_2O_3$
- (b) $Na \rightarrow Na^+$
- (c) $CrO_4^{2-} \to Cr_2O_7^{2-}$ (d) $Zn^{2+} \to Zn$
- 28. In the following reaction,

$$3Br_2 + 6CO_3^{2-} + 3H_2O = 5Br^- + BrO_3^- + 6HCO_3$$

[MP PMT 1994, 95]

- (a) Bromine is oxidised and carbonate is reduced
- (b) Bromine is reduced and water is oxidised
- (c) Bromine is neither reduced nor oxidised
- (d) Bromine is both reduced and oxidised
- In the following reaction,

$$4P + 3KOH + 3H_2O \rightarrow 3KH_2PO_2 + PH_3$$
 [Pb. PMT 2002]

- (a) P is oxidized as well as reduced
- (b) P is reduced only

- (c) P is oxidised only
- (d) None of these
- 30. In the following reaction

$$Cr_2O_7^- + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 3H_2O + 3I_2$$

Which element is reduced (a) Cr

(b) H

(c) O

- (d) I
- The conversion of sugar $C_{12}H_{22}O_{11} \rightarrow CO_2$ is 31.
 - (a) Oxidation
 - (b) Reduction
 - (c) Neither oxidation nor reduction
 - (d) Both oxidation and reduction
- Which halide is not oxidised by MnO_2

[MNR 1985; JIPMER 2000]

(a) F

- (b) Cl
- (c) Br
- (d) I
- When Fe^{2+} changes to Fe^{3+} in a reaction
 - (a) It loses an electron (b) It gains an electron
 - (c) It loses a proton
- (d) It gains a proton
- In acid solution, the reaction $MnO_4^- \rightarrow Mn^{2+}$ 34. involves

[MP PMT 1989]

[CPMT 1976]

- (a) Oxidation by 3 electrons
- (b) Reduction by 3 electrons
- (c) Oxidation by 5 electrons
- (d) Reduction by 5 electrons
- When iron or zinc is added to CuSO 4 solution, copper is precipitated. It is due to [CPMT 1974, 79]
 - (a) Oxidation of Cu^{+2}
- (b) Reduction of Cu^{+2}
- (c) Hydrolysis of CuSO 4 (d) Ionization of CuSO 4
- In the reaction, $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$ which of the following statement is incorrect[UPSEAT 2001, 02]
 - (a) A Redox reaction
 - (b) Metallic iron is a reducing agent
 - (c) Fe^{3+} is an oxidising agent
 - (d) Metallic iron is reduced to Fe^{3+}
- 37. Which of the following is redox reaction[CBSE PMT 1997]
 - (a) H_2SO_4 with NaOH
 - (b) In atmosphere, O_3 from O_2 by lightning
 - (c) Evaporation of H_2O
 - (d)Nitrogen oxides form nitrogen and oxygen by lightning

Oxidizing and Reducing agent

Equation $H_2S + H_2O_2 \rightarrow S + 2H_2O$ represents

[UPSEAT 2001]

(a) Acidic nature of H_2O_2

	(b) Basic nature of H_2O_2	2			[CPMT 1996]
	(c) Oxidising nature of	H_2O_2		(a) O_2	(b) $KMnO_4$
	(d) Reducing nature of I			(c) I_2	(d) None of these
2.	In the reaction	2 2	12.	H_2O_2 is used as	[CPMT 1994]
	$C_2O_4^{2-} + MnO_4^- + H^+ \to Mn^-$	$^{2+} + CO_2 + H_2O$		(a) An oxidant only	
	the reductant is	[EAMCET 1991]		(b) A reductant only	
	(a) $C_2 O_4^{2-}$	(b) MnO_4^-		(c) An acid only	
	- '	•		(d) An oxidant, a reduct	ant and an acid
2	(c) Mn^{2+}	(d) H ⁺	13.	In $C + H_2O \rightarrow CO + H_2$, H_2	$_2O$ acts as [AFMC 1988]
3.	A reducing agent is a sul	74, 76, 78, 80; NCERT 1976]		(a) Oxidising agent	(b) Reducing agent
	(a) Accept electron	(b) Donate electrons		(c) (a) and (b) both	(d) None of these
		(d) Donate protons	14.	Strongest reducing agen	
4.		g is the most powerful			6; MP PET 1990; AMU 1999]
	oxidizing agent	[MAND and CDMT and]		(a) <i>F</i> ⁻	(b) <i>Cl</i> ⁻
	(a) F	[MNR 1990; CPMT 2003] (b) Cl ₂		(c) Br ⁻	(d) <i>I</i> ⁻
	(a) F_2	-	15.	-	oxide in water reacts with hur. Here sulphur dioxide
	(c) Br ₂	(d) I_2		n_2 s precipitating surpli	nur. Here surphur uroxide
5.	-	of chlorine the strongest aqueous solution is [MP PET	[000c]		[NCERT 1980]
	(a) $HClO_4$	(b) HClO ₃	2000]	(a) As oxidising agent	
	(c) <i>HClO</i> ₂	(d) HOCl		(c) An acid	(d) A catalyst
6	-		16.		inces is a good reducing
6.	-	ement about H_2O_2 [AIIMS 19	96]	agent	[NCEDT 10=0. CDMT 1000]
	(a) It acts as reducing as			(a) NaOCl	[NCERT 1979; CPMT 1988] (b) <i>HI</i>
	(b) It acts as both oxidis(c) It is neither an oxidi			(c) FeCl ₃	(d) <i>KBr</i>
	(d) It acts as oxidising a		17.	The strongest reducing a	
7.	_	nesium are fixed to the	-/•	(a) HNO_2	(b) H_2S
	bottom of a ship to	[AIEEE 2003]		(c) H_2SO_3	(d) SnCl ₂
	(a) Keep away the shark		18.	Which one is an oxidising	-
	(b) Make the ship lighte		10.	(a) $FeSO_A$	
	(c) Prevent action of wa			(b) HNO_3	
8.	(d) Prevent puncturing by Which of the following	behaves as both oxidising		-	I ()
0.	and reducing agents	[AFMC 1995]		(c) $FeSO_4.(NH_4)_2SO_4.6H$	120
	(a) H_2SO_4	(b) SO_2		(d) H_2SO_4	
	(c) H_2S	(d) HNO_3	19.		wing reactions H_2O_2 is a
9.	The reaction $H_2S + H_2O_2$	$\rightarrow 2H_2O + S$ shows		reducing agent	981; NCERT 1981; BHU 1999]
		[JIPMER 2001]		(a) $2FeCl_2 + 2HCl + H_2O_2$	
	(a) Oxidizing action of A	H_2O_2		(b) $Cl_2 + H_2O_2 \rightarrow 2HCl +$	
	(b) Reducing action of H	H_2O_2		(c) $2HI + H_2O_2 \rightarrow 2H_2O +$	-
	(c) Alkaline nature of H	I_2O_2		(d) $H_2SO_3 + H_2O_2 \to H_2S$	-
	(d) Acidic nature of H_2O		20		d in water the sodium ion
10.	Which of the following i	_	20.	becomes	a in water the sourum for
		[EAMCET 1987]			[NCERT 1976]
	(a) $NaNO_2$	(b) NaNO ₃		(a) Oxidised	(b) Reduced
	(c) HI	(d) SnCl ₂		(c) Hydrolysed	(d) Hydrated
11.	Which of the following	cannot work as oxidising	21.	Strongest reducing agen	
	agent	S .		(a) <i>K</i>	(b) <i>Mg</i>

- (c) Al (e) Na (c) H^+ (c) HCl
- (d) Br
- Which substance is serving as a reducing agent in 22. the following reaction

$$14H^{+} + Cr_{2}O_{7}^{2-} + 3Ni \rightarrow 2Cr^{3+} + 7H_{2}O + 3Ni^{2+}$$

[CBSE PMT 1994; AFMC 2000; DPMT 2001]

- (a) H_2O

- (d) $Cr_2O_7^{2-}$
- Which of the following acid possesses oxidising, 23. reducing and complex forming properties[MNR 1985]
 - (a) HNO_2
- (b) H_2SO_4
- (d) HNO_2
- **24.** Which one is oxidising substance

[CPMT 1997]

- (a) $C_2H_2O_2$
- (b) CO
- (c) H_2S
- (d) CO₂
- The compound that can work both as oxidising 25. and reducing agent is [CPMT 1986; MP PET 2000]
 - (a) $KMnO_4$
- (b) H_2O_2
- (c) BaO_2
- (d) $K_2Cr_2O_7$
- 26. Which one is oxidising agent in the reaction

$$2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$$

[CPMT 1997]

- (a) H^+
- (b) $Cr_2O_4^-$
- (c) Cr^{++}
- (d) None of these
- Which is the best description of the behaviour of 27. bromine in the reaction given below

$$H_2O + Br_2 \rightarrow HOBr + HBr$$

[CBSE PMT 2004]

- (a) Oxidised only
- (b) Reduced only
- (c) Proton acceptor only
- (d) Both oxidised and reduced
- 28. What is the oxidising agent in chlorine water

[JEE Orissa 2004]

- (a) HCl
- (b) HClO,
- (c) HOCl
- (d) None of these
- 29. In the reaction

$$Ag_2O + H_2O_2 \rightarrow 2Ag + H_2O + O_2$$
, the H_2O_2 acts as

[BHU 2004]

- (a) Reducing agent
- (b) Oxidising agent
- (c) Bleaching agent
- (d) None of the above
- 30. In the reaction

$$HAsO_2 + Sn^{2+} \rightarrow As + Sn^{4+} + H_2O$$
 oxidising agent is

[BVP 2004]

- (a) Sn^{2+}
- (b) Sn 4+
- (c) As
- (d) $HAsO_2$

- Which of the following substances acts as an 31. oxidising as well as a reducing agent[UPSEAT 2004; DCE 20
 - (a) Na_2O
- (b) SnCl 2
- (c) Na_2O_2
- (d) NaNO₂
- **32.** In the reaction

 $P + NaOH \rightarrow PH_3 + NaH_2PO_2$

[MP PET 2004]

- (a) P is oxidised only
- (b) P is reduced only
- (c) P is oxidized as well as reduced
- (d) Na is reduced

Oxidation number and Oxidation state

- The oxidation number of C in CO_2 is [MP PET 2001] 1.
 - (a) 2
- (b) + 2
- (c) 4
- (d) + 4
- The oxidation number of As is [RPMT 1997]
 - (a) + 2 and + 3
- (b) + 3 and + 5
- (c) + 3 and + 4
- (d) None of these
- The oxidation number of Ba in barium peroxide is 3.

[Pb. PMT 2002]

- (a) + 6
- (b) + 2

(c) 1

- (d) + 4
- HNO₂ acts both as reductant and oxidant, while HNO₃ acts only as oxidant. It is due to their [AIIMS 2000]
 - (a) Solubility ability
 - (b) Maximum oxidation number
 - (c) Minimum oxidation number
 - (d) Minimum number of valence electrons
- Chlorine is in +1 oxidation state in 5.

[MP PMT 1981; NCERT 1974; CPMT 1971, 78]

- (a) HCl
- (b) HClO₄
- (c) ICl
- (d) Cl_2O
- The valency of Cr in the complex $[Cr(H_2O)_4 Cl_2]^+$ 6.

[MP PMT 2000]

(a) 1

(b) 3

- (c) 5
- (d) 6
- In the conversion $Br_2 \rightarrow BrO_3^-$, the oxidation state 7. of bromine changes from

[EAMCET 1990; AMU 1999; RPMT 2002]

- (a) 1 to 1 (c) 0 to + 5
- (b) 0 to 1
- (d) 0 to -5
- In the chemical reaction ${\it Cl}_2 + {\it H}_2 {\it S} \rightarrow 2{\it HCl} + {\it S}$, the oxidation number of sulphur changes from [MP PMT 1999]
 - (a) 0 to 2
- (b) 2 to 0
- (c) 2 to 0
- (d) 2 to 1
- Oxidation number of cobalt in $K[Co(CO)_4]$ is

[KCET 1996]

- (a) + 1
- (b) + 3
- (c) 1
- (d) 3

10.	When $K_2Cr_2O_7$ is of	converted to K_2CrO_4 , the change		(c) + 2	(d) - 2	
	in the oxidation st	ate of chromium is [NCERT 1981]	23.	Maximum oxidatio	n state of <i>Cr</i> is [RF	MT 2002]
	(a) 0	(b) 6		(a) 3	(b) 4	
	(c) 4	(d) 3		(c) 6	(d) 7	
11.	The oxidation num	nber of chlorine in HOCl	24.		following compound t	
	(a) - 1	(b)o			dation state [CBSE PMT	1999; BHU 2000]
	(c) + 1	(d) + 2		(a) CrO_5	(b) $NH_2.NH_2$	
12.	Oxidation number	of S in S^{2-} is [CPMT 1979]		(c) NOClO ₄	(d) $[Fe(CO)_5]$	
	(a) - 2	(b) o	25.	Carbon is in the lo	west oxidation state in	
	(c) - 6	(d) + 2			[NCERT 1979; MH	CET 1999]
13.	Oxidation number	of N in $(NH_4)_2SO_4$ is [CPMT 1996]]	(a) CH_4	(b) <i>CCl</i> ₄	
	(a) - 1 / 3	(b) - 1		(c) CF_4	(d) <i>CO</i> ₂	
	(c) + 1	(d) - 3	26.	Oxidation number	of carbon in $H_2C_2O_4$ is	;
14.	In which compour	d, oxidation state of nitrogen is			[CI	PMT 1982]
	1			(a) + 4	(b) + 3	
		[MP PMT 1989]		(c) + 2	(d) - 2	
	(a) <i>NO</i>	(b) N_2O	27.	The oxidation num	ber of Pt in $[Pt(C_2H_4)C_3]$	$l_{\scriptscriptstyle 2}$] $^-$ is
	(c) NH_2OH	(d) N_2H_4	,			INR 1993]
15.	Oxidation number	of nickel in $Ni(CO)_4$		(a) + 1	(b) + 2	114K 1993]
		IIMS 1984; MNR 1985; CPMT 1997;		(a) $+ 1$ (c) $+ 3$	(d) + 2 (d) + 4	
	_	MP PET/PMT 1998; AMU 2000; 01]	28.	, , ,	ber of carbon in CH_2Cl	l ic
	(a) 0	(b) + 4	20.		-	_
	(c) - 4	(d) + 2			T 1976; Pb. PET 1999; AF	MC 2004]
16.	The oxidation num	ober of sulphur in H_2SO_4 is		(a) O (c) -2	(b) + 2	
		[CPMT 1979Pb. CET 2002]	29.		(d) + 4 es of phosphorus vary f	From
	(a) - 2	(b) + 2	29.	The oxidation state		PMT 1976]
	(c) + 4	(d) + 6		(a) - 3 to +5	(b) - 1 to +1	MI 19/0]
17.		chlorine in perchloric acid is		(c) - 3 to +3	(d) - 5 to +1	
		[EAMCET 1989]	30.		ch oxidation number in	creases is
	(a) - 1	(b) o	_	known as		
	(c) - 7	(d) + 7			[C]	PMT 1976]
18.	Oxidation number	of N in HNO_3 is		(a) Oxidation	(b) Reduction	
		[BHU 1997]		(c) Auto-oxidation		
	(a) - 3.5	(b) + 3.5	31.	The oxidation num	ber of S in $H_2S_2O_8$ is[N	IP PET 2002]
	(c) - 3, +5	(d) + 5		(a) + 2	(b) + 4	
19.	The oxidation num	ober of Mn in MnO_4^{-1} is		(c) + 6	(d) + 7	
	(a) + 7	(b) - 5	32.	The oxidation state	e of nitrogen in N_3H is	
	(c) + 6	(d) + 5			[NCERT	T 1977, 81]
20				(a) $+\frac{1}{3}$	(b) + 3	
20.		ectrons in a reaction. What will umber of tin after the reaction		3	(3) 13	
	(a) + 2	(b) Zero		(c) -1	(d) $-\frac{1}{3}$	
	(c) $+ 4$	(d) - 2			3	
21.		e of Mn in K_2MnO_4	33.		ving statements is corr	
	The oxidation stat				oxidation number –1 a	
		[CPMT 1982, 83, 84; DPMT 1982; NCERT 1973; AMU 2000]	halo	(b) Hydrogen has ogens	s same electronegat	ivity as
	(a) + 2	(b) + 7		(c) Hydrogen will	not be liberated at ano	de
	(c) - 2	(d) + 6			same ionization pot	ential as
22.	Oxidation number	of oxygen in O_2 molecule is	alka	ıli metals		
		[CPMT 1984]	34.	The oxidation state	e of Cr in $[Cr(NH_3)_4 Cl_2]$] ⁺ is
	(a) + 1	(b) o			[AII	EEE 2005]

556 Redox Reactions (a) + 3(b) +2(c) o (d) + 448. The characteristic oxidation number of atoms in (c) +1(d) o free metals is [NCERT 1975] 35. Sulphur has highest oxidation state in (a) Minus one (b) Any number [EAMCET 1991] (c) One (d) Zero (a) SO, (b) H_2SO_4 In which one of the following changes there are 49. (c) $Na_2S_2O_3$ (d) $Na_2S_4O_6$ transfer of five electrons [NCERT 1982] 36. The oxidation number of Fe and S in iron pyrites (a) $MnO_4^- \rightarrow Mn^{2+}$ (b) $CrO_4^2 \rightarrow Cr^{3+}$ (c) $MnO_4^{2-} \rightarrow MnO_2$ (d) $Cr_2O_7^{2-} \to 2Cr^{3+}$ [RPMT 1997] (a) 4, - 2 (b) 2, -1Oxidation number of C in $C_6H_{12}O_6$ is **[KCET 1992]** (c) 3, - 1.5 (d) 3, -1(b) - 6(a) + 6The oxidation number of nitrogen in NO_3^- is (c) 0 (d) + 4In which of the following compounds iron has [CPMT 1982] lowest oxidation state [MNR 1984] (a) - 1 (b) + 2(a) $FeSO_4.(NH_4)_2SO_4.6H_2O$ (c) + 3(d) + 5(b) $K_A Fe(CN)_6$ Oxidation state of elemental carbon is [MNR 1983] 38. (a) o (c) $Fe(CO)_5$ (c) 2 (d) 3 (d) Fe_2O The sum of the oxidation numbers of all the 39. (e) $K_2 FeO_4$ carbons in C_6H_5CHO is [EAMCET 1986] **52.** The oxidation number of hydrogen in MH_2 is (a) + 2(b) o [CPMT 1976] (c) + 4(d) - 4(a) + 1(b) - 140. Which one of the following has the highest (c) + 2(d) - 2oxidation number of iodine [CPMT 1982] 53. Oxidation number of iodine varies from [CPMT 1982] (a) KI_3 (b) KI (a) - 1 to + 1(b) -1 to +7(c) IF₅ (d) KIO_4 (c) +3 to +5(d) - 1 to + 5The oxidation number of N in $N_2H_5^+$ [Pb. PMT 2001] When SO2 is passed through acidic solution of potassium dichromate, then chromium sulphate is (a) - 3(b) (-2)formed. Change in valency of chromium is[CPMT 1979] (c) - 1(d) + 2(a) +4 to +2(b) +5 to +342. In which of the following compounds the (c) +6 to +3(d) +7 to +2oxidation number of carbon is maximum (a) HCHO The oxidation states of the most electronegative 55. (b) CHCl₃ element in the products of the reaction of (c) CH_3OH (d) $C_{12}H_{22}O_{11}$ BaO_2 with dilute H_2SO_4 are The oxidation state of chlorine in KClO₄ is[CPMT 1985] 43. [IIT 1991; CBSE PMT 1992; BHU 2000] (a) - 1(b) + 1(a) 0 and -1(b) - 1 and - 2(d) - 7(c) - 2 and 0 (d) - 2 and + 1The oxidation state of I in $H_4IO_6^-$ is [CBSE PMT 1994] The highest oxidation state of Mn is shown by (a) + 7[MNR 1983; RPMT 1999] (b) + 5(c) + 1(d) - 1(a) K_2MnO_4 (b) $KMnO_4$ An element which never has a positive oxidation (c) MnO_2 (d) Mn_2O_2 number in any of its compounds [AIIMS 1981] (e) MnO (a) Boron (b) Oxygen The oxidation number of carbon in CH_2O is 57. (d) Fluorine (c) Chlorine [IIT 1982; EAMCET 1985; MNR 1990; UPSEAT 2001 46. In an oxidation process, oxidation number[CPMT 1976] CPMT 1997, 2004] (a) Decreases (a) - 2(b) + 2(b) Increases (c) o (d) + 4(c) Does not change Oxidation state of oxygen in hydrogen peroxide is (d) First increases then decreases

If HNO_3 changes into N_2O , the oxidation number

(b) - 1

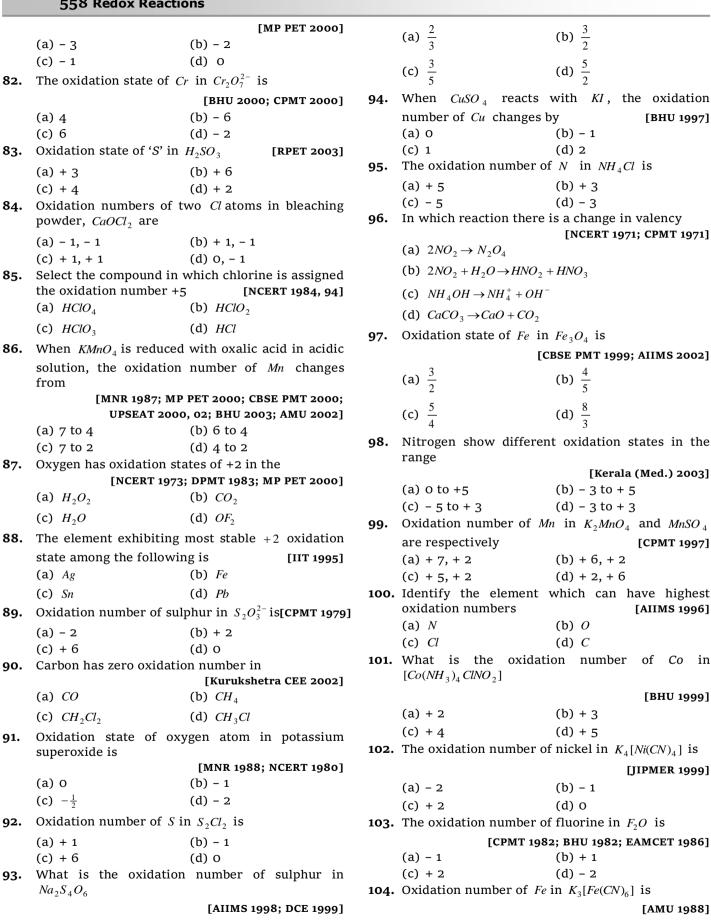
[BHU 1997; AFMC 2001]

(a) - 1

(c) o

is changed by

(a) + 2


[DPMT 1984; 91; CPMT 1988; MNR 1994;

UPSEAT 2001; RPMT 2002; JEE Orissa 2004]

(b) + 1

(d) - 2

59.	The oxidation number	of Cr in $K_2Cr_2O_7$ is		_	[U 1983; NCERT 1974; CPMT 1977]
	[CPMT 19	81, 85, 90, 93, 99; KCET 1992;		(a) 4	(b) 2
	BHU 1988, 98;	AFMC 1991, 99; EAMCET 1986;		(c) 6	(d) 8
	MP PMT 1996,	99, 2002; MP PET/PMT 1998;	71.	Sulphur has lowest	oxidation number in
		Bihar CEE 1995; RPET 2000]		(2) 4 50	[EAMCET 1993] (b) SO_2
	(a) +6	(b) - 7		(a) H_2SO_3	=
_	(c) +2	(d) - 2		(c) H_2SO_4	(d) H_2S
60.	metal is in oxidation s		72.		ber and covalency of sulphur in le (S_8) are respectively[NCERT 1977]
	(a) $[Co(NH_3)_6]Cl_2$	(b) $[Fe(H_2O)_6SO_4]$		(a) 0 and 2	(b) 6 and 8
	(c) $[Ni(CO)_4]$	(d) $[Fe(H_2O)_3](OH)_2$		(c) o and 8	(d) 6 and 2
61.	Oxidation number of o	smium (Os) in OsO_4 is	73.		um sulphate oxidation number
		[AIIMS 1999]		of <i>Fe</i> is	[CDMT 1000]
	(a) + 4	(b) + 6		(a) + 3	[CPMT 1988] (b) + 2
	(c) + 7	(d) + 8		(a) $+ 3$ (c) $+ 1$	(0) + 2 (d) - 2
62.	The atomic number of	f an element which shows	74		per of nitrogen in NH_2OH is
	the oxidation state of	+ 3 is [CPMT 1989, 94]	74.	The oxidation number	
	(a) 13	(b) 32		(-) + 4	[NCERT 1981]
	(c) 33	(d) 17		(a) + 1	(b) - 1
63.	The oxidation number	r of iron in the compound		(c) - 3	(d) - 2
	$K_4[Fe(CN)_6]$ is		75.		number of phosphorus in
	[NCERT	1976; MNR 1986; AIIMS 2000]		$Ba(H_2PO_2)_2$ is	
	(a) + 6	(b) + 4		_	(urukshetra CEE 1998; DCE 2004]
	(c) + 3	(d) + 2		(a) - 1	(b) + 1
64.	The brown ring compl	ex compound is formulated	-6	(c) + 2	(d) + 3
		he oxidation state of iron is 1987; IIT 1987; MP PMT 1994;	76.	will be	ts low oxidation state. Then its
	LIMMELI	AIIMS 1997; DCE 2000]			[DCE 2001]
	(a) 1	(b) 2		(a) Highly acidic	
	(c) 3	(d) o		(b) Highly basic	
65.	Oxidation state of oxyg			(c) Highest oxidisii	ng property
		UPSEAT 2001; MH CET 2002]		(d) Half acidic, half	f basic
	(a) + 1	(b) + 2	77•	The oxidation n	number and the electronic
	(c) -1	(d) -2		configuration of su	lphur in H_2SO_4 is [KCET 2002]
66.	Phosphorus has the ox	idation state of +3 in		(a) + 4; $1s^2 2s^2 2p^6 3s$	2
	(a) Orthophosphoric a	[NCERT 1982; RPMT 1999] cid (b) Phosphorus acid		(b) + 2; $1s^2 2s^2 2p^6 3s^2$	$s^2 3p^2$
_	(c) Metaphosphoric ac	id (d) Pyrophosphoric acid		(c) + 3; $1s^2 2s^2 2p^6 3s^2$	$s^2 3p^1$
67.	Oxidation number of I	Pin $Mg_2P_2O_7$ is		(d) + 6; $1s^2 2s^2 2p^6$	
		[CPMT 1989; MP PMT 1995]	78.	The oxidation numl	per of Mn in $KMnO_4$ is
	(a) + 3	(b) + 2	-		33; EAMCET 1992, 93; RPET 1999]
	(c) + 5	(d) - 3		(a) + 7	(b) - 7
68.	The oxidation state of			(c) + 1	(d) - 1
	(a) N_3H	[MP PMT 2001; BHU 2002] (b) NH ₂ OH	79.		of As atoms in H_3 As O_4 is
		-	, 5.		[DPMT 2001]
	(c) N_2H_4	(d) NH_3		(a) - 3	(b) $+ 4$
69.	Oxidation number of I	Pin KH_2PO_2 is		(c) + 6	(d) + 5
		[CPMT 1987; MH CET 1999]	80		the oxidation state of Xe is
	(a) + 1	(b) + 3	50.	in Aco 3 and Acr 6	
	(c) + 5	(d) - 4		(a) + 4	[MP PET 2003]
70.		lation state of an element is		(a) + 4 (c) + 1	(b) + 6 (d) + 3
	outermost shell is	electrons present in its	81.		of carbon in $CH_3 - Cl$ is
	outer most shell is		01.	Ozidation number ($n \in \mathbb{N}$ car bon in $\operatorname{CH}_3 = \operatorname{Cr}_1$

Redox	Reactions	550
I CUON	11Cuctions	

	(a) + 2	(b) + 3		4.	When KMnO	acts as	an oxidisin	g agent and
	(c) + 1	(d) + 4			ultimately for	$rms [MnO_4]^{-1}$	2 , MnO_{2} , $Mn_{2}O_{3}$	O_3 , Mn^{+2} then
105.	Oxidation number	of N in NH_3 is			the number o	f electrons	transferred	in each case
		[CPMT 19	79; Pb CET 2004]		respectively i			
	(a) - 3	(b) + 3						[AIEEE 2002]
_	(c) 0	(d) + 5			(a) 4, 3, 1, 5		(b) 1, 5, 3, 7	
106.	What is the net cha	-	ion [AFMC 2004]		(c) 1, 3, 4, 5		(d) 3, 5, 7, 1	
	(a) + 2	(b) + 3		5.	Starch paper			esence of
	(c) + 4	(d) + 5					-	[NCERT 1979]
.07.	Which of the for positive oxidation	-	[CPMT 2004]		(a) Iodine		(b) Oxidisin	g agent
	(a) O	(b) Fe	[CFM1 2004]		(c) Iodide ion		(d) Reducing	g agent
	(c) <i>Ga</i>	(d) F		6.	How many m	oles of K_2C	r_2O_7 can be	reduced by 1
08.	The oxidation sta	` '	silicon when it		mole of Sn^{2+}	2	= '	MP PMT 2003]
٠٠.	combines with stro			H CET 2			(b) 1/6	MF FM1 2003]
	(a) - 2	(b) - 4	_		(c) 2/3		(d) 1/0 (d) 1	
	(c) + 4	(d) - 2		_	•			0 7 17.1
09.	The oxidation num	ber of sulphur i	n H_2S is	7•	$2MnO_4^- + 5H_2O_4$	$v_2 + 6H^+ \rightarrow 2$	$Z + 5O_2 + 8H$	_
			[Pb. CET 2002]		reaction Z is			[RPMT 2002]
	(a) - 2	(b) + 3	_		(a) Mn^{+2}		(b) Mn^{+4}	
	(c) + 2	(d) - 3			(c) MnO_2		(d) <i>Mn</i>	
10.	Oxidation number	of nitrogen in A	<i>laNO</i> ₂ is	8.	What is '		ne followii	ng reaction
			[Pb. CET 2000]	0.	$2Fe^{3+}_{(aq)} + Sn^{2+}$			•
	(a) + 2	(b) + 3	_				*	MP PET 2003]
	(c) + 4	(d) - 3			(a) $Sn^{3+}(aq)$		(b) $Sn^{4+}(aq)$	
11.	Oxidation number	of S in SO_4^{2-}	[BCECE 2005]		(c) $Sn^{2+}_{(aq)}$		(d) Sn	
	(a) + 6	(b) + 3		9.	For the redox	reaction		
	(c) + 2	(d) - 2			$MnO_4^- + C_2O_4^{-2}$	$+H^+ \rightarrow Mn^{2+}$	$+CO_2+H_2O_3$	1
12.	The oxidation sta				the correct c			
	product formed by			051				U 1995; CPMT 1
	acidified potassium (a) +4	(b) +6	iution is [AIEEE 20	05]				MP PET 2003]
	(a) +4 (c) +2	(d) +3			MnO_4^-		H^+	
12	The oxidation state		[Oricea IFF 2005]		•			
13.			[011334]EE 2005]		(a) 2	5	16	
	(a) +1	(b) +3			(b) 16	5	2	
	(c) +5	(d) +7			(c) 5	16	2	
-	Redox reaction a	nd Method for	balancing		(d) 2	16	5	
		ox reaction		10.	Which of the	following is	a redox rea	
								[AIEEE 2002]
	The value of x	in the nartial	redox equation		(a) $NaCl + KN$	$O_3 \rightarrow NaNO_3$	+ KCl	
•	$MnO_4^- + 8H^+ + xe =$	_	_		(b) $CaC_2O_4 + C_4$	$2HCl \rightarrow CaCl$	$_{2}+H_{2}C_{2}O_{4}$	
	·	=			(c) $Mg(OH)_2$ +	$2NH_{\perp}Cl \rightarrow N$	$MgCl_2 + 2NH_A$	ОН
	(a) 5 (c) 1	(d) o			(d) $Zn + 2AgCl$	-	0 2 4	
	$C_2H_6(g) + nO_2 \rightarrow CO_3$							
2.			acofficients of	11.	Which of th	ie followin	g reaction	is a redox
	In this equation, CO_2 and H_2O is	the ratio of the			reaction			
	= =	(h) = . =	[KCET 1992]				[1	MP PMT 2003]
	(a) 1:1	(b) 2:3			(a) $P_2O_5 + 2H_2$	$_2O \rightarrow H_4P_2O_7$		
_	(c) 3:2	(d) 1:3	in the neduction		(b) $2AgNO_3 + $	$BaCl_2 \rightarrow 2Ag$	$Cl + Ba(NO_3)_2$	<u>.</u>
3.	The number of elec	ctrons involved	iii tile reduction		- 3	_ 0	. 3/2	

of $Cr_2O_7^{2-}$ in acidic solution to Cr^{3+} is [EAMCET 1983]

(b) 2 (d) 5

(a) o

(c) 3

(c) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$

(d) $Cu + 2AgNO_3 \rightarrow 2Ag + Cu(NO_3)_2$

Which of the following reactions involves oxidation-12. reduction

[NCERT 1972; AFMC 2000; Pb. CET 2004; CPMT 2004]

- (a) $NaBr + HCl \rightarrow NaCl + HBr$
- (b) $HBr + AgNO_3 \rightarrow AgBr + HNO_3$
- (c) $H_2 + Br_2 \rightarrow 2HBr$
- (d) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$
- **13.** Which of the following is the strongest oxidising agent

[Pb. CET 2000]

- (a) $BrO_3^-/Br^{2+}, E^o = +1.50$
- (b) Fe^{3+}/Fe^{2+} , $E^{o} = +0.76$
- (c) $MnO_4^-/Mn^{2+}, E^o = +1.52$
- (d) $Cr_2O_7^{2-}/Cr^{3+}, E^o = +1.33$
- 14. In the balanced chemical reaction,

$$IO_3^- + a~I^- + b~H^+ \rightarrow c~H_2O + d~I_2$$

- a, b, c and d respectively correspond to [AIIMS 2005]
- (a) 5, 6, 3, 3
- (b) 5, 3, 6, 3
- (c) 3, 5, 3, 6
- (d) 5, 6, 5, 5
- **15.** The number of moles of $KMnO_4$ reduced by one mole of

KI in alkaline medium is:

[CBSE PMT 2005]

- (a) One fifth
- (b) five
- (c) One
- (d) Two

Auto oxidation and Disproportionation

1. In the equation $H_2S + 2HNO_3 \rightarrow 2H_2O + 2NO_2 + S$

The equivalent weight of hydrogen sulphide is[BVP 2003]

(a) 16

- (b) 68
- (c) 34
- (d) 17
- 2. If 1.2 *g* of metal displace 1.12 litre hydrogen at normal temperature and pressure ,equivalent weight of metal would be [DPMT 2001]
 - (a) 24
- (b) 12
- (c) 1.2 ÷11.2
- (d) 1.2×11.2
- 3. Which one of the following nitrates will leave behind a metal on strong heating [AIEEE 2003]
 - (a) Ferric nitrate
- (b) Copper nitrate
- (c) Manganese nitrate
- (d) Silver nitrate
- 4. To prevent rancidification of food material, which of the following is added [CPMT 1996]
 - (a) Reducing agent
- (b) Anti-oxidant
- (c) Oxidising agent
- (d) None of these
- Prevention of corrosion of iron by zinc coating is called

[MP PMT 1993; CPMT 2002]

- (a) Galvanization
- (b) Cathodic protection
- (c) Electrolysis
- (d) Photo-electrolysis
- **6.** The metal used in galvanizing of iron is

[MP PET 1985, 96]

- (a) Pb
- (b) *Zn*
- (c) Al

- (d) Sn
- 7. In which of the following reactions there is no change in valency [NCERT 1974; CPMT 1978]
 - (a) $4KClO_3 \rightarrow 3KClO_4 + KCl$
 - (b) $SO_2 + 2H_2S \rightarrow 2H_2O + 3S$
 - (c) $BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$
 - (d) $2BaO + O_2 \rightarrow 2BaO_2$
- 8. The equivalent weight of phosphoric acid (H_3PO_4) in the reaction $NaOH + H_3PO_4 \rightarrow NaH_2PO_4 + H_2O$ is

[AIIMS 1999]

(a) 25

(b) 49

(c) 59

- (d) 98
- 9. What is the equivalent mass of IO_4^- when it is converted into I_2 in acid medium [Kerala PMT 2004]
 - (a) M/6
- (b) M/7
- (c) M/5
- (d) M/4
- (e) None of these
- 10. For decolourization of 1 mole of KMnO_4 , the moles of $\mathit{H}_2\mathit{O}_2$ required is **[AIIMS 2004]**
 - (a) 1/2
- (b) 3/2
- (c) 5/2
- (d) 7/2
- 11. In the reaction $I_2 + 2S_2O_3^{--} \rightarrow 2I^- + S_4O_6^{--}$ equivalent weight of iodine will be equal to[MP PET 2004]
 - (a) 1/2 of molecular weight
 - (b) Molecular weight
 - (c) 1/4 of molecular weight
 - (d) None
 - . The equivalent weight of KIO_3 in the reaction $2Cr(OH)_3 + 4OH + KIO_3 \rightarrow 2CrO_4^{2-} + 5H_2O + KI$ is

[MP PMT 2004]

- (a) Mole wt.
- (b) $\frac{\text{Mol.wt}}{6}$
- (c) $\frac{\text{Mol.wt.}}{2}$
- (d) $\frac{\text{Mol.wt.}}{3}$
- 13. The product of oxidation of I^- with MnO_4^- in alkaline medium is [IIT-JEE Screening 2004]
 - (a) IO_3^-
- (b) I_2
- (c) *IO*
- (d) IO_4^-
- 14. In alkaline medium ClO_2 oxidize H_2O_2 in O_2 and reduced itself in Cl^- then how many mole of H_2O_2 will oxidize by one mole of ClO_2 [Kerala CET 2005]

(a) 1.0 (b) 1.5 (c) 2.5 (d) 3.5(e) 5.0 Critical Thinking Objective Questions In which of the following acid, which acid has oxidation reduction and complex formation properties [UPSEAT 2001] (b) H_2SO_4 (a) HNO_3 (c) HCl (d) HNO_2 The compound which could not act both as 2. oxidising as well as reducing agent is[IIT Screening 1991] (a) SO, (b) MnO_2 (d) CrO (c) Al_2O_3 H_2S acts only as a reducing agent while SO_2 can 3. act both as a reducing and oxidizing agent because [AMU 1999] (a) S in H_2S has - 2 oxidation state (b) S in SO, has oxidation state + 4 (c) Hydrogen in H_2S more +ve than oxygen (d) Oxygen is more - ve in SO 2 Of all the three common mineral acids, only sulphuric acid is found to be suitable for making the solution acidic because [Kurukshetra CEE 2002] (a) It does not react with $KMnO_4$ or the reducing agent (b) Hydrochloric acid reacts with KMnO₄ (c) Nitric acid is an oxidising agent which reacts with reducing agent (d) All of the above are correct 5. For H_3PO_3 and H_3PO_4 the correct choice is [IIT Screening 2003] (a) H_3PO_3 is dibasic and reducing (b) H_3PO_3 is dibasic and non-reducing (c) H_3PO_4 is tribasic and reducing (d) H_3PO_3 is tribasic and non-reducing Match List I with List II and select the correct 6. answer using the codes given below the lists List I (Compound) List II (Oxidation state of N)

(1) + 5

(2) - 3

(3) + 4

(4) + 1

(A) NO₂

(B) HNO

(C) NH_3

(D) N_2O_5

Redox Reactions 561 Codes: (a) A B C D 3 4 1 (b) A B C D 2 4 3 1 (c) A В C D 2 1 (d) A B C D 2 3 M^{+3} ion loses $3e^{-}$. Its oxidation number will be [CPMT 2002] (a) o (b) + 3(c) + 6(d) - 3In the reaction $Zn + 2H^+ + 2Cl^- \rightarrow Zn^{2+} + 2Cl^- + H_2$, the spectator ion is [AIIMS 2001] (b) Zn^{2+} (a) Cl⁻ (c) H^+ (d) All of these The oxidation number of sulphur in $H_2S_2O_7$ and iron in $K_4 Fe(CN)_6$ is respectively [AIIMS 2000] (a) + 6 and + 2(b) + 2 and + 2(c) + 8 and + 2(d) + 6 and + 4Oxidation number of oxygen in potassium super oxide (KO_2) is [UPSEAT 1999, 2002] (a) - 2(b) - 1(c) - 1/2(d) - 1/4One mole of N_2H_4 loses 10 mol of electrons to form a new compound Y. Assuming that all nitrogen appear in the new compound, what is the oxidation state of N_2 in Y? (There is no change in the oxidation state of hydrogen) [IIT 1981; Pb. PMT 1998] (a) + 3(b) - 3(c) - 1(d) + 5Amongst the following identify the species with an atom in + 6 oxidation state [IIT Screening 2000] (b) $Cr(CN)_{6}^{3}$ (a) MnO_4^- (c) NiF_6^{2-} (d) CrO_2Cl_2 In which of the following compounds, is the oxidation number of iodine is fractional[BVP 2003] (a) IF_3 (b) IF_2 (c) I_3^- (d) IF_7 The compound which $YBa_2Cu_3O_7$ shows superconductivity has copper in oxidation state Assume that the rare earth element Yttrium is in its usual +3 oxidation state [IIT 1994] (a) 3/7(b) 7/3

(d) 7

7.

8.

9.

10.

13.

14.

(c) 3

The oxidation number of sulphur in S_8, S_2F_2, H_2S 15. respectively, are [IIT 1999]

(a) 0, +1 and -2

(b) + 2, +1 and - 2

(c) 0, + 1 and + 2

- (d) 2, + 1 and 2
- Which one of the following reactions is not an 16. example of redox reaction [Kurukshetra CEE 1998]

(a) $Cl_2 + 2H_2O + SO_2 \rightarrow 4H^+ + SO^{4-} + 2Cl^-$

- (b) $Cu^{++} + Zn \rightarrow Zn^{++} + Cu$
- (c) $2H_2 + O_2 \rightarrow 2H_2O$
- (d) $HCl + H_2O \to H_3O^- + Cl^-$
- For the reactions, $C + O_2 \rightarrow CO_2$; $\Delta H = -393 J$

 $2 Zn + O_2 \rightarrow 2 ZnO; \Delta H = -412 J$

[AIEEE 2002]

- (a) Carbon can oxidise Zn
- (b) Oxidation of carbon is not feasible
- (c) Oxidation of Zn is not feasible
- (d) Z_n can oxidise carbon
- **18.** In the reaction $B_2H_6 + 2KOH + 2X \rightarrow 2Y + 6H_2$, X and *Y* are respectively [EAMCET 2003]
 - (a) H_2 , H_3BO_3
- (b) HCl, KBO_3
- (c) H_2O , KBO_3
- (d) H_2O , KBO_2
- equation balanced 19. $H_2SO_4 + xHI \rightarrow H_2S + yI_2 + zH_2O$, the values of x, y, z are [EAMCET 2003]
 - (a) x = 3, y = 5, z = 2
 - (b) x = 4, y = 8, z = 5
 - (c) x = 8, y = 4, z = 4
 - (d) x = 5, y = 3, z = 4
- Which of the following can act as an acid and as a base

[AMU 1999]

- (a) $HClO_3^-$
- (b) $H_2PO_4^-$
- (c) HS⁻
- (d) All of these
- MnO_A^{2-} (1 mole) in neutral aqueous medium is disproportionate to [AIIMS 2003]
 - (a) 2/3 mole of MnO_4^- and 1/3 mole of MnO_2
 - (b) 1/3 mole of MnO_4^- and 2/3 mole of MnO_2
 - (c) 1/3 mole of Mn_2O_7 and 1/3 mole of MnO_2
 - (d) 2/3 mole of Mn_2O_7 and 1/3 mole of MnO_2
- The conductivity of a saturated solution of BaSO 4 is $3.06 \times 10^{-6} ohm^{-1} cm^{-1}$ and its equivalent

- conductance is $1.53 \text{ ohm}^{-1} \text{ cm}^{-1} \text{ equivalent}^{-1}$. The K_{sn} of the BaSO₄ will be [KCET 1996]
- (a) 4×10^{-12}
- (b) 2.5×10^{-9}
- (c) 2.5×10^{-13}
- (d) 4×10^{-6}
- 23. When MnO_2 is fused with KOH, a coloured compound is formed, the product and its colour is [IIT Screening 2003]
 - (a) K_2MnO_4 , purple green
 - (b) $KMnO_4$, purple
 - (c) Mn_2O_3 , brown
 - (d) Mn_3O_4 black

Read the assertion and reason carefully to mark the correct option out of the options given below:

- If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- If assertion is false but reason is true. (e)
- 1. Assertion: SO_2 and Cl_2 both are bleaching

Both are reducing agents.[AIIMS 1995] Reason

Assertion: Fluorine exists only in -1 oxidation

Fluorine has $2s^2 2p^5$ configuration. Reason

Assertion: Stannous chloride is a powerful 3. oxidising agent which oxidises

mercuric chloride to mercury.

Reason chloride gives precipitate with mercuric chloride,

but stannic chloride does not do so.[AIIMS 2

Assertion: HClO₄ is a stronger acid than

 $HClO_3$.

Oxidation state of Cl in $HClO_4$ is Reason +VII and in $HClO_3$ +V. [AIIMS 2004]

Assertion: In a reaction $Zn(s) + CuSO_4(aq) \rightarrow$

 $ZnSO_4(aq) + Cu(s)$, Zn is a reductant

but itself get oxidized.

In a redox reaction, oxidant is Reason

reduced by accepting electrons and

reductant is oxidized by losing

electrons.

6. Assertion: Oxidation number of carbon in

 CH_2O is zero.

Reason : CH_2O formaldehyde, is a covalent

compound.

7. Assertion: The oxidation numbers are

artificial, they are useful as a 'book-keeping' device of electrons in

reactions.

Reason : The oxidation numbers do not

usually represent real charges on atoms, they are simply conventions that indicate what the maximum charge could possibly be on an atom

in a molecule.

8. Assertion: H_2SO_4 cannot act as reducing

agent.

Reason : Sulphur cannot increase its

oxidation number beyond + 6.

9. Assertion: Equivalent weight of NH_3 in the

reaction $N_2 \rightarrow NH_3$ is 17/3 while

that of N_2 is 28/6.

Reason : Equivalent weight

Molecular weight

number of e^{-} lost or gained

Answers

Oxidation, Reduction

1	b	2	b	3	С	4	С	5	С
6	а	7	b	8	b	9	а	10	С
11	b	12	а	13	b	14	b	15	b
16	а	17	а	18	b	19	С	20	b
21	а	22	С	23	b	24	b	25	b
26	С	27	С	28	d	29	а	30	а
31	а	32	a	33	а	34	d	35	b
36	d	37	d						

Oxidizing and Reducing agent

1	С	2	а	3	b	4	а	5	d
6	b	7	С	8	b	9	а	10	b
11	С	12	d	13	а	14	d	15	а
16	b	17	b	18	bd	19	b	20	d
21	а	22	b	23	d	24	d	25	b
26	d	27	d	28	С	29	а	30	d
31	d	32	С						

Oxidation number and Oxidation state

1	d	2	b	3	b	4	b	5	d
6	b	7	С	8	С	9	С	10	а
11	С	12	а	13	d	14	b	15	а
16	d	17	d	18	d	19	а	20	С
21	d	22	b	23	С	24	d	25	а
26	b	27	b	28	а	29	а	30	а
31	С	32	d	33	a	34	а	35	b
36	а	37	d	38	a	39	d	40	d
41	b	42	b	43	С	44	а	45	d
46	b	47	d	48	d	49	а	50	С
51	С	52	b	53	b	54	С	55	b
56	b	57	С	58	а	59	а	60	С
61	d	62	a	63	d	64	b	65	b
66	b	67	С	68	а	69	а	70	С
71	d	72	а	73	b	74	b	75	b
76	С	77	d	78	а	79	d	80	b
81	b	82	С	83	С	84	b	85	С
86	С	87	d	88	d	89	b	90	С
91	С	92	а	93	d	94	С	95	d
96	b	97	d	98	b	99	b	100	С
101	а	102	d	103	а	104	b	105	а
106	а	107	d	108	b	109	а	110	b
111	а	112	d	113	b				

Redox reaction and Method for balancing Redox reaction

1	а	2	b	3	С	4	С	5	а
6	а	7	а	8	b	9	а	10	d
11	d	12	С	13	С	14	a	15	d

Auto oxidation and Disproportionation

1	d	2	а	3	d	4	b	5	а
						9	b	10	С
11	а	12	d	13	а	14	С		

Critical Thinking Questions

1	d	2	С	3	a,b	4	d	5	a
6	С	7	С	8	а	9	а	10	С
11	а	12	d	13	С	14	b	15	а
16	d	17	d	18	d	19	С	20	d
21	а	22	d	23	а				

Assertion & Reason

1	С	2	b	3	е	4	b	5	а
6	b	7	а	8	а	9	а		

Answers and Solutions

Oxidation, Reduction

1. (b)
$$2MnO_4^{\Theta} + 5H_2O_2 + 6H^+ \rightarrow Mn^{2+} + 5O_2 + 8H_2O$$
.

2. (b)
$$S + 2e^- \rightarrow S^{2-}$$

4. (c)
$$P_4^0 + 3NaOH + 3H_2O \rightarrow 3NaH_2PO_2 + PH_3$$
 . Sodium hypophosph ite

It shows oxidation and reduction (Redox) properties.

- **6.** (a) In this reaction H_2S is oxidised because the oxidation state of 'S' change from 2 to 0.
- 7. (b) $\stackrel{+4}{PbO_2} \rightarrow \stackrel{+2}{Pb(NO_3)_2}$. In this reaction reduction occurs.
- **8.** (b) Any substance which is capable of oxidising other substances and is capable of accepting/gaining electron during oxidation is called oxidising agent or oxidant.

- 9. (a) $2CuI \rightarrow Cu + CuI_2$. Oxidation and Reduction both occur so the reaction is redox.
- **10.** (c) $H_2S + X_2(Cl, Br, I = X) \rightarrow 2HX + S$. Here the halogen are reduced.
- 11. (b) When H_2O_2 reduces with $K_4[Fe(CN)_6]$. It is present in acidic solution.

$$2K_4[Fe(CN)_6 + H_2SO_4 + H_2O_2 \rightarrow$$

$$2K_{3}[Fe(CN)_{6}] + K_{2}SO_{4} + 2H_{2}O$$

- 13. (b) In the given reaction oxidation state of Mg is changing from 0 to +2 while in nitrogen it is changing from 0 to -3. So oxidation of Mg and reduction of nitrogen takes place.
- **14.** (b) When sodium metal is dissolved in liquid ammonia to form coloured solution. Dilute solutions are bright blue in colour due to the presence of solvated electrons.

$$Na + (x + y)NH_3 \rightarrow [Na(NH_3)_x]^+ + [e(NH_3)_y]^-$$
Blue Colour

15. (b) The metallic iron is oxidised to Fe^{+3} .

Oxidatio

(a)
$$SnCl_2 + 2HgCl_2 \rightarrow SnCl_4 + Hg_2Cl_2(s)$$

Reductio

In this reaction $HgCl_2$ is reduced in Hg.

- **17.** (a) It is the process in which electrons are lost (de-electronation).
- **18.** (b) $4Fe + 3O_2 \rightarrow 4Fe^{3+} + 6O^{2-}$
- 19. (c) Cu is above of Ag in electrochemical series and thus $Cu + 2Ag^+ \rightarrow Cu^{2+} + 2Ag$ reaction
- **21.** (a) $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$. In this reaction Sn^{2+} change in Sn^{4+} it is called an oxidation reaction.
- **22.** (c) $2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2\Gamma$.
- **23.** (b) $Zn_{(aq)}^{2+} + 2e^{-} \rightarrow Zn_{(s)}^{0}$ reduction.
- **24.** (b) SO_2 bleaches by reduction while chlorine bleaches colour of flowers by oxidation.
- **25.** (b) It is the process in which electrons are gained (electronation).

Oxidation
$$\begin{array}{ccc}
 & Oxidation \\
\hline
 &$$

In this reaction Zn atom oxidised to Zn^{2+} ion and iodine reduced to I^- .

27. (c)
$$\overset{*}{CrO_4^{2-}}$$
 $\overset{*}{Cr_2O_7^{2-}}$ $x + [(-2) \times 4] = -2$ $2x + (-2) \times 7 = -2$ $x = 8 - 2 = +6$ $2x = 14 - 2 = 12$, $x = \frac{12}{2} = +6$

In this reaction oxidation and reduction are not involved because there is no change in oxidation number.

- **28.** (d) $3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^{-} + BrO_3^{-} + 6HCO_3$. In this reaction bromine is oxidised as well as reduced.
- **29.** (a) *P* is oxidized as well as reduced (as in option a).

Reduction

(a)
$$Cr_2O_7^{2-} + 14H^+ + 6I^- \rightarrow 2Cr^{3+} + 3H_2O + 3I_2$$

- **31.** (a) In this reaction oxidation occur.
- **32.** (a) Fluorine has highest E^o value and more reactive than MnO_2 .
- **33.** (a) $Fe^{2+} \rightarrow Fe^{3+} + e^{-}$ oxidation.
- **34.** (d) $MnO_4^- \to Mn^{2+}$. In this reaction $5e^-$ are needed for the reduction of Mn^{2+} as:

$$MnO_A^- + 5e^- \rightarrow Mn^{2+}$$
.

Oxidation
$$\begin{array}{c|c}
\hline
Oxidation \\
\hline
0 & +2
\end{array}$$
35. (b) $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$

Reduction

In this reaction Cu^{2+} change in Cu^{o} , hence it is called as reduction reaction.

- **36.** (d) ${}^{0}_{4}Fe+3O_{2} \rightarrow {}^{3+}_{Fe+6}O^{2-}$, in this reaction metallic iron is oxidised to Fe^{3+} .
- 37. (d) $2N_2 + O_2 \rightarrow 2NO$

Here O.N. of N increases from O in N_2 to +2 in NO, 2- and that of decreased from O in O_2 to -2 in O, therefore, it is a redox reaction.

Oxidizing and Reducing agent

1. (c)
$$H_2^{-2} + H_2O_2 \rightarrow S + 2H_2O$$

Oxidation

The oxidation of S shows oxidising nature of H_2O_2 .

- 2. (a) $C_2O_4^{2-} + MnO_4^- + H^+ \to Mn^{2+} + CO_2 + H_2O$. In this reaction $C_2O_4^{2-}$ act as a reducing agent.
- 3. (b) A substance which is capable of reducing other substances and is capable of donating electrons during reduction is called a reducing agent or reductant.
- **4.** (a) Fluorine is a most powerful oxidizing agent because it consist of $E^o = +2.5 \text{ volt}$.
- 5. (d) HClO is the strongest oxidising agent. The correct order of oxidising power is $HClO > HClO_2 > HClO_3 > HClO_4$.
- **6.** (b) It acts both oxidizing and reducing agent.
- 7. (c) Prevent action of water and salt.
- **9.** (a) In this reaction H_2O_2 acts as a oxidizing agent.
- 10. (b) $NaNO_2$, $SnCl_2$ and HI have reducing and oxidizing properties but $NaNO_3$ have only oxidizing property.
- 11. (c) Because I_2 is a reducing agent.
- **13.** (a) In this reaction H_2O acts as oxidising agent.
- 14. (d) I^- act as a more reducing agent than other ions.
- 15. (a) When sulphur dioxide is react with H_2S here SO_2 act as an oxidising agent and H_2S act as reducing agent.
- **16.** (b) *HI* (Hydrogen Iodide) is a good reducing agent than other compound.
- 17. (b) Hydrogen sulphide (H_2S) acts as strong reducing agent as it decomposes by evolving hydrogen.
- 19. (b) $Cl_2^o + H_2O_2 \rightarrow 2HCl + O_2$. In this reaction chlorine reduced from zero to 1 oxidation
- **20.** (d) $NaCl + H_2O \rightarrow NaOH + HCl$ Sodium ion hydrated in water.
- **21.** (a) Potassium has higher negative value of reduction potential hence it shows more reducing properties.
- **22.** (b) The oxidation number of Ni changes from 0 to +1
- 23. (d) HNO_2 (Nitrous acid) acid acts as a oxidising, reducing agent and has complex formation properties.
- **24.** (d) CO_2 is an oxidizing agent.

- **25.** (b) Hydrogen peroxide (H_2O_2) act as a both oxidising and reducing agent.
- **27.** (d) $H_2O + Br_2 \longrightarrow HOBr + HBr_{-1}$

In the above reaction the oxidation number of Br_2 increases from zero (in Br_2) to +1 (in HOBr) and decrease from zero (Br_2) to -1 (in HBr). Thus Br_2 is oxidised as well as reduced & hence it is a redox reaction.

28. (c) $Cl_2 + H_2O \longrightarrow HCl + HOCl$

$$HOCl \longrightarrow HCl + [O]$$

HOCl can furnish, nascent oxygen.

(a)
$$Ag_2O + H_2O_2 \longrightarrow 2Ag + H_2O + O_2$$

Oxidation (reducing

30. (d) Oxidizing agent itself, undergoes reduction during a redox reaction

$$HAsO_2 + Sn \xrightarrow{+2} As + Sn + H_2O$$

Hence, here $HAsO_2$ is acting as oxidizing agent.

31. (d) $NaNO_2$ (Sodium nitrite) act both as oxidising as well as reducing agent because in it N atom is in +3 oxidation state (intermediate oxidation state)

Oxidising property

Reducing property

$$H_2O_2 + NaNO_2 \longrightarrow NaNO_3 + H_2O$$
.

32. (c)
$$P + NaOH \longrightarrow PH_3 + NaH_2 PO_2$$
Oxidation

Oxidation number and Oxidation state

- 1. (d) $\stackrel{*}{CO_2}$ x + 2(-2) = 0; x - 4 = 0; x = +4.
- 3. (b) +2 it is a second group element.
- 4. (b) In HNO_2 oxidation number of N = +3In HNO_3 oxidation number of N = +5.
- **5.** (d) In case of Cl_2O chlorine shows + 1 oxidation state.
- **6.** (b) $[Cr(H_2O)_4Cl_2]^+$

$$x+0+2(-1)=+1$$
; $x-2=+1$
 $x=+3$ for *Cr* in complex.

- 7. (c) $Br_2 \rightarrow BrO_3^-$, in this reaction oxidation state change from 0 to + 5.
- **8.** (c) Oxidation state of sulphur in H_2S is -2, while it is zero in 'S' i.e. in this reaction oxidation of sulphur and reduction of chlorine is takes place.
- 9. (c) $K[Co(CO)_4]$ 1+x+0=0: x = -1.
- **10.** (a) $K_2\overset{+6}{Cr_2}O_7 \to K_2\overset{+6}{Cr}O_4$.In this reaction no change in oxidation state of chromium.
- **11.** (c) In hypochlorous acid chlorine atom has + 1 oxidation number.
- **12.** (a) $S \rightarrow S^{2-}$ O.N. of S = -2.
- 13. (d) $(NH_4)_2SO_4 = 2NH_4^+ + SO_4^{--}$ * NH_4^+ $x + 4 = +1; \quad x = 1 - 4 = -3.$
- 14. (b) In N_2O nitrogen have +1 oxidation state.
- **15.** (a) If any central metal atom combined with corbonyl group than central metal atom shows always zero oxidation state.
- **16.** (d) $H_2 \overset{*}{SO}_4$ $2 + x - 2 \times 4 = 0$, x = 8 - 2 = +6.
- 17. (d) $HClO_4$ $1+x-2\times 4=0; 1+x-8=0$ x=8-1=+7 oxidation state.
- **18.** (d) $H N O_3$; 1+x-6=0; x=+5.
- 19. (a) Mn shows + 7 oxidation state in MnO_4^{-1} $x + (-2 \times 4) = -1$ x 8 = -1 x = -1 + 8 = +7.
- **20.** (c) $Sn^{2+} \rightarrow Sn^{4+} + 2e^{-}$
- 21. (d) K_2MnO_4 $2+x-2\times 4=0$ x=8-2=+6.
- **22.** (b) Each molecule always show zero oxidation state.
- **23.** (c) Maximum oxi. state for Cr is + 6.
- **24.** (d) In $[Fe(CO)_5]$, transition metal Fe has zero oxidation state.
- **25.** (a) In (b, c, d) carbon show + 4 oxidation state while in (a) carbon show 4 oxidation state.

- **26.** (b) $H_2 \overset{*}{C_2} O_4$ $2 + 2x - 2 \times 4 = 0$; 2x = 8 - 2 = 6 $x = \frac{6}{2} = +3$.
- **27.** (b) In complex $[Pt(C_2H_4)Cl_3]^T$ Pt have + 2 oxidation state.
- **28.** (a) $CH_2 Cl_2$ x+2-2=0; x=0.
- **29.** (a) Phosphorus shows 3 to + 5 oxidation state.
- **31.** (c) The chemical structure of $H_2S_2O_8$ is as follows:-

$$\begin{array}{cccc} O & O & O \\ \parallel & & \parallel & \\ H - O - S - O - O - S - O - H \\ \parallel & & \\ O & O \end{array}$$

So the oxidation number of S should be : $2 \times (+1) + 2 \times X + 6 \times (-2) + 2 \times (-1) = 0$ or X = +6.

32. (d) In hydrazoic acid (N_3H) nitrogen shows $-\frac{1}{3}$ oxidation state.

$*N_3H$

 $3x+1=0$, $3x=-1$, $x=-\frac{1}{3}$.

- 33. (a) Hydrogen have oxidation no. + 1 and 1.
- 34. (a) $[Cr(NH_3)_4 Cl_2]^+$ $x + 4 \times (0) - 2 = 1 \Rightarrow x + 0 - 2 = 1$ $\Rightarrow x = 1 + 2 = +3$.
- 35. (b) $SO_2 = +4$ $H_2SO_4 = +6$ $Na_2S_2O_3 = +2$ $Na_2S_4O_6 = +\frac{5}{2}.$
- 36. (a) $\stackrel{*}{FeS}_2$ FeS_2 $x-4=0 \quad 4+2x=0$ $x=+4 \quad 2x=-4$ $x=\frac{-4}{2}=-2.$
- 37. (d) $NO_3^$ $x-2\times3=-1$; x=6-1=+5.
- **38.** (a) Every element always shows zero oxidation state.
- **39.** (d) In benzaldehyde all carbon atoms show 4 oxidation state.

- **40.** (d) \overrightarrow{KIO}_4 $1 + x - 2 \times 4 = 0$; x = 8 - 1 = +7.
- **41.** (b) $N_2H_5^+$ 2x+5=+1; 2x=1-52x=-4; x=-2.
- 42. (b) Oxidation number of C in HCHO = 0 $CHCl_3 = +2$ $CH_3OH = -2$ $C_{12}H_{22}O_{11} = 0$
- **43.** (c) $KClO_4$ $2+2x-2\times7=0$ 2x-14+2=0.
- **44.** (a) $H_4IO_6^-$ 4+x-12=-1; x=-1+8=+7.
- **45.** (d) Fluorine always shows 1 oxidation state.
- **46.** (b) In oxidation process oxidation state always increases.
- **47.** (d) $HNO_3 = N_2O$ 1+x-6=0 2x-2=0 x=+5 2x=2 $x=\frac{2}{2}=+1$.
- **48.** (d) All free metals always shows zero oxidation state.
- **49.** (a) $MnO_4^- \to Mn^{2+} + 5e^-$.
- **50.** (c) C has oxidation number = 0.
- **51.** (c) Iron has zero oxidation state in carbonyl complexes.
- **52.** (b) In all alkali and alkaline earth metal hydride hydrogen always shows 1 oxidation state.
- **53.** (b) Iodine shows 1 to + 7 oxidation state.
- Reduction

 (c) $K_2Cr_2O_7 + 3SO_2 + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$

In this reaction chromium change from + 6 to +3 oxidation state.

- **55.** (b) In H_2O_2 oxygen shows = -1 (peroxide) oxidation state and in $BaSO_4$ oxygen shows = -2 oxidation state.
- **56.** (b) Mn shows highest oxidation state in $KMnO_4$.
- * (c) * CH₂O

$$x+2-2=0$$
$$x=0.$$

- **58.** (a) In all peroxide oxygen shows 1 oxidation state.
- **59.** (a) $K_2 Cr_2 O_7$ $2 + 2x - 2 \times 7 = 0$; 2x - 14 + 2 = 02x = 12; $x = \frac{12}{2} = +6$.
- **60.** (c) Nickle shows zero oxidation state in carbonyl complex.
- 61. (d) $\overset{*}{Os} O_4$ x + 4(-2) = 0 x - 8 = 0x = +8.
- **62.** (a) Al shows + 3 oxidation state.
- 63. (d) $K_4[Fe(CN)_6]$ $1 \times 4 + x + (-1 \times 6) = 0, \ 4 + x - 6 = 0$ x = +2.

In this complex compound Iron show + 2 oxidation state.

- **64.** (b) In this complex iron is a central metal atom showing + 2 oxidation state.
- **65.** (b) Oxygen shows + 2 oxidation state in F_2O . As F most electronegative element, it always has an O. No. =-1
- **66.** (b) $H_3 PO_3$ $3 + x - 2 \times 3 = 0$; x = 6 - 3 = +3.
- 67. (c) $Mg_2P_2O_7$ $4 + 2x - 2 \times 7 = 0$; 2x = 14 - 4 = 102x = 10; $x = \frac{10}{2} = +5$.
- 68. (a) $3 \times x + 1(1) = 0$ 3x + 1 = 0 $3x = -1, \Rightarrow x = -\frac{1}{3} \text{ in } N_3 H$ x + 2(+1) + 1(-2) + 1(1) = 0 $x = -1 \text{ in } NH_2OH$ $x \times 2 + 4(1) = 0$ $x = -\frac{4}{2} = -2 \text{ in } N_2H_4$ x + 3(1) = 0 $x = -3 \text{ in } NH_3$ Hence, highest in N_3H .
- **69.** (a) In KH_2PO_2 $1+2+x+(-2\times 2)=0$ 3+x-4=0; x=+1.
- **70.** (c) Oxygen has 6 electrons in the outer most shell and shows common oxidation state 2.

71. (d)
$$H_2 \overset{*}{SO}_3 = +4$$
; $\overset{*}{SO}_2 = +4$
 $H_2 \overset{*}{SO}_4 = +6$; $H_2 \overset{*}{S} = -2$.

- **72.** (a) The oxidation number of sulphur in the sulphur molecule (S_8) is 0 and 2.
- **73.** (b) In ferrous ammonium sulphate Fe shows +2 oxidation state.

74. (b)
$$\stackrel{*}{NH}_2 OH$$

 $x + 2(+1) - 2 + 1 = 0$
 $x + 2 - 2 + 1 = 0$; $x = -1$.

- 75. (b) $Ba(H_2PO_2)_2$; $BaH_4P_2O_4$ 2+4+2x-8=0; 2x=2 $x=\frac{2}{2}=+1$.
- 77. (d) $H_2 \stackrel{*}{SO}_4$ $2 \times (+1) + x + 4 \times (-2) = 0$ +2 + x - 8 = 0; x = 8 - 2 = +6Electronic configuration of sulphur in $H_2 SO_4$ is $1s^2, 2s^2, 2p^6$.
- **78.** (a) $KMnO_4$ $1 + x - 2 \times 4 = 0$; x = 8 - 1 = +7.
- **79.** (d) $H_3 AsO_4 + 3 + x 2 \times 4 = 0$; x = 8 3 = +5.
- **80.** (b) The oxidation state of Xe in both XeO_3 and XeF_6 is + 6 XeO_3 XeF_6

$$XeO_3$$
 XeF_6
 $x-2\times 3=0$ $x-6=0$
 $x=+6$ $x=+6$.

- **81.** (b) $\hat{C}H_3 Cl$ $x + 3(+1) + (-1) \times 1 = 0$ x + 3 - 1 = 0; x + 2 = 0x = -2.
- **82.** (c) $Cr_2O_7^{2-}$ $2x - 2 \times 7 = -2$; 2x = 14 - 2 = 12 $x = \frac{12}{2} = +6$.
- **83.** (c) $H_2 \stackrel{*}{SO}_3 +2 + x 2 \times 3 = 0$; x = 6 2 = +4.
- **84.** (b) Two Cl atom shows +1 and -1 oxidation state.
- **85.** (c) $HClO_3$ $1+x-2\times3=0$; x=6-1=+5.

86. (c)
$$5 \mid +2KMnO_4 + 3H_2SO_4 \rightarrow COOH$$

$$K_2SO_4 + 2MnSO_4 + 10CO_2 + 8H_2O$$

In this reaction oxidation state of Mn change from + 7 to + 2.

- **87.** (d) Oxygen have + 2 oxidation state in OF_2 .
- **89.** (b) $S_2O_3^{2-}$ 2x + 3(-2) = -2; x = +2.
- **90.** (c) $x + 2 \times (+1) + 2(-1) = 0$ x + 2 - 2 = 0; x = 0 in CH_2Cl_2 .
- **91.** (c) In potassium superoxide (KO_2) oxygen shows, $-\frac{1}{2}$ oxidation state.
- **92.** (a) S_2Cl_2 2x + 2(-1) = 0; 2x - 2 = 0x = +1.
- 93. (d) $Na_2 \hat{S}_4 O_6$ 2 + 4x - 12 = 04x = 10 $x = \frac{10}{4}$ $x = \frac{5}{2}$.
- **94.** (c) $CuSO_4 + 2KI = K_2SO_4 + CuI_2$ $2CuI_2 \longrightarrow Cu_2I_2 + I_2$
- **95.** (d) $NH_4Cl = NH_4^+ + Cl^ ^*NH_4^+$ x+4=+1; x=1-4=-3.
- **96.** (b) $2\stackrel{+4}{NO}_2 + H_2O \rightarrow HNO_2 + H\stackrel{+5}{NO}_3$. In this reaction oxidation state changes.
- **97.** (d) Fe_3O_4 3x + (-8) = 0; 3x - 8 = 03x = 8; $x = \frac{8}{2}$.
- **99.** (b) $K_2 \stackrel{*}{M} n O_4$ $\stackrel{*}{M} n S O_4$ x + 6 8 = 0 x = +6 x = +2.
- 100. (c) Chlorine have oxidation state 1 to + 7.
- **101.** (a) $[Co(NH_3)_4 CINO_2]$ x + 4(0) + 1(-1) + 1(-1) = 0 x + 0 - 1 - 1 = 0x - 2 = 0; x = +2.
- **102.** (d) $K_4[Ni(CN)_4]$ $4 \times (+1) + x + 4 \times (-1) = 0$

$$+4 + x - 4 = 0 \Rightarrow x = 0$$
.

- 103. (a) Fluorine always shows 1 oxidation state in oxides.
- **
 104. (b) $K_3[Fe(CN)_6]$ $1 \times 3 + x + (-1 \times 6) = 0$ 3 + x 6 = 0; x = +3.
- **105.** (a) NH_3 x + 3(+1) = 0, x = -3.
- 106. (a) ${}_{26}Fe \longrightarrow [Ar]3d^64S^2$ $Fe^{++} \longrightarrow [Ar]3d^64S^0$ $Fe^{+++} \longrightarrow [Ar]3d^54S^0$

In +2 state Fe is called Ferrous & in +3 state as ferric.

- **107.** (d) Fluorine is the most electronegative element in the periodic table so it never shows positive oxidation state.
- **108.** (b) Silicon forms silicides with strongly electropositive metals (like Na, Mg, K etc.) In these compounds. It has oxidation number = -4.
- **109.** (a) H_2S [O.N. of H = +1] $(+1) \times 2 + x = 0$ 2 + x = 0 ; x = -2
- **110.** (b) Let the oxidation number of *N* in $NaNO_2$ be $x + 1 + x + (-2) \times 2 = 0$ $1 + x 4 = 0; \quad x = +3$
- **111.** (a) x = 8 2 = +6
- 112. (d) $K_2Cr_2O_7 + 6KI + 7H_2SO_4 \rightarrow 4K_2SO_4 + Cr_2(SO_4)_3$ $+7H_2O + 3I_2$ ${}^*Cr_2(SO_4)_3 \rightarrow 2Cr + 3SO_4^{2-}$
- 113. (b) Let the oxidation number of I in $IPO_4 = x$ Oxidation number of $PO_4 = -3$ $x + (-3) = 0 \Rightarrow x = +3$

Redox reaction and Method for balancing Redox reaction

- 1. (a) $MnO_4^- + 8H^+ + 5e^- = Mn^{++} + 4H_2O$.
- 2. (b) The balanced equation is $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$. Ratio of the coefficients of CO_2 and H_2O is 4:6 or 2:3.

3. (c)
$$Cr_2O_7^{2-} + 3e^- \rightarrow Cr^{3+}$$
.

In this reaction three electrons are required for the reduction of $Cr_2O_7^{2-}$ into Cr^{3+} .

- **4.** (c) Number of e^- transferred in each case is 1, 3, 4, 5.
- 5. (a) Starch paper are used for iodine test as: $I^- + \text{oxidant} \longrightarrow I_2$ $I_2 + \text{starch} \longrightarrow \text{blue colour}$
- 6. (a) $Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ $(Sn^{2+} \rightarrow Sn^{4+} + 2e^-) \times 3$ $Cr_2O_7^{2-} + 14H^+ + 3Sn^{2+} \rightarrow 3Sn^{4+} + 2Cr^{3+} + 7H_2O$

It is clear from this equation that 3 moles of Sn^{2+} reduce one mole of $Cr_2O_7^{2-}$, hence 1 mol. of Sn^{2+} will reduce $\frac{1}{3}$ moles of $Cr_2O_7^{2-}$.

- 7. (a) $2MnO_4^\Theta + 5H_2O_2 + 6H^+ \rightarrow 2Mn^{2+} + 5O_2 + 8H_2O$. Reduction
- Reduction

 (b) $2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$ Oxidation
- 9. (a) $MnO_4^- + 8H^+ + 5e^- \to Mn^{2+} + 4H_2O \times 2$ $C_2O_4^{2-} \to 2CO_2 + 2e^- \times 5$ $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \to 2Mn^{2+} + 10CO_2 + 8H_2O$

Thus the coefficient of MnO_4^- , $C_2O_4^{2-}$ and H^+ in the above balanced equation respectively are 2, 5, 16.

- 10. (d). $Z_{n+2}^{0} + 2 AgCN \rightarrow 2 Ag + Z_{n}^{0} (CN)_{2}$.

 Reductio

 Oxidatio
- 11. (d) $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$. This is a redox reaction.

12. (c)
$$H_2 + Br_2 \rightarrow 2H - Br$$
Reductio

- 13. (c) Higher is the reduction potential stronger is the oxidising agent. Hence in the given options. MnO_4^- is strongest oxidising agent.
- **14.** (a) $IO_3^- + aI^- + bH^+ \rightarrow cH_2O + dI_2$

Step 1: $I^{-1} \rightarrow I_2$ (oxidation)

 $IO_3^- \rightarrow I_2$ (reduction)

Step 2: $2IO_3^- + 12H^+ \rightarrow I_2 + 6H_2O$

Step 3: $2IO_3^- + 12H^+ + 10e \rightarrow I_2 + 6H_2O$

 $2I^- \rightarrow I_2 + 2e$

Step 4: $2IO_3^- + 12H^+ + 10e^- \rightarrow I_2 + 6H_2O$

 $[2I^{-} \rightarrow I_2 + 2e]_5$

Step 5: $2IO_3^- + 10I^- + 12H^+ \rightarrow 6I_2 + 6H_2O$

 $IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$

On comparing, a = 5, b = 6, c = 3, d = 3

15. (d) In alkaline medium $2KMnO_4 + KI + H_2O \rightarrow 2MnO_2 + 2KOH + KIO_3.$

Auto oxidation and Disproportionation

1. (d) $H_2S \to S + 2e$

Equivalent wt. = $\frac{\text{Mol.wt.}}{2} = \frac{34}{2} = 17$.

- **2.** (a) $1.12 ltr H_2 = 1.2 g$; $\therefore 22.4 ltr H_2 = 24 g$.
- 3. (d) $2AgNO_3 \xrightarrow{\Delta} 2Ag + 2NO_2 + O_2$.
- 4. (b) To prevent rancidification of food material we add anti-oxidant which are called oxidation inhibitor.
- **6.** (b) Zn^{2+}/Zn . $E^o = -0.76 V$

$$Al^{3+}/Al$$
 $E^{o} = -1.662$

$$Sn^{2+}/Sn$$
 $E^{o} = -0.136$

$$Pb^{2+}/Pb$$
 $E^{o} = -0.126$

In galvanizing action Zn is coated over iron.

8. (d) Molecular weight of H_3PO_4 is 98 and change

in

its valency = 1 equivalent wt. of H_3PO_4

$$= \frac{\text{Molecular weight}}{\text{Change in valency}} = \frac{98}{1} = 98 \text{ .}$$

9. (b) Equivalent mass

= Molecular weight

Change in oxidation number per mole

Suppose molecular weight is M

Oxidation number of I_2 in IO_4^- in

Acidic medium i.e., $I \times (-8) + 1e^- = +7$

So eq. wt. = M/7.

10. (c) $2KMnO_4 + 3H_2SO_4 \longrightarrow K_2SO_4 + 2MnSO_4$

 $+3H_2O + 5O$

$$5H_2O_2 + 5O \longrightarrow 5H_2O + 5O_2$$

$$2KMnO_4 + 3H_2SO_4 + 5H_2O_2 \longrightarrow K_2SO_4 + 2MnSO_4$$

 $+8H_2O + 5O_2$

- 11. (a) $\frac{\text{Molecular weight}}{2}$ = Equivalent weight of Iodine.
- 12. (d) $\frac{\text{Molecular weight}}{3}$ Because in KIO_3 effective oxidation number is 3.
- **13.** (a) $6MnO_4^- + \Gamma^- + 6OH^- \longrightarrow 6MnO_4^{2-} + IO_3^- + 3H_2O$
- 14. (c) $ClO_2 \rightarrow Cl^{-1}$

$$ClO_2 + 2H_2O + 5e \rightarrow Cl^- + 4OH^-$$

$$H_2O_2 \rightarrow O_2$$

$$H_2O_2 + 2OH^- \rightarrow O_2 + 2H_2O + 2e$$

$$ClO_2 + 2H_2O + 5e \rightarrow Cl^- + 4OH^- \times 2$$

$$H_2O_2 + 2OH^- \rightarrow O_2 + 2H_2O + 2e \times 2$$

$$2ClO_2 + 5H_2O_2 + 2OH^- \rightarrow 2Cl^- + 5O_2 + 5H_2O$$

$$2ClO_2 \equiv 5H_2O_2$$

$$ClO_2 = 2.5H_2O_2$$

Critical Thinking Questions

- (d) HNO₂ shows both oxidation and reduction properties.
- **2.** (c) Al_2O_3 could not act as a oxidising and reducing agent.
- 3. (a, b) In H_2S sulphur shows -2 oxidation state and in SO_2 shows +4 oxidation state. Hence SO_2 shows both oxidising and reducing properties.
- **4.** (d) All the given statements are true.

5. (a)
$$H - O - P - OH$$
, hence it is dibasic. It acts as O

reducing agent also.

6. (c) (a)
$$NO_2$$
; $x-4=0$; $x=+4$

(b)
$$HNO$$
; $1+x-2=0$; $x=+1$

(c)
$$NH_3$$
; $x+3=0$; $x=-3$

(d)
$$\stackrel{*}{N}_2O_5$$
; $2x-10=0$; $2x=10$; $x=\frac{10}{2}$; $x=5$.

7. (c)
$$2 \times \text{No. of } e^- \text{ losses} = \text{Oxi. no.}$$

 $2 \times 3e^- = +6$.

9. (a)
$$H_2 \overset{*}{S}_2 O_7$$

$$2 \times (+1) + 2 \times x + 7 \times (-2) = 0$$

$$+2 + 2x - 14 = 0$$

$$2x = 14 - 2 = 12$$

$$x = \frac{12}{2} = +6$$
 for S

$$K_4 \tilde{F}e(CN)_6$$

$$4 \times (+1)x + 6 \times (-1) = 0$$

$$4 + x - 6 = 0$$

$$x = 6 - 4 = +2$$
 for Fe .

10. (c)
$$KO_2$$
, $+1+2x=0$, $x=-\frac{1}{2}$.

11. (a)
$$N_2^{2-} \rightarrow {}_2N^{a+} + 10e^{-}$$

$$\therefore 2a - [2 \times (-2)] = 10$$

$$\therefore a = +3$$
.

12. (d)
$$CrO_2Cl_2$$
, $x-4-2=0$, $x=+6$.

13. (c)
$$3x = -1$$
, $x = -1/3$.

14. (b)
$$Ba_2 Cu_3 O_7$$

$$3 + 2 \times 2 + 3x - (2 \times 7) = 0$$

$$3+4+3x-14=0$$

$$3x = 7$$

$$x = \frac{7}{3}$$
.

15. (a)
$$S_8 = 0$$

$$\overset{*}{S}_{2}F_{2} = +1$$

$$H_2\overset{*}{S} = -2$$
.

16. (d) In reaction
$$HCl + H_2O \rightarrow H_3O^- + Cl^-$$
, only reduction has taken place not oxidation.

17. (d)
$$Zn$$
 can oxidise carbon because heat of combusion of $Zn < C$.

18. (d)
$$B_2H_6 + 2KOH + 2H_2O \rightarrow 2KBO_2 + 6H_2$$
.

19. (c) The values of
$$x, y, z$$
 are 8, 4, 4 respectively hence the reaction is

$$H_2SO_4 + 8HI \rightarrow H_2S + 4I_2 + 4H_2O$$

$$HClO_3^-$$

$$ClO_3^{2-}$$

$$HS^-$$

$$S^{2-}$$

$$H_2PO_4^-$$

$$HPO_4^{2-}$$

21. (a)
$$MnO_4^{2-}$$
 in neutral aqueous medium is disproportionate to $\frac{2}{3}$ mole of MnO_4^- and $\frac{1}{3}$ mole of MnO_2 .

22. (d)
$$\lambda m = \frac{1000 \text{ K}}{\text{S}} = \frac{1000 \times 3.06 \times 10^{-6}}{\text{S}} = 1.53$$

$$S = 2 \times 10^{-3} \frac{mol}{litre}$$

$$K_{sp(BaSO_A)} = S^2 = (2 \times 10^{-3})^2 = 4 \times 10^{-6}$$
.

23. (a)
$$2MnO_2 + 4KOH + O_2 \xrightarrow{\Delta} 2K_2MnO_4 + 2H_2O$$
.

Assertion & Reason

- 1. (c) It is true that SO_2 and Cl_2 both are bleaching agents. But Cl_2 is an oxidising agent while SO_2 is a reducing agent. Therefore, in this questions assertion is true while reason is false.
- 2. (b) It is correct that fluorine exists only in -1 oxidation state because it has $1s^2 2p^5$ electronic configuration and thus shows only -1 oxidation state in order to complete its octet. Hence, both assertion and reason are true and reason is not a correct explanation of assertion.
- 3. (e) Here, assertion is false, because stannous chloiride is a strong reducing agent not strong oxidising agent. Stannous chlorides gives Grey precipitate with mercuric chloride. Hence, reason is true.

$$NH_3 = \frac{14+3}{3} = \frac{17}{3}$$
 (M. wt. of NH_3)

while for
$$N_2 = \frac{14 \times 2}{6} = \frac{28}{6}$$

- (b) Both assertion and reason are true but reason 4. is not the correct explanation of assertion. Greater the number of negative atoms present in the oxy-acid make the acid stronger. In general, the strengths of acids that have general formula $(HO)_m ZO_n$ can be related to the value of n. As the value of n increases, acidic character also increases. The negative atoms draw electrons away from the Z-atom and make it more positive. The Z-atom, therefore, becomes more effective in with drawing electron density away from the oxygen atom that bonded to hydrogen. in turn, the electrons of H-O bond are drawn more strongly away from the H-atom. The net effect makes it easier from the proton release and increases the acid strength.
- **5.** (a) Both assertion and reason are true and reason is the correct explanation of assertion.

Oxidation loss of 2e
$$Zn(s) + C\mu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + C\mu(s)$$
Reduction gain of 2e

6. (b) Both assertion and reason are true but reason is not the correct explanation of assertion.

Oxidation number can be calculated using some rules. H is assigned +1 oxidation state and 0 has oxidation number -2

$$\therefore$$
 O. No. of C in CH_2O :

O. no. of
$$C + 2(+1) + (-2) = 0$$

$$\therefore$$
 O. No. of $C=0$

- **7.** (a) Both assertion and reason are true and reason is the correct explanation of assertion.
- **8.** (a) Both assertion and reason are true and reason is the correct explanation of assertion.

Maximum oxidation state of S is +6, it cannot exceed it. Therefore it can't be further oxidised as S^{-2} can't be reduced further.

9. (a) Both assertion and reason are true and reason is the correct explanation of assertion.

$$\stackrel{0}{N_2} + 6e^- \longrightarrow 2N^{3-}$$

∴ equivalent weight of