A beam is designed to resist maximum bending moment and is checked for shear stress and deflection, and also for web crippling and web buckling.

DESIGN FOR BENDING

• The maximum permissible compressive or tensile bending stress σ_{bc} or σ_{bt} = 0.66 f_y where f_y = yield stress of steel

The permissible bending stress (compressive or tensile) σ_{bc} or σ_{bt} as per IS: 226-1975 is as follows:

Nominal plate thickness	Yield stress f _v (MPa)	$s_{bc} = s_{bt}$ (MPa)
Angle, tee, I, channel and flat sections	250	165
Up to and including 20 mm		
Over 20 mm up to and including 40 mm	240	158.4
Over 40 mm	230	151.8

EFFECTIVE LENGTH OF COMPRESSION FLANGE

(i) Effective Length of Compression Flange:

End Connections End Connections	Effective length, I
(i) each endrestrained against torsion.	392 (8010 9n) no
(a) ends of compression flange unrest-	l = span
rained for lateral bending	
(b) ends of compression flange partially	$l = 0.85 \times \text{span}$
restrained for lateral bending	
(c) ends of compression flange fully	$l=0.7\times span$
restrained for lateral bending	person ich koent

(ii) Cantileverbeams of projecting length L,	934 74.1
(a) Built-inatthesupport, free at end	l = 0.85L
(b) Built-in at the support, restrained against	o osa A
torsion at the end by continuous construction.	l = 0.75L
(c) Built - in at the support, restrained against	- AI
lateral deflection and torsion at the free end	

by continuous cross members over several		
beams	l = 0.5L	
(d) Continuous and unrestrained against torsion		- 19
at the support and free at the end	l = 3L	
(e) Continuous and partially restrained against	releso ei m	18
torsion at the support and free at end	l = 2L	16
(f) Continuous at the support, restrained against	HOR WA	1,5
torsion at the support and free at the end	l = L	

The above values are increased by 20% if the ends of beam are not restrained against torsion.

If there is a degree of fixity at the end, the effective length should be multiplied by $\frac{0.5}{0.85}$ in (b) and (c) above and by $\frac{0.75}{0.85}$ in (d), (e) and (f) above

Check for Shear

Max permissible, shear stress

$$\tau_{\text{vm}} = 0.45 \, \text{f}_{\text{y}}$$

For design purpose, the above condition is deemed to be satisfied if the average shear stress in an unstiffened member calculated on the cross section of web does not exceed the value

$$\tau_{va} = 0.4 \, f_y$$

Check for Deflection

• The maximum deflection $\neq \frac{1}{325}$ of the span in general.

(iv) Check for web crippling and web buckling:

BUILT UP BEAMS

Symmetrical built-up beams

Area of each cover plate

Area of each cover plate
$$A_p = \frac{Z - Z_1}{d}$$
 where, Z_1 = Section modulus of rolled I section available,
$$d = depth \ of \ beam$$

Unsymmetrical built-up beam

The area of cover plates $A_p = \frac{1.2 \times (Z - Z_1)}{Z}$

GANTRY GIRDERS

- The gantry girders are subjected to unsymmetrical bending due to lateral thrust.
- The deflection of gantry girders under dead and imposed loads should not exceed the following values as per IS: 800-1984.

(a) Where cranes are manually operated	
	500
(b) Where electric overhead travelling	L
crane are operated upto 50t	750
(c) Where electric overhead travelling .	L
cranes are operated, over 50t	1000
(d) Other moving loads such as	
charging cars etc.	600

Where, L = span of crane runway girder

BEAM COLUMN

Members subjected to axial compression and bending are proportional to satisfy the Eq.(1)

$$\frac{\sigma_{\text{ac,cal}}}{\sigma_{\text{ac}}} + \frac{C_{\text{mx}} \times \sigma_{\text{bcx,cal}}}{\left[1 - \frac{\sigma_{\text{ac,cal}}}{0.6 f_{\text{ccx}}}\right]} \sigma_{\text{bcx}} + \frac{C_{\text{my}} \times \sigma_{\text{bcy,cal}}}{\left[1 - \frac{\sigma_{\text{ac,cal}}}{0.6 f_{\text{ccy}}}\right]} \le 1.0$$
...(i)

However if the ratio $\frac{\sigma_{ac,cal}}{\sigma_{ac}}$ is less than 0.15, Eq (ii) may be used in lieu

of Eq. (i)

$$\frac{\sigma_{ac,cal}}{\sigma_{ac}} + \frac{\sigma_{bcx,cal}}{b_{bcx}} + \frac{\sigma_{bcy,cal}}{\sigma_{bcy}} \le 1.0$$
... (ii