Graph Theory

Multiple Choice Questions

Q.1 Consider the graph and tree (dotted) of the given figure

The fundamental loops include the set of lines

- (a) (1, 5, 3), (5, 4, 2) and (3, 4, 6)
- (b) (1, 2, 4, 3), (1, 2, 6), (3, 4, 6) and (1, 5, 4, 6)
- (c) (1, 5, 3), (5, 4, 2), (3, 4, 6) and (2, 4, 3, 1)
- (d) (1, 2, 4, 3) and (3, 4, 6)

[ESE-1999]

Q.2 Identify which of the following is NOT a tree of the graph shown in the figure

- (a) begh
- (c) defa
- (c) adhg
- (d) aegh

[GATE-1999]

- Q.3 A network has 10 nodes and 17 branches. The number of different node pair voltages would be
 - (a) 7
- (b) 9

(d) 45

(c) 10

[ESE-2000]

- Q.4 The number of edges in a complete graph of n vertices is
 - (a) n(n-1)
- (c) n

(d) n-1 [ESE-2003]

Q.5 The minimum number of equations required to analyze the circuit shown in the figure is

[ESE-2003]

Q.6 Consider a spanning tree of the connected graph:

What is the number of fundamental cut-sets?

- (a) 15
- (b) 16
- (c) 8
- (d) 7

[ESE-2004]

Q.7 What is the total number of trees for the graph shown below?

- (a) 4 (c) 12
- (d) 16

[ESE-2006]

Q.8 The graph of a network is shown in figure below.

Which one of the figures shown below is not a tree of the graph?

Q.9 For a given connected network and for a fixed tree, the fundamental loop matrix is given by

$$B = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 1 & -1 & -1 \end{bmatrix}$$

The fundamental cut-set matrix Q corresponding to the same tree is given by

(a)
$$Q = \begin{bmatrix} -1 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

(b)
$$Q = \begin{bmatrix} -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

(c)
$$Q = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

(d)
$$Q = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 1 & 0 & 1 & 1 & -1 & -1 \end{bmatrix}$$

[ESE-2012]

- Q.10 A graph in which at least one path (disregarding orientation) exists between any two nodes of the graph is a
 - (a) connected graph
 - (b) directed graph
 - (c) sub-graph
 - (d) fundamental graph [ESE-2014]
- Q.11 If Q_i , and Q_i , be the sub-matrices of Q_i (fundamental cut-set matrix) corresponding to twigs and links of a connected graph respectively, then
 - 1. Q, is an identity matrix
 - 2. Q, is a rectangular matrix
 - 3. Q_t is of rank (n-1)

Which of the above are correct?

- (a) 1 and 2 only (b) 1 and 3 only
- (c) 2 and 3 only (d) 1, 2 and 3
 - [ESE-2014]

Q.12 A reduced incidence matrix of a graph is given

$$[A] = \begin{bmatrix} .1 & 1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 & 0 \\ -1 & 0 & -1 & -1 & 0 \end{bmatrix}$$

The number of possible trees is

- (a) 8
- (b) 7
- (c) 9
- (d) 6

[ESE-2015]

Conventional Questions

Q.13 Draw an oriented graph whose node-to-branch incidence matrix A_a is given by

and obtain fundamental circuit (tie-set) matrix for this graph.

[ESE-2006]

- Q.14 Consider the given graph of a network and findout:
 - (i) Incidence matrix
 - (ii) Reduced incidence matrix [A]

Try Yourself

- T1. Which of the following is not true about a fully connected graph with 'n' nodes
 - (a) Maximum number of possible trees = $n^{(n-2)}$
 - (b) Number of links = Number of fundamental tie set
 - (c) The degree of each node = n
 - (d) Number of tree branches = Rank of graph

T2. Consider the network shown below

The dual of the network is

