
Appendix C
Rutherford Scattering

C.1 Classical Physics

In Chapter 1 we commented on the experiments of Geiger and Marsden that

provided evidence for the existence of the nucleus. They scattered low-energy

�-particles from thin gold foils and observed that sometimes the projectiles were

scattered through large angles, in extreme cases close to 180�. If we start for the

moment by ignoring the fact that there is a Coulomb interaction present, then it is

easy to show that this behaviour is incompatible with scattering from light particles

such as electrons.

Consider the non-relativistic elastic scattering of an �-particle of mass m� and

initial velocity vi from a target of mass mt stationary in the laboratory. If the final

velocities are vf and vt, respectively, then we have the situation as shown in Figure C.1.

Conservation of linear momentum and kinetic energy are:

m�vi ¼ m�vf þ mtvt ðC:1Þ

and

m�v2
i ¼ m�v2

f þ mtv
2
t ; ðC:2Þ

where vi ¼ vij j etc.. Squaring Equation (C.1) we obtain

m�v2
i ¼ m�v2

f þ
m2

t

m�
v2

t þ 2mtðvf � vtÞ ðC:3Þ

and hence from Equation (C.2),

v2
t 1 � mt

m�

� �
¼ 2vf � vt: ðC:4Þ
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Thus, if the target is an electron, with mt ¼ me 	 m�, the directions of motion of

the outgoing �-particle and the recoiling target are essentially along the direction

of the initial �-particle and no large-angle scatterings are possible. Such events

could, in principle, be due to multiple small-angle scattering, but the thinness of

the gold foil target rules this out.1 If, however, mt ¼ mAu 
 m�, then the left-hand

side of Equation (C.4) will be negative and large scattering angles are possible.

The above only makes plausible the existence of a heavy nucleus, because it has

ignored the existence of the Coulomb force, so we now have to take this into

account. We will do this first using non-relativistic classical mechanics.

Consider the non-relativistic Coulomb scattering of a particle (the projectile) of

mass m and electric charge ze from a target particle of mass M and electric charge

Ze. The kinematics of this are shown in Figure C.2. The target mass is assumed to

be sufficiently large that its recoil may be neglected. The initial velocity of the

projectile is v and it is assumed that in the absence of any interaction it would

travel in a straight line and pass the target at a distance b (called the impact

Figure C.1 Kinematics of the Geiger and Marsden experiment

1For completeness one should also show that the observations cannot be due to scattering from the diffuse

positive charge present. This was done by the authors of the original experiment.

Figure C.2 Kinematics of Rutherford scattering
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parameter). The derivation follows from considering the implications of linear and

angular momentum conservation.

Angular momentum conservation implies that

mvb ¼ mr2 d�

dt
; ðC:5Þ

where v ¼ vj j. Since the scattering is symmetric about the y-axis, the component of

linear momentum in the y-direction is initially p ¼ �mv sinð�=2Þ and changes to

þmv sinð�=2Þ after the interaction, i.e. the total change in momentum in the y-

direction is

�p ¼ 2mv sinð�=2Þ: ðC:6Þ

The change in momentum may also be calculated by integrating the impulse in the

y-direction due to the Coulomb force on the projectile. This gives

�p ¼
ðþ1

�1

zZe2

4�"0r2
cos� dt; ðC:7Þ

where we have taken t ¼ 0 to coincide with the origin of the x-axis. Using

Equation (C.5) to change variables, Equation (C.7) may be written

2mv sinð�=2Þ ¼ zZe2

4�"0

1

bv

� � ðþ�

��

cos� d�; ðC:8Þ

which, using � ¼ ð�� �Þ=2, yields

b ¼ zZe2

8�"0

� 1

Ekin

cotð�=2Þ; ðC:9Þ

where Ekin ¼ 1
2

mv2 is the kinetic energy of the projectile.

Finally, we need to calculate the differential cross-section. If the initial flux of

projectile particles crossing a plane perpendicular to the beam direction is J, then

the intensity of particles having impact parameters between b and b þ db is

2�b Jdb and this is equal to the rate dW at which particles are scattered into a solid

angle d� ¼ 2� sin �d� between � and �þ d�. Thus

dW ¼ 2�bJ db: ðC:10Þ

However, from Equation (1.47) and considering a single target particle,

dW ¼ J
d	

d�
d� ¼ 2�J sin � d�

d	

d�
; ðC:11Þ
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i.e.

d	

d�
¼ b

sin �
� db

d�
: ðC:12Þ

The right-hand side of Equation (C.12) may be evaluated from Equation (C.9) and

gives

d	

d�
¼ zZe2

16� "0 Ekin

� �2

cosec4 ð�=2Þ: ðC:13Þ

This is the final form of the Rutherford differential cross-section for non-

relativistic scattering.

C.2 Quantum Mechanics

While Equation (C.13) is adequate to describe the Geiger and Marsden experi-

ments, in the case of electron scattering we need to take account of both relativity

and quantum mechanics. This may be done using the general formalism for the

differential cross-section in terms of the scattering potential that was derived in

Chapter 1.

The starting point is Equation (1.55), which in the present notation is

d	

d�
¼ 1

4�2�h4

p02

vv0
Mðq2Þ
�� ��2; ðC:14Þ

where v and p are the velocity and momentum respectively of the projectile (which

for convenience we take to have a unit negative charge) with v ¼ vj j, p ¼ pj j and

the primes refer to the final-state values. The matrix element is given by

MðqÞ ¼
ð

VðxÞeiq�x=�hdx; ðC:15Þ

where q ¼ p � p0 is the momentum transfer. VðxÞ is the Coulomb potential

VðxÞ ¼ VCðxÞ ¼ ��Zð�hcÞ
r

; ðC:16Þ

where r ¼ xj j and Ze is the charge of the target nucleus. Inspection of the integral

in Equation (C.15) shows that it diverges at large r. However, in practice, charges
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are always screened at large distances by intervening matter and so we will

interpret the integral as

MCðqÞ ¼
Lt


! 0

ð
� Z�ð�hcÞe�
r

r

� �
eiq�x=�h d3x: ðC:17Þ

To evaluate this, take q along the x-axis, so that in spherical polar coordinates

q � x ¼ qr cos �. The angular integration may then be done and yields

MCðqÞ ¼ � 4�ð�hcÞZ��h
q

Lt


! 0

ð1

0

e�
r sin qr=�hð Þdr: ðC:18Þ

The remaining integral may be done by parts (twice) and taking the limit 
! 0

gives

MCðqÞ ¼ � 4�ð�hcÞZ��h2

q2
: ðC:19Þ

Finally, substituting Equation (C.19) into Equation (C.14) gives

d	

d�
¼ 4Z2�2ð�hcÞ2 p02

vv0q4
; ðC:20Þ

which is the general form of the Rutherford differential cross-section. To see that

this is the same as Equation (C.13) in the non-relativistic limit, we may substitute

the non-relativistic approximations

p2 ¼ p0
2 ¼ 2mEkin; and v ¼ v0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ekin=m

p
; ðC:21Þ

together with the kinematic relation for the scattering angle

q ¼ 2p sinð�=2Þ; ðC:22Þ

into Equation (C.20). The result in Equation (C.13) follows immediately.

Because we are assuming that the target mass is heavy so that its recoil may be

neglected, to a good approximation p ¼ p0 and E ¼ E0, where E is the total energy

of the electron. Also for relativistic electrons v ¼ v0 � c and E � pc. Using these

conditions together with Equation (C.22) in Equation (C.20), gives the relativistic

result for the Rutherford differential cross-section in the convenient form:

d	

d�
¼ Z2�2ð�hcÞ2

4E2 sin4ð�=2Þ
; ðC:23Þ

which is the form used in Chapter 2 and elsewhere.
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Problems

C.1 Calculate the differential cross-section in mb/sr for the scattering of a 20 MeV

�-particle through an angle 20� by a nucleus 209
83Bi, stating any assumptions made.

Ignore spin and form factor effects.

C.2 Show that in Rutherford scattering at a fixed impact parameter b, the distance of

closest approach d to the nucleus is given by d ¼ b 1 þ cosec ð�=2Þ½ �=cosec ð�=2Þ,
where � is the scattering angle.

C.3 Find an expression for the impact parameter b in the case of small-angle Rutherford

scattering. A beam of protons with speed v ¼ 4 � 107 ms�1 is incident normally on a

thin foil of 194
78Pt, thickness 10�5 m (density ¼ 2:145 � 104 kg m�3). Estimate the

proportion of protons that experience double scattering, where each scattering angle

is at least 5�.
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