Exercise 15.7
Chapter 15 Multiple Integrals 15.7 1E
Evaluate the integral mﬂxyzl dV with respectto y, then =z, and then x.

Here B is the rectangular box as,
B={0<x<1,-1£y<2,0<z<3}

Rewrite the iterated integral as follows:
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First evaluate the inner integral with respect to y.
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Evaluate the middle integral with respect to z.
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Evaluate the outer integral with respectto x.
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Therefore, the value of the integral is |—|.
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Consider E:{(x,y,z} (xy+ :2}] dv

Thus, we have
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o 0o 00 2
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Using the second patteren, we get
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Using the third patteren we get
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]

Evaluate the iterated integral: “'j (2x = y) dxdy dz
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Continue the above,
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22znx

Consider the triple integral II I xe ' dydx dz.
10

0

Let us start by removing the innermost integral.
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j‘]- I xe ' dydx dz =
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The integral is simplified to “‘{r - I] didz.
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Now, let us evaluate the outer integral and apply the limits.
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We have the simplified form as j‘( z° - Ez)dz.

Now evaluate the integral.
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11J1-5

We have the triple integral I_[ _[

oo oo

= - drdz dy.

Let us start by remowving the innermost integral

B 117 i
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The integral 15 sunplified to Ilz—dchy.
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Mow, let us evaluate the outer integral and apply the limits.
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We have the simplified form as v .
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Ewvaluate the integral

j 1 @;=(%mpy+u]

2 3y +1)

1

n

=[%MU+¢@—[%nm+ﬂﬂ

lln 2
3

Thus, the tterated integral evaluates to %ln 2|
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We have
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We have

(Y7 (5[ x* sinydydzdx
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Let

A= _JrR"Il;—,lu:sirn:.q:2 dx
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When I=1|fﬂ- =% p=
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The solution is —1
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Consider the triple integral ([ ydV

Where E:{{Ly,,z]|{}£x<_i3,,[}£_y£x,x-—y£zi.r-i—y}

It E={(x,y,z)la<x<b,g(x) < y<g,(x)u(x,p) <z <u,(x,y)}then

b galxhiia(x.p)

Hff (%, 2)dV = f J] lj’ (. )
Therefore, o
Hf} dy = I_i[j.}dzzﬁ»dr

SIECE
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Continuing the above step,

f[fvav = j;fzfdy s
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Consider the triple integral ﬁf‘-’:U'dV
E

Where

E={{_r."}uz)mﬂyﬂl,yﬁxil,ﬂiizixy}.

H E= {{_r?y?z:lh: <yE2d.h(y)Ex2h(y)y, {L}’] <zZ2u, I:_r,,r].-']}

d B g (xe)
[l fyar=] | [ feoy.z)dzdedy
E o iy miy)

Therefore,
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Consider the following integral:

g

Here the region is E = {{x,yﬁz“ 1<y<4,y<z<4,0<x<z)
The objective is to evaluate the triple integral.

It E= {{L,j-'.,ZHC =y=sd,h(y)=:z iﬁz(y},ut(y,:)Exiul(_y‘*z}}thlﬁﬂ

d By wadp.z)
[[fraar = [ [ oz
£ e hix) (.20

Now, solve the integral as follows:
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Continuation to the above steps:

21 )

}T]’j Z__dvdedy

2 2
o X + Z

Thus, the integral evaluates to gi.
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Consider m‘ﬂi” vV
E

Here, E lies below the plane z = x and above the triangular region with vertices
({L[},{]]*{:r,l},ﬂ]and[ﬂ.,rr.,[}}.

Thus, the region is defined as E = {{xﬂy,z}m <x=Ex,02ysx 05; Ex}.

The triple integral can be evaluated as follows:
[ !’ [sin yay = J': j'ﬂ ﬂsin vel=dvelx
=_[: E sin y[z];d_],{it
= i sin vdvd
‘{[!I‘_I'SII'E_} SRR
=j:x(—cc:-5y}; dx

= —L x(cosz —cos0)dx

=—I;x{—1—1}dr Use cosz =—1and cosO=1

Therefore, Hfﬁil'l ydV = _
E
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Consider the triple integration:

I= ﬂ xvdV

The region enclosed by two curved surfaces y=x*, x = y?, the bottom surface z = (and the
inclined surface z = x+ yis as follows:

The intersection of the two parabolic cylinders:

b ]
&

y=x

2 4
y =x

And x=yp'= x=x"

x(l-—xl] =:()

x=0orx=1

To get the limits, we solve the parabolic surfaces y = x*and x = y* which meet at [{Lﬂ] and
(L1).

Also. when x= y=1, the lateral surface z=x+y takes =2

S50, we follow that z varies from z =) through z=x+y

yharies on the curved lower surface ,2to the upper surface ‘G

x\varies from 0 through 1

The regionis E = {(.t,y,z} |0sx<lx*<sy< Jx,0<z<x+ 1}



Using these details, the given integral as follows:
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Iﬂx_}?d!" j I J.wdzdydt

1LI.-¢:_

1 y=x

= I j :t:p[z];” dvdx

x=Ad _|,':.'|':'
=
W

=j I xy(x+ y)dyex

1] .r?]l 1{2 : xﬁ]
== ———| | =X ——
204 7] 3|7 8 |,
11 1J 1[2 1]
= | ——— | —_——

2\4 7)) 3\7 8
ir'“'“"],,l[lﬁ"’rj

2\ 28 ) 3\ 36
3 3

= —

36 36

3
28(

Hence, the value of the triple integral is m'xydp' 2
E
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Consider the triple integral,

f[fav

Here, T is the solid tetrahedron with vertices [ﬂ,[},{l}, [L[‘l,{]]. [ﬂ,l,{]]__ and [l[l,{},l]_
The objective is to evaluate the triple integral.
Equation of the plane passing through the three vertices (1,0,0). (0,1,0). and (0,0,1)is

x+y+z=1.

This can be written as follows:

z=l-x-y.
The limits varies from y =0, y=0, z =0 tothe plane x+y+z=1
50, the limits of zare z=0 0 z=1-x-y.

When z = (). this plane becomes the line x+ y=1
S0, yvaries from y=0t0 y=1-x

Similarly, when y =0, the point y =1

Therefore, xvaries from y=(01t0 y=]

MNow, the description of T is as follows:

T:-[(Ly._,z:”ﬂiix£l+ﬂ£_y£|—x,ﬂ£zil—x—y}

Rewrite the integral as the iterated integral as follows:
1=([[x'ar
T

=[x de dy

1=%

j x* [z]::_}' ehvdx

i

Il
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ey, | S

e
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[_rz -x' - ,rzy]aﬁmh'



The integral with respect to y is calculated as follows:
I‘Il’ I |"J.'
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o\ 2

dx

0

= [;’(1-.:)-13(1-;)-%;-*(1-zx+f]]—{}]dx
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Therefore, the value of the triple integral is,

ff o <[]
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Consider the triple integral HL xyzdV,

Here T is the solid tetrahedron with vertices (0,0,0),(1,0,0),(1,1,0) and (1,0,1).

The objective is to evaluate the above triple integral.

Draw a picture to help set up the integral.

‘}!'

(1,01
Notice that [ﬂjﬂ,ﬂ]. (Iﬂl,ﬂ]lie in the xy plane, and the equation of the line between those two
points in the xy-plane is y=x._
Now need to determine an equation of the plane containing (0,0,0). (1,0,1).and (1,1,0).
Let a=(1,0,1)-(0,0,0)=(1,0,1) and b=(1,1,0)-(0,0,0)=(1,1,0). Then axb =(-1,1,1)
and the equation of the plane is —~1{x—0)+1(y-0)+1{z-0)=0.0r —x+y+z=0.

Describe this region by homing in on it one dimension at a time. To ensure that a point is inside
the region firstfix 0 x<1. Thenfix 0<y<x Finallyfix 0<z<x-y.

S0, T={(_x,y,z)|{]Exil,ﬂ'£_v£x._.ﬂ£zEx—_y}

Use this description to set up the integral.

] mav - |
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J- xvz dz dy dx
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Evaluate the integral:

1T, szav =

=

I ! xyzdz dy dx
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]
[
] I I x
=P x5 = ,w]d.r
‘l[x."‘ 3 8 a
1 g
=I -I~r -x —lx X +-!~'I.' X ]dx
A\ 4 3 8
Ly
J-lf'—lx +1xJafr
AT 3 8

1

/

I'Ir —
6 8+3]xﬁdx
L 24
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Thus, the value of the integral is J'Hrﬂ:zdy ={et
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Consider the following paraboloid x =4y* +4z* and the plane y =4.

The objective is to find the triple HL_.\‘ dV where g is bounded by the paraboloid and the

plane.



Notice that x =4y® +4z*and y = 4intersect in the circle y* + z* = 1. or the region of the yz-

plane.

Convert the rectangular coordinates into polar coordinates, use
y=rcosf,z=rsinf and y* +z° =+

Substitute * + 2% =% in }.-3 +z% =1, then

yZ_I_zl

5
&

r

]
e

r 1

Therefore, the region is R={(r,8)|0<r<1, 08 <27},

Substitute y = prcos@,z =rsind ;El'ﬂd'];2 +z8=rtin x= 4‘}:2 +4z%, then
x=4{y1 +21)

x =4y

50 that, the limits of x from y =4,* 10 4,
Thus, the solid by be described as

E={(r.0.x)|0<r<1,0<0<2x, 4" <x<4|

472 < x < 4. which means that , = 4,2 and yx =4 are the lower and upper limits of
integration of x respectively, and () < <1. which means that p =( and , -1 are the are the
lower and upper limits of integration of r respectively, and (< @ < 2. which means that
=0 and g=72; are the are the lower and upper limits of integration of g respectively.

Setup the integral and also evaluate as follows:

|[[ xar =2_ IJ’ x - rdxdrd®

v

2 ] . Bl
= %} rdrd® Use Ix"d.r = s

]
q:p'l—;—

e
v

Il

o S
|
I
EL_
o




Continuous to the above step,

=T j[%_‘ﬁ;]rdrde
oo

ir
=3[ [1—15 drd®
: i
ER_,'-‘ rﬁ._l
=8||———| 48
[177%]
_ST_E_E_E L]
2. 6 2 6
ir l I
=8[|s-—-0+0|d0
2

6z
3

Hence, the required value of the triple integral HL_:;' dV'is
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Consider E is bounded by the cylinder y*+z* =9 andthe planes y=0. y=3x.and z=0

in the first octant.

The objective is to evaluate the triple integral

ff -

Since E lies in the first octant, we know its x and y values are bounded below by 0. Since x is at
leastOand y=3x. 0<x< ly. In the yz-plane, _pz + 2 =9 is the quarter circle that lies in
3
the first quadrant, s0 g<z-< fg_},.z . When z is 0, we know from the equation of the circle
that yisatmost3 and 0<y<3
0< y<3. which means that y=0 and yx =3 are the lower and upper limits of integration of
y respectively, and Q< x 5%y, which means that y=(0 and x =%J,- are the are the lower

and upper limits of integration of x respectively. and <z <,f9—y? . Which meansthat z =0

and - = J'g_},.i are the are the lower and upper limits of integration of z respectively.

I
This allows as to rewrite the integral as the iterated integral j: J‘;" L"l“'_-”': = d= dx dy

I | )
Notice that the integral }‘: J‘u';*' J‘ﬂ*"" E & et dy 1S of the form

J':jw.-tr] —Fﬁ{:,.-l-l‘fl:x‘y‘z] e dv

2l i
where we first integrate with the function f{.r, ¥, 2‘."} =z respect to z, hnlding ¥ and ¥ constant,

from @(x,»)=010 dy(x,¥) = |I'g_},3 first, integrate what we found from the first integration

with respect to x, holding y constant, from ¢, (y)=0 to o, (y)= %y. and lastly integrate what

we found from the second integration with respect to y from 0 to 3.

First integrating the function f{(x,y,z)=z respectto z, holding x and y constant, from

G(x.0)=010 g (x,y)=4/9-3

R i ﬁ{x‘.}-p—\lﬁ
fﬁ{ ¥} l,"g ¥ zm: lzl]
@ lx =l i 2 PR
I —) 2
= E(’Jg*}"] —[ﬂ}}

where we have used the integral rules for integrating polynomial functions (power rule, etc, in

this case), leaving us with the function f(x,y)= %(9_}:3 )



Now integrating the function f(x, y)= %(g_f] with respect to x, holding y constant, from

1
@(y)=01o Q?z{_}r)=5}r, we have

s(3y | | ety
O (9-0") dx =2 (9= )Ly
=IE{9'—_}?=)|:%_}'—U:|
1 1
=E{9—_}?2)[§y]
iy o
A g

where we have used the integral rules for integrating polynomial functions (power rule, etc, in

this case), leaving us with the function f(y)= %}-—%}.ﬂ_

Finally integrating the function f(y)= %y_éy“ with respect to y from 0 to 3, we have

i L. Thg 1477
= a&—_41 Fid }n
300 1
26750 -0
_[2
2
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oiven plane 2 2x+y+z=4
=z=4-2x-y

z=00ves y=4-2x

y=0Givesx= 2

Thus volutme 7 = ”dzdy dx

3 4-dxd4=dx-p

bz dy dx

= ]4-3:;-,1;{# ax

(4—2x—y)dydx

5 42
dy— E;ay—%ﬂ dx
0

4(4-2x)- 2&4—2:)—%[4—2;)2}5;

16—8x—8x+4xﬁ—%[16—15x+4xﬂdx
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Consider the following equations of paraboloid and the plane:

y=x'+z"and p=§-x'-z?
The objective is to find the volume of the solid enclosed by the paraboloids y = x? + z? and the

plane y=8§-x*-z*.

The intersection of the paraboloid and the plane is as follows:

Notice that y=x" 4+ z%and y=8-x* - z?intersectin the circle y* ;-2 =-4.

S0, in polar coordinates the region of the xz-plane described by
={(r,5‘)|ﬂl <r<2 0<f< Eﬁ'}.

In polar coordinates the equation of the paraboloid as y = +* and the plane by = Fig?
So, 0<r<2. rP<y<8-r
Thus the solid by be described as

={(r.0,y)|05r<2,0<0< 2z, ¥’ <sy<8-r’}
This allows as to write the volume as the iterated integral as follows:
Volume = [ [* [ dy r dr a6
=["['[. " v dy dr dO
=["['rly ]‘ = drdo
=[; [rl(3=rt)=r)ardo

= [ [ (87 ~2r")drae

P A |
=L [4r---5r ldﬂ
= ["[16-8-(0) e
Fuo

=8(8)”
=l6rx
Hence, the volume of the region is [167|
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The graph below shows the region of integration. The left boundary is the surface y = x*. The

upperplaneis z=0and y+z=1.

From the diagram it's clear that z ranges from 0o 1—y.
The upper and lower planes intersect at y =1. Thus y values range from ,* to 1.
The left side boundary _].*:_:,‘2 intersects y =1 at x=+1, s0 X ranges from —jfo 1.

The region is symmetric so the volume is double the volume of the portion in the first quadrant
that is x can be taken to start at 0.

V= z“ | dzdyex
L1} ik

¥

Integrate with respect to z.

——
L8

-

If

(o8]
fy —

:I-,.- dyelx

I
b=

e — = e —

') -0 dydx

Il
(g8

L s T P
—
—
—
I
-

(1 - }-‘] dvelx

i

=
-



Integrate with respect to y.

i
I
b

T D e e T e D e,
I

I
b

I
(]

]
[

Integrate with respect to x.

V=2 —x==x +lx

Therefore, the volume of the solid region is
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Consider the cylinder 2 -? -4 andthe planes y=-1,y+z=4.

The objective is to find the volume of the solid enclosed by the cylinder 42 4 -2 — 4 and the
planes y==land y+z=4.

Observe that 42 1 -2 = 4 is a circle on xz-plane.

Sketch the circle and find the limits of x and z as follows:

3tz

34

From the figure, observe that x varies from -2 to 2 and z varies from .I'4 2 10 _ ,|'4_x1
(since 424 .2 4= 7=4J4-x")



The sketch of the solid enclosed by the cylinder ,? 4 -2 = 4 and the planes
y=-land y+z =4 is as follows:

From the figure observe that the lower boundary is the plane y = -1 and the upper boundary
is the plane y+z=4.

Thatis, y varies from y==110 y=4-=z.

Now the volume of the solid is given by ¥ = ”L_dxaj«‘dz.

—

2 Wd=x* d=r

That is, here the volume of the solid is ¥ = f I I dvdzdx .
_z—w‘l—.lr! =1

Evaluate the above integral as follows:

Compute the integral with respect to y.




Compute the integral with respect to z.

2‘-‘1—1’2
v=[ [ (5-z)dzdx
Y PR
T
= 52-—22] dx
. 2 i

(3= -3{(8=2 )-(-a= 5~ )
[ T T )|
= Iﬂj Va-xdy

Compute the integral with respect to x.

z

V=10[ V2’ —x*dx
v
2

Use the following formula to solve the integral.

2
I a —u du =%~Ja2 -u +%~5in" [EJ

o

Apply this formula to the volume. Put a=2,u=x.

r 2
v =10| XJ4- 5 +i5in"(£J
2 2 \2)),

_ mI%JM+%5in" (1)]-['—;‘-@—_4+§sin"(—l}}]

oS HH-GI))
i 22 2 2
=10[7~(-7)]
=10(7+7)
=10(27)
=
Therefore, the volume of solid enclosed by the cylinder ,2 4 -2 = 4 and the planes

y=-land y+z=4is [20x]-
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/*i—.t:l
i ¥ A

MNow the cylinder ¥* 4+ z* = 1 meets the plane y=x in the circle 2° +2° = 1

Then the region of integration is bounded by cylinder ¥ +2° =1, planes y =1z,
x=l,y=0,z=0,x=10
Then the region 15 given by

E=[|:x,y,z:|: et sce N P e Diiziiq,fl—ygi

And hence the wolume of the solid 15

(&)



(E)

1=y
v[Ej:II I dz dy dx
Do o0
1x 5
=_|-_|-|:z);&__ydycfx
00
1w
:” 1- * dy dx
00
1 3
:I[Eﬂfl—yz +lsin yi| dx
aL2 2 o
1
= %J‘[;W'l—xg +sin'1x]c1’x
1? 1§
:—_I.xw,l'l—xz.:fx+—_|.sin'lxdx
23 23
=lx—1x3[[1—xjj%} +l[;{sin'1x+ 1—x2:|
2. 2 i3 T 0
ie v(E)=—é[0—1]+%[sin'11+0—[]—1]
:é+%s1n'1(l)—%
1 e 3
= —¥—=———
2 2 6
2 1
4 3

Hence v[Ejz ;;—T——
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It is need to approximate HL”I';;? +y2+z2 dV

The value of the triple integral by using a triple Riemann sum,

L L

ﬁfﬁf{x,y,z] dV = m,u!m]ﬂ_.‘ _..;.ZZZJ‘F[IW s-"wzark] AV

=l f=l k=l

= lim iiif(.ri,yj,z*]ﬂp’

fomnson £t Lt
Where [ represents the number of partitions along the x interval [a,b]
A=X, <X < <x, <X < <X =b
And, m represents the number of partitions along the y interval [c,d]
=Y <N S LYy <Y < gy, =d
Where n represents the number of partitions along the z interval [r,.s-]
FEZy I K s, =S
And AV, = Ax, Ay, Az, .
To divide the solid into eight equal sub-boxes, divide each interval of x, y, and z into partitions

with of the cube root of eight, which is two, 50 J=m=n=2

In this particular problem it is known that the x, y. and z intervals are in [{]*4] and

Additionaly,
AV, =2-2-2
=8

This allows us to write the integral as the triple Riemann sum

z

[[WICTRIPTES % 2 Wi CPENENT.

]
{=l f=] k=
)

|

i
3

=83, A CPR N

F=l =l k=l

We can choose the sample points f(xm - ) in any manner.

ik



The diagram of the cube is as follows

<A
(0,0.4) (4.0.4)
(0:4:4) 4 20,2} ébét)
0.2.2) 4}
1 ~(1,1,1)
i Ve / (4.0.0)
(0.4.0)
(4.4.0)
£ 4

In this particular problem, choose the midpoints of each sub-box

rEl =3
.!:I -;L }:3 =3

z=l2=3

This means the sample points are,

FLL)=V3,  f(3,3.3)=343,

£(1,3,3)=19, f(3.11)= J“
F(L3) =11, f(3,1,3)=+19
FLL3) =1L £(3.3,1)= F



Now evaluate the triple Riemann sum (add all the values evaluated at each sample point and
multiply by 8)

‘%ZZZJ{ R S =8(ﬁ+3\f{ﬁ+3vﬁ+3ﬁj

f=l J=l k=l

=(239.638

|:|:.I]
Use Maple, to find J:fj;’:,l'x! +y* + 2 dz dvdx
" r:n:{.f'f.;'ui'(r'm{fn.r{ﬂ .1’1 i _1*1 t2* L x=1 ..3]._1'= | ..3),:= I 3”

227.8281039

Therefore,

JI L
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The Midpoint Eule states that the triple integral of a function f(x., v, z) over abox B can
ke approximated by dividing the box up into cubes, calculating the function value at the
center of each cube, and then adding those values. MMathematically, we have

mf{x.:v DAV Y S5 FR.F, FA

im]l =l k=l
there %;the midpoint of 15[ %, %], ¥, 12 the midpoint of[y, . ], and Z; 15 the

+ ¥’ + 2 dzdydx =

midpoint of[z, .2, ].

Apply the Midpomnt Eule with the cube [0, 1]=[0,1]=[0,1] divided into eight cubes. If S
1g to be divided into B equal cubes, that mean the x, v, and z dumensions of B should each
be divided into 2 intervals.

jﬂfn:xy DAV w3 33 S (5.5, F Y

i=l _;'-1 K=l

=ZZZﬂE=.ﬂ=fﬂﬂV

3ol gl kel
= F(x.0. 2)AF + Fx. 0. 2 ) A + (5, 7, ) AV + F (5, 7, 2, AV
+ (X A2 )M + F(x, .50 A Y + 7 (%, v 2 AV + 7R, 7, 2 ) A



since the x, 3, and z dimensions are all divided in half, the x-, y-, and z-1ntervals are all
[0.1/2] and [172,1] Since the midpoints of the intervals all happen at 1/4 and 2/, the
midpoints of the four regions ccour at {(x, y,z) | x, ».z € {1/4,3/ 4} } —in other words,

every possible combination of 1/4 and 3/4. The wolume of each cube 18 (172 1/2)(1/2) =
178,

Plug all of thiz in with F(x,v,2) = cos(xyz)

oo (D roree I
+cos % ; % (1/8) +cos % ; % (1/8)
+cos ; & % (1/8) +cos ; % ; (1/8)
+cos ; ; i (1/8) +cos g ; g (1/8)

= (1/8) (cos(1/ 64) + 3 cos(3/ 64) + 3 cos(3/ 64) + cos(27/ 64) )
—[9849
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The wolume of the solid 15 given to be
11-x2-2=

v=II j dy dz dx

oo on

From this we see that the region of integration 1s
E=[(:{,_}r,z): D=x=l, 0=z=1—x, DEyEE—Ez}

Therefore the solid 1s bounded by planes x+z=1, y+2z=2, x = 1 and lies in the
first octant (that 1z bounded by x =0,y =0, 2=10)

Nowplane x +z=1meets x—axis1in {1, 0, OV andz—axiz in (0, 0, 1) Also the
plane v+ 2z =2 meets vy —axes in (0, 2, 0 and z—axis in (0, 0, 1. And both the
planes meet in straight line v = 2x. Also they meet in xy — plane at {1, 2, O}
(obtained by putting z =0 in both the equation)

Hence the required solid 15
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Consider the following iterated integral:

7 Ty 4=yt

f f I dx dz dy

o 0 0

The objective is to sketch the solid whose volume is obtained by the integral

The region of integration is,
Ez{{_t*%z}:ﬂﬂyﬂl,ﬂizi?-—y,{}ﬂxﬂdr-yz}

The solid bounded by the three coordinate planes,
The planes are z=2-y and the cylindrical surface y=4-y*.

By using MAPLE, sketch the solid.
Here the ranges are 0<x<4-)°, 0£z<2-y, 0<y<2.
By entering the data into MAPLE

ey —y{r=ﬂ.}'=2,:={}~z=2 —¥

r=0x=

plots| -display|( plots| --implicitplo3d | (x=0,x=0..4,v=0.2,z=0..2), plots| :-implicitplot3d

3 A y=0,y=2,:=0,2=2 —)
Jx==p"2 4+ 4,x=0_4,y=0..2,z=0..2), plots| :-implicitplot3d]{ y=0,x=0_.4,y=0.2,

3 z=0..2),plots| :-:'u:pﬁce’fp!ﬂﬁéf Wy=2x=0.4,y=0..22=0.2), plots| :-impliciiploi3d|
(z=0,x=0.4,v=0.2,2=0.2), plots| --implicitplot3d |(z=2 — y.x=0.4,y=0..2,z2=0

-2))

The solid is as shown below:

z=2-y
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The paraboloid y=4— x*— 4z* when intersected by the plane y=0is seen as

To find the traces parallel to the xy-plane, setz =k

y=—2 +4-4i*

These cross-sections are all parabolas opening in the negative y-direction.

To find the traces parallel to the xz - plane, set y=14&:

X +4=4—k

These cross-sections are all ellipses as longask <4, Ik >4, no points (x, ) satisty this
equation; itk =4, only the point withx =0, z =0 satisfies it Therefore, this shape has a

point at {0, 4, 0 and widens out into ellipses in the negative y-direction. It does not exist
tor vy =4

To find the traces parallel to the yz-plane, setx =&

y=-4z* +4- 1

These cross-sections are all parabolas opening in the negative y-direction

=ince the surface has parabolic cross-sections in two dimensions that open in the negative
y-direction, and ellipses that start at a point and then widen in the negative y-dection,
this shape 15 an elliptic paraboloid with the y-axis as its axis and opening in the negative
y-direction. Furthermore, its vertex 1z at (0, 4, 00, Here 15 a graph:

The wolutme in question for this problem 15 the solid inside the elliptic paraboloid but
bounded on the open end of the parabolotd by the plane ¥ =0, We go through the six

different ways of ordering the limits of inte gration.

First we examine doing x, then v, thenz.



The limits of integration in x are between the two x-halves of the elliptic paraboloid

surface, or x=4/4—v—4z* andx=—/4— y—4z* . The limits of v in terms of z must

account for the “deepest” cross-sectional parabola parallel to the yz-plane, which occurs
in the yz-plane when x = 0, making the upper y limit the equation ¥ = 4—4z*. The lower
¥ lirmit 15 where the v =0 plane slices through the paraboloid and bounds the selid The =z
limits are the most extreme values of z, which occur 1in the plane y=0 whenx =10
0=4-0" -4z

4z% =4

go=k]

The first version of the iterated integral 15 therefore

.I-_ll_l-:_431_|- %f{x,%zﬁxfy&

Mext we do x, then z, theny. The limits in x are still the borders of the paraboloid in x,

x=ud—y—4z andx=—/4—y—4z*  The limits in z are the upper and lower halves

of the parabolic cross-sections parallel to the yz-plane expressed in terms of y. The most
extreme z-values of these parabolic cross-sections occur at x=0, so we set x=0 and

solve for z in the surface equation to find y = 4 -4z
z=i'4_":F
2

which are 0 and 4.

as the limits in z. The limits in ¥ are now just the extreme walues of y,

The second wversion of the iterated integral 15 therefore
4 0 -3z Ji—pazt
.[u I_ﬁm .I-,I'-!f-;u--tx“

i lx, v, z)dxdzdy

Mext we do y, then x, then 2. The limits in v are the plane ¥ =0 and the surface equation

as given, y=4—x*—4z° . The limits in x become the two halves of the elliptic cross-

section it x, the widest of which occurs at the widest opening of the elliptic paraboloid
allowed by the solid, which 1z at y=0. Plugging v =0 into the surface equation and

solving for x gives x=t+/4—42z° as the limits in x. The z limits are the most extreme
values of z, which occur in the plane y=0 whenx =10

0=4-0°-4z
4z% =4
=11

The third version of the iterated integral 15 therefore

J'l =..|4—n1-xE .|'4—x? 4z

oo I e Y Sz, y. 2)dwdxdz




Mext we do w then z, then x. The limits in v are still the plane v =0 and the surface
equation as given, y=4— x° —4z° . The limits in z are the upper and lower halves of the

elliptic paraboloid at the mo st extreme point, which happens when it 13 most open—in
other words, when y=0. Plugging y =0 into the surface equation and solving forz

: NEEPS o . o
gives z =+t ———— as the limits in z Finally, the limits in x are the most extreme values

of z, which occur at the most open part of the parabola, when y=0and 2=0, or x=22.

The tourth version of the iterated integral 1z therefore

]’2 —-x" a2 .|'-1-— =gt f (x, 5 g)d}dzdx

2t do

Mext we do z, then x, then

The limits of integration in = are between the two z-halves of the elliptic paraboloid

surface, or z =%

J4-x -
Ty. The limnits in x are the upper and lower halves of the

parabolic cross-section parallel to the xy-plane where it 13 most extreme, which occurs
when z =0, Plugging in z =0 and solving for x gives x =%,/4 — . The limits in y are

now just the extreme walues of v, which are 0 and 4.

The fifth version of the iterated integral 15 therefore
IR =
.[:u .I-_ﬁ .I-_,|'4-x*-ys‘z

T (% v, 2)dzdxdy

Finally we do z, then v, then x.

The limits of integration in z are still between the two z-halves of the elliptic paraboloid

REES o N ;
Ty. The limits in » are the plane y =0 and the cross-section

surface, orz ==

parallel to the xy-plane that 15 most extreme 1n the v, which happens at z =0; plugging 1n
z=0 gives y=4—x* as the upper ¥ limit. Finally, the limits in x are the most extreme

values of x, which occur at the most open part of the parabola, when y=0 and z=0, or

3]

The sixzth version of the iterated integral 15 therefore

.I-_:; .I-.:_?{i IEZ Fx, v, 2dzdvdx
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Consider the surface:

y2+22=9, X==2:x=2

From this problem, the x is bounded by -2 < y< 2. ¥ is bounded by _,fg_ -2 <p<a9-z27.

and z is bounded by _ fg_yl <y fg_yi .

Therefore, the all six integrals are equivalent.

First integral:

J I J —f xyz]d}»dzdx

Second integral:

I I J —_,f X, v,z ]-:;izdydx

Third integral:

JoL T (o2 v

Fourth integral:

J .[ _[W;f -rml"f-} dzdvdy

Fifth integral:

j J' (x, .z ) cvdvdz

Sixth integral:

.[31.[“: _l-z S (x, v, z)dxdzdy

W=z
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The region enclosed by the surfaces y=x".2=0,and y+2z=4 iz

It helps to have a clear image of the graph of the solid. The first boundary 15 a parabolic

cylinder with the equation y=x° with traces that are parabolas parallel to the xy - plane.
The horizontal plane z =0 bounds the bottom ofthe solid; the plane z=—yw/2+2

bounds the top, slanting downward diagonally.

The upper boundary intersects the parabolic cylinder at its vertex whenx =y =0 Plug

¥ =10 1into the plane equation:

Z=0F2

#=2

To see where the upper boundary slants dewn and intersects the planez =0, plug
=1

O=—p/242

y=4

The line of intersection of the planes 15 also at the widest point of the parabola that 15 still

part of the solid, so provides the most extreme x-values. Plugin y=4 to the equation of

the parabola to find that x = X2 at these extreme corners of the solid
First we integrate along x, then v, thenz.
The limits of integration in x are between the two x-halves of the parabolic cylinder,

which are x= .\f)_f and x = —,\E. The limits of v interms of z go from y =0, the vertex of

the parabolic cylinder, to the slanted plane that is the upper boundary of the solid,
or y=4— 2z  The limits inz are the most extreme values of z, or z=0 andz =2

The first wersion of the iterated integral 15 therefore

L1, [ o oxinaba




Mext we do x, then z, then y.

The litnits in x are still the two x-halves of the parabolic cylinder, which are x= .J;:
and x = _‘\.f-;' The limits of z 1n terms of ¥ go from the plane 2z =0, the bottom of the
solid, to the slanted plane that 15 the upper boundary of the solid, orz=—»/ 242 . The

limits 1n y are the most extreme values of ¥, or ¥y=0 and y=4.

The second wersion of the iterated integral 15 therefore

r ['WM j‘“j; F(x v, 2)drdzdy

0 4o

Mext we do y, then x, then =
The limits in y are the parabolic cylinder y=x° and the slanted plane y = 4— 2z To get

x interms of z, write the limits in x interms of v x= —J}_r and x = .J}_f Then use the
equation for the plane, y=4- 2z, topluginand get x=—/d4-2z and x=+/4—-2z . The

litnits in =z are the most extreme values ofz, or z=0 andz =2

The third version of the iterated integral 15 therefore

[ f(x . 2z

JigE
il

Mext we do y, then z, then x.

The litnits in ¥ are the parabolic cylinder v =" and the slanted plane y = 4— 2z To get
z interms of x, write the imits inzinterms of . z=0 andz =—y/ 2+2 Then usze the
equation for the parabola, y=x°. to plugin and get z=—x"/ 2+ 2. The limits in x are

the most extreme values of x, or x =12
The fourth version of the iterated integral 1z therefore

IE -I-—x?."2+2 .I-:;hf{;{,y,z:dydgdx

-240

Mext we do z, then x, then w

The limits of integration in z are the two planes z =0, the bottom of the solid, and the
slanted plane that 1s the upper boundary of the solid, orz =—»/ 242 The limits in x are
the two x-halves of the parabolic cylinder, which are x=—/y andx= .\b_f The limits in

v are the most extreme values of v, y=0 and y=4 .

The fifth version of the iterated integral 15 therefore

.[: I _f; _L,_ "% 1 (x, y, 2)dedady




Finally we do z, then v, then x.

The limits of integration in = are still the two planes z = 0, the bottom of'the solid, and the
slanted plane that 12 the upper boundary of the solid, orz =—y/ 2+2. The limitz 1n ¥ in
tertns of x are the parabolic cylinder y=x* and, since the upper plane’s cross-section
doesn’t change 1n terms of x, the most extreme wvalue of v, or y=4  The limits in x are

the most extreme values of x, or x =12
The sizth version of the iterated integral 1z therefore

.I-2 II"Z _I-_MJrzf':x:_}",Z:thdydx

=2 x50
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It helps to have a clear image of the graph of the solid. The solid 15 bordered by the
plane x = 2 | parallel to the yz-plane, the plane v = 2, parallel to the xz - plane, the 2 =10
coordinate plane, and the inclined plane x4+ y— 2z =2 . We find the vertices of this solid
bounded by the given four planes.

The three first planes form a corner when x=y =2 andz =0, atthe point (2, 2, 1), If we
plug x= 1y =2 into the inclined plane equation, we get

a2 de =

=]



so the inclined plane intersects x=2 and v =2 boundaries at z =1, forming a corner at

(2,2, 1) directly above the corner at (2,2,0). If weplugx=2, z=10 into the equation for
the slanted plane, we get

2 Hyrs =R

=y =01

To give the point (2, 0, 0% as another corner of the solid. Finally, pluginy=2, z=0to
get

x+2=0=2

=]

giving the point (0,2,00 as the fourth corner of the solid. The solid 15 therefore composed
of four flat planes with corner points at (2,2,00, (2,2,1), (2,0,00, and {0,2,0). We can use
these points to find the lines that border the solid in the projections on the coordinate

planes.

In the xy - plane, the base of the solid 15 a triangle with wertices at points (2,2), (2,07, and
(0,27 1t 18 bounded by the lines x=2, y= 2, and the line that connects (2,0) and (0,2,

which has slope of -1 and y-intercept 2 and 15 therefore y=—-x+2.
Parallel to the xz-plane at ¥ =2, the solid has a triangular face with the xz-coordinates

(2,0, (2,1, and (0,00, In the projection on the xz-plane we therefore have the
boundsz =0, x=2, and the line with slope 1/2 and z-intercept 0, or z =2/ 2

Parallel to the yz-plane at x =2, the solid has a triangular face with the yz-coordinates
(2,00, (2,10, and (0,00, Just as in the xz-cross-section, this triangle has yz-equations
ofz=0, y=2,and the line z =¥/ 2 in the projection on the ye-plane.

First we integrate along x, then v, and then z.

The x limits are the slanted face of the plane solved for x, which s x = 2—y +2z, and the

plane x =2 The limits of v in terms of z are the equations from the projection in the yz-
plane solved fory or v= 2z, toy= 2. The limits in = are the extreme values of z, or

g=0and z=1.

The first wersion of the iterated integral 15 therefore

_I-l_l-2 _I-2 Flx, v,z dxdyvdz

043z di-p+dz




Mext we do x, then z, then »

The x limits are still the slanted face of the plane solved for x, whichis x = 2— ¥ +2z, and

the plane x =2 . The limits of z 1n terms of ¥ are the equations from the projection in the
ve-plane solved forz, or 2=0toz = v/ 2. The limits in ¥ are the extreme values of ¥, or

el and s 2

The second version of the iterated integral 1z therefore

[P fixy.z)dndzdy

1] d-p+lxz

MNext we do yv, then x, then z

The v limits are the slanted face of the plane solved for y, which 1z vy = 2— x+ 2z, and the
plane ¥y =2 The limits of x in terms of z are the equations from the projection in the xz-
plane solved for x, or x =2z toz =2. The limits in z are the extreme values of z, or

z=0Dandz=1.

The third version of the iterated integral 15 therefore

[ . 2z

0diz 2—x+lx

MNext we do ¥, then z, then x.

The y limits are still the slanted face of the plane solved for ¥, which1s y= 2— x4+2z, and
the plane ¥y = 2 The limits of z in terms of x are the equations from the projection in the

xz-plane solved forz, or z=0toz=x/2 The limits in x are the extreme wvalues of x, or

x=0nd =2,

The fourth version of the iterated integral 1 therefore
T pnfd 2
['[ [ ftxy.z)dydzdx

o dn 2—x+dx




Mext we do z, then x, then

The z limits are the plane z =0 and the slanted face of the plane solved for 2, which
iz =(x+y—-2372. The limits of x in terms of ¥ are the equations from the projection in

the xy-plane solved for x, of x=2—y tox=2. The limits in v are the extreme values of

e ] A

The fitth version ofthe iterated integral 12 therefore

-I'E-I'E -I'(xﬂr—ﬂ}."ﬂflix, 3 z:ti‘z.:fxdy

o da-pdo

Finally we do z, then y, then x.

The ¥ limits are the plane are still z =0 and the slanted face of the plane solved for =z,
which iz z=(x4+y—-2)/2. The limits of ¥ in terms of x are the equations from the

projection in the xy-plane solved fory, or y=2—x to y= 2. The limits in x are the

extreme values of x, or x=0 and x=2.

The sizth version of the iterated integral 1z therefore

J-D: _Ij_x _I-;xﬂ_wzf(x,y,zjdgdydx
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Consider the following integral:

1 I—§

_I[ij oy .ff‘{h dlx.

LU

dzdyelx

From the given triple integral, notice that the variable z variesfrom0to 1-y, Y varies from
ﬁ to 1 and the variable x varies from 0 to 1.

S0 the region £ can be written as follows:

E={(x.y.2)|0<z<1-yJx<y<10<x<1).



The sketch of the region g is shown below:

y=v&

. Bounded region
The projection pofthe region g onthe xy plane is shown below:
'y

05 5
X
05 of 05
051
y=Vx
x=1




dzdxdy :

Rewrite the equation y = .,.I'; as follows:
y=rx
" 2

7=()

x=y

The description of the solid Eis £ = {[:.r,y,z)i{} <spsl,0€x<y? 051 —y}.

-

f{IdV=II ‘{E F(xy.z)dzdxdy

g

dydzdx :

Rewrite the equation z=1- y as follows:
z=1-y
y=l-2z

The description of the solid Eis E ={(x,y,z)|Vx <y <1-z,0<z<1-Jx,0<x <1},

I-Jx 1

|

j [xy, @uﬁdr

'\' X

flfav =]

dydxdz .

Rewrite the equation z=1-y as follows:
z=l-y
y=1-z

Jr=1-z (Sinccy=w.l'r.;)

=(:I-z}'

And the description of solid Eis E = [{x y,z}|\j'r; Ly£l-z0=<

(42" 1z
H .:.*sz ‘[j'(x,y,z}dydrdz

0 0

<(1-z)',05z2<1).



dxdyd- :

And the description of solid Eis £ = {{:x,y,z}|ﬂ <x<y*,08y<l-2,02z¢ l}.

fifav :i

dxdzdy :

f{x,y,z]d.rdydz

.;‘_:.‘—‘I
G‘—."

The description of solid E is E={(x,y,z]F{;5y < I,stiy*,ﬂg < _J:},

fgdp—:;f
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Consider the following integral:

!

The sketch of the region g is shown below:

f j f(x.p.2)dxdzdy

l-x" 1-x

I (%, y,z) dydzdx.

-::'I..——“,'

-

r=1-x




The projection pofthe region g onthe xy-—plane is shown below:

214

The projection pof the region g onthe xz-—plane is shown below:

¥

Rewrite the given integration as equivalent iterated integrals in the five other orders.
dzelyex :

From the given triple integral, notice that the variable yvaries from () to |- x,the variable z
varies from 0 to j_ 42 and the variable x varies from 0 to 1.

The description of the solid E is,
E={(x,5,2)|0<y<l-x0<z<1-x",0<x<1},

I-x1-#°

S0, Hj-dlf:j“[ I £ (x, v, z)dzdydkx.



dydxdz :
Rewrite the equation » = — 42 as follows:
z=1-x?
xt=l-z
x=+l-z
The description of the solid E is,
={{x,y,z}|{}£z <1,0sxsVl1-z,0s < ]—x}.

1 \Irl.-—: 1-x

S0, j’{}'w:h[ J’ J'f(x,y.z}a}:fmb.

LU

dydzdx :
Rewrite the equation y=1-x as follows:
y=l-x
x=l-y
The description of the solid E is,
={{x,y,z)|{}s x£l-p,02z% l—.rz.,l}s;;rSl}.

I 1=y 1z

So, fﬂdﬁ":jj If(x,y,z)dzdxaj&

dxdzdy :

Rewrite the equation y=1-x,z=1-x" as follows:

]=x"

1-(1-y)’
=1-(y* -2y +1)

:2}:—}:
The description of the solid E is,

E:{{x,y,z}h}ﬂx5],[15352}'—}*2,{]53;5&—;}.

13 e \ \|—'

So, H dF:I I If(':y,., ) dxd=dy.



dvdydz
Rewrite the equation y=1-x,z=1-x" as follows:
y=l-x

=l-+l-z

The description of the solid E is,

E={(.r,y,z]|{lszﬂi,ﬂsysl—-.fl—z,ﬂﬂxﬂl—y}.
o ey B

= for-{ 1

Therefore, equivalent iterated integrals in the five orders are,

i

b=

S (x,y,2) dxdydz.

I I=x

] F(x.y.2)dvdzdx = j

I-x1-

ff{x,y,z}dza{ydx

=z 1-:

Ij__ _ff{x,y,z]aj.’dxdz

|
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Consider the following integral:

f‘”-f X, V.2 d?dmjr

The objective is to write five other iterated integral that are equal to the above integral.

The region bounded by the lines is as follows:

z=0andz=y
x=yandx=1
yv=0andy=1

To write the first iterated integral, change the limits as follows:

x:x=yandx=1
y:y=zandy=1
z:z=0and z=I

111

The iterated integral is ”_[j‘(,t}f,z}dm_’pdz
0zy

To write the second iterated integral, change the limits as follows:
yiy=zandy=x
x:x=zandx=1
z:z=0and z=1

10x

The second iterated integral is ”If{\x,y,z}ajrcirdz.
0:z:



To write the third iterated integral, change the limits as follows:

z=0andz=y
y=0andy==x
x=yandx=1
| xF
The third iterated integralis [ [ [ f(x,y,z)dzdydsx.

[
To write the fourth iterated integral, change the limits as follows:

x:x=yandx=1
z:z=0and z=y
y:y=0andy=1

1 »1

The fourth iterated integral is IJJ‘_I-{."C..}-‘..:l}ii'{(f:fh-‘.

00y
To write the fifth iterated integral, change the limits as follows:
y:y=zandy=x
z:z=0and =x
x:x=0andx=1
l.x x

The fifth iterated integral is jj'[j'{.r.}',:}.:th-'d:d.r_

00z
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The limits of integration of this integral are x=0tox=z, z=y toz=1,and y=10
to v=1 The shape 1z bordered by these planes. It 15 a pyramidal shape, apex down, with
its apex at the origin and bases atz =1, with lateral sides the x=0 plane, the y»=0
plane, the plane z = v, and the plane z = . Tt has edges along the z-axis, along the line
z =y in the ve-plane, along the line z = x 1nthe xz-plane, and along the line of
intersection ofthe z =y and z = x planes, which has the projection x =y inthe xp-
plane. The vertical plane through this edge, the plane x = y, bizects the volume.

“We integrate in terms of x first, then v, then z
The x values vary from the x =0 plane to x=z . The v values vary from the plane y=10

to wy=z. The z values range from 0 to 1. 5o the integral 1s:

.I-ul,l-;_l-;f':xs,}-’,zjlcfﬂfydz

“We integrate in terms of v first, then x, then =
The y values vary from the y =0 plane to y=z The x values vary from the plane x=10

tox=2. The z values range from 0 to 1. Zo the integral 1s:

EE [, /e,y 2)dvdxdz




“We integrate in terms of v first, then z, then x.
The v values vary from the »=0 plane to ¥y =2 . The z values vary from the plane z=x
to the plane z =1, The x values range from O to 1. So the integral 15

-[ul.[ 1 [, f (x.2. 2)dudzax

“We integrate in terms of = first, then x, then
This wolume 1z difficult to inte grate over the z first because both the planes z=x and
z =y border it on the bottom. We therefore split it into two integrals. In the first, the z

values vary from the z =y plane to the z =1 plane. The x values vary from the plane
x =10 to the plane x = ¥, which splits the volume where the z =¥ and z = x planes meet.
The v values range from Oto 1.

In the second integral, the z-values vary from the z = x plane to the z =1 plane. The x
values vary from the x =y plane that splits the integralte x=1. The v values range from

Oto 1.
=0 the integral 1s:

_Ll _I-; J':f (x, ¥, zMzdxdy + J'ul Ll I: Flx, v, 2dzdndy

We integrate in terms of 2 first, then y, then x.
Once again, this volume 1z difficult to integrate over the z first because both the planes
z=x and z =y border it on the bottom. We therefore split it into two integrals. Inthe

first, the z values vary from the z =y plane to the z =1 plane. The v values vary from
the plane x = v, which splits the volume where the z =y and z = x planes meet, to the
v=1hboundary The x values range from Oto 1.

In the second integral, the z-values vary from the z = x plane to the z =1 plane. The ¥

values vary from the v =0 plane to the x= ¥ plane that splits the integral. The x values
range from Oto 1.

a0 the integral is:
_I-ul_[:_l-:f(x,y,z}dzdydx+ll'nl-l';-l':f(x,y, Zjdzdvdx
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Consider the triple integral J‘H‘j"" Sx'yz dV
:

Here ( isthe cylindrical region x* 4+ y* <4,-2<2<2.

The objective is to evaluate the triple integral using only geometric interpretation and
symmetry.

Since the region C is a cylinder of radius 2 and axis along the z-axis. It extends from
z=72.alength of 4.

=2 10



The graph of cylindrical region is shown below:

Break the integrand into two parts.
fgm 5x*yzidV =IE[I4dV+J-£ISIEyzde (1)

Examine the first part first. Integrating a constant over a region results in the constant times the
volume of the region.

Since the volume of a cylinder is the length 4times the area of the base.
The area of a circular base i5 4 = g7p2.
Therefore,
V=nar’h
=x(2)' 4
=l6x
This first term is 4) = 64 -

The second term has a factor of 2 which is symmetric about x =( as is the region of
integration. This term also has a factor of 2 which is symmetric about z =() as is the region
of integration. Finally this term has a factor of y, which is anti-symmetric about y =0.

Therefore the second term makes a net contribution of zero to the integral.

From the equation (1), put the two terms together

4+5x y*dV =64z +0
1]
o
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The region & 13 given
E={[x,_}f,z): 0= x=1, DE_}?E\E, 05251+x+_}?]

Nowp(x,y,z) =

Then mass of the solid 15

s
I [1+x+y) dy dx
0

a J'-m"a_’
i J ax

Il
]

Il
[
O ey D ey 1 P—

o
=t
+
@
+
e |

Il
-2

x(1+x+y)dvdx

7 =l
= x(y+xy+%} dx

=0



]
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- 1
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gl v SR
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L 0
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260
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360
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3
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v ax

|
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y=0
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0
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The region E 13 given by
E:{[x,y,z): =]2y=] 0Zz21—y% Diixiil—z}



Now it is given that o(x,y,z)=4
Then the masz of the solid will be

m=[[[ o(x2.2)a

1131z

=4[ [ [dxdzay

-1 0 o
1 1-pt

=4[ | (1-z)dzay

-1
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Hence the center of mass 13 i 0 E
14 7
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o F

(0,0,a)

y=a

(0,0,0)

e

(0,a,0)

X=a

/ (a,0,0)
X

The region B s bounded by planes x =0, v=0,z=0,x=a,y=a,z=«a
1E. Ez[(x,y,z): D= x=a, UE}JEQ,DEZE.::}

W
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Ed

F

(0,0,1)

x+y+z=1

w
S

B (0,1,0)

W
]

0 (1,0)

The tetrahedron E 15 and its projection D on xy — plane are shown in figures
above. The lower boundary of E 15 the plane z =0 and the upper boundary 13 the
plane x +v+z=11e z=1—-x— v Therefore & 15 given by

E:[(x,y,z): O0=x=1, O0=y=l-x, Dizil—x—y}

And ,G(x,y,z):y



Then the mass 15 given by
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To find the moments of inertia, use the following integrals with limits of integration determined

by the solid.
L=|[] (»*+2%) p(x.5.2) av

1= [[[. (x*+2) o (.3.2) ¥

L=[[[ (x*+3*)p(x.3,2) av
Describe the cube as E={(x,y,z)|0<x<L, 0<y<L, 0<z<L}.

The solid is a cube of length L, with a vertex located at the origin and three edges that lie along
the coordinate axis.

0< x<[L.whichmeansthat y=(0 and y=[ are the lower and upper limits of integration of
x respectively.

0<y<[L. whichmeansthat y=0and y=L arethe lower and upper limits of integration of
y respectively.

0<z</[.whichmeansthat =0 and - are the lower and upper limits of integration of
7 respectively.

Here the constant density of a cube is k.
Therefore, p(x,y,z)=k.
By symmetry of the cube and the density function, all the moments of inertia are to be equal.

Write the required moments of inertia as the iterated integral.

1,=1.=1=|[[ (v*+z*)p(x..2) dV

:J:: J‘: j:{yz-i-zz){k} dz dy dv
(e

Compute the integrations.

IJ"I y ‘4z’ d*ﬂfydx kj- I —p22+%:-:3j|hﬁ dy dx

Zeil

0w -o)| e e

2
=k |, '\Ly +=L ]dy dx




Consider kﬂ E’(L__pf 4.,}; I ] dy dx

iR 3 . _I 3 I 3 .
g L[L""""Eﬁj“f}’ de=k[ |30 +5;,-,}-} dx

H

=k£f%£{{f+}ﬁ{ay{m}¢r

)

= .{-‘L: % L' dx

:%kﬂj

7
dx
1]

7
Consider :Hjj'
3

I
dlr
£r

EJF- 2_-1.
Euiﬁh=§ﬂ[ﬂ“

=EkE[L]

Therefore, 4| }': I.: (y2+2%) dz dy dx = %A—L—“’ .
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If'the dimensions of a rectangular brick are a, &, and ¢, let the dimension of length & be
parallel to the x-amis, the dimension of length & be parallel to the y-axis, and the
ditnenzion of length ¢ be parallel to the z-amis. Since the brick 12 centered at the origin, 1t
12 bordered by the planes x=da /2, y=2b/2,and z =2 /2.

/




The equations for the moments of inertia about the three coordinate axes for a solid B

with density oz, v, z) are
I = m (7 +2°) plx,y.2)dV
¥
= ”.I-{xj +z Mol v 2V

F

= [[[ & +»*)00x . 2)a7
E

iven that the mass of the brick 15 A4
suppose the density of the brick 15 2{x, v, z) =k, then we have

cid W2 a2 2 B2 el
m = I I I 2%,y 2 ) drdydz can be written as M = _[ I _[ hdxcdvdz
—el2-Bi2—al2 12 -bi2-ar

P 212 12
= M =k xy %y o %2y

= M = kabe

Fromthiz, we get o(x, y.z)=k= sl
abe

Teing this 1n the abowve formulae, we get

fx:-l'r:.l'ﬂ -I'-Bl.l‘z .I'a.l‘l ((}r 5 }E x,;fydz

—erndpra ) _ain
Af e e
2T e
abt 2p in
i1 B2
=£ I I a(y2+zzjdyciz
abc ;n 3n
T Y 2 M g
PN
-2
~ M cj_ﬂ EJ'E +E:13 dz_'_M .:rj_ﬂ (E:'_'_E;']szz
S 3e s lg 8 Br o Lo D
sz M z -
b4 +—
12 } i F 3 }—c."ﬂ
My Me?
= +
L 12
=224

12



since the formulae of moment of inertia are cyclic and the given function 15 cyclic, we
get in the similar manner as above that

1, = [[[ = +2 00z, y, 2380

F
= %(ﬂz +-:?2:] and
I, = m (2% + 3% olx, v, 2)dV

E

A
= E(ﬂg —I—E:'g:]

Thus, the required moment of inertia iz

M M M
I = E[E:F* 2 R E[aﬂ SR E[aﬂ +5%)
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Convert to polar coordinates

£ =it J’;{jrjcusl -i-rzsinzjrdrd fd:

s { r 7 - h ilx
=kfodzf; dﬁi?} =:TffJ:}d:Jﬁ dé
{}

Thka

-

o
Tkha

B rf-.'a" I |

= Lk[pdz0)) =

2

Chapter 15 Multiple Integrals 15.7 46E

Suppose that p{.w:._v,:}is the density function for a solid object that occupies a region g.

Then the moment of inertia of the solid about 7z — gxisis given by the integral,

Foo= HH\' + j-':}p{x.,v,z}dlf

E



Consider the cone _f,2 +y*<z<h-

Suppose that pis the constant density of the cone.

To evaluate the integral use rectangular coordinates.
Thus, x=rcosf and y=rsind with z==z

And p? =42 _'_}__z

Therefore, the moment of inertia is given by the integral,

= m: prdrd@d=

Where gis the cone [,2 +y*<z<h
The limits of integration are 0<£z<h, 0<r<z, 0£8<2x.

Evaluate the integral.

First integrate with respect to ».

[X]
E ]

I"“-u
f—

I
1] ‘ﬁ L]
i e b s

j r* prefrd @dsz

o
“LL

I
|

j P drd@dz
L4 2
[—} d6d-=
4 0
“
[z—}dﬁdz
ol et +

Now, integrate with respectto g.
AR

z*[27-0]d:

¥
D

o
1}
1] I

L~

—_— Tl

sl &w M

H o e éi—ha- g

1
=}

N-I-l
W
i,

i

Now., integrate with respectto z.

h
P E
/ _E'L,-*[zx]d_

_pa[2]
¥ | &

_pal’
10

prh’ _

Hence, the moment of inertia of solid cone is | =
10
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Consider P[IJHZ]:m

The solid enclosed by the cylinder y = x*andthe planes z=0and y+z=1
z=1-y,When z=0, y=1.

The region is
Dz{(x,y,z)|~—l£x£l, b E}‘_izit—y}

Mass = m = J“-p (x,y,z)dV

U J' ﬁdzd;dx

The center of mass are

- M, — M, = M,

x=—— y=—=5 =
m m m

Thus

M, = [[[pav

11 1=y

JI rm dfd}cix
- [f[oar

I 1=y

T

M, = [ zpa

1| I=y

jjj’ 2 (¥ + 7 )dedlyds

Moments of inertia are

13 3”-_E{yz +z° :Ip{.r,y,:}di"
=_|._-j[lﬁ+z ]\lffvirfdl”
f}_=__” X +22],-D{1'_]. z)dV

{‘l’z )“I'r +y'dV

”! +y?) z)dv
-J1f e )ﬁ

I
S
-.-|__‘
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7

h

(0,0,1)

N
—

(1,0,0)
X

Now the base of the hemisphere 2° + 3y +z° =l iz acircle 2° +3* =1
Then the region 15 given by

E=[|:x,y,z):—15x51,—»\.'1—;':2 Zys 1—:{2,0525*;1—;{2—}?2]
Now ,G(x,y,z): Jx £ 30 42

(&)
Then the mass 15 given by

= ”I ,D(x,y,z)civ
¥
N

I I Sy 2t dzdvdx
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=.|1- I J-JI (x3+y2),,.'l+xg+y2 dz dy dx
eS|

Chapter 15 Multiple Integrals 15.7 49E
Consider £ be the solid in the first octant bounded by the cylinder ? +J.~3 =1 and the planes

y=2z, x=0.and z=0 withthe density function p(x,y,z)=1+x+y+z.

Use a computer algebra system to find the exact values of the following quantities for E.
(a) The mass.

(b) The centre of mass.

(c) The moment of inertia about the z-axis.

Solution:

(a) The mass

To find the mass of the lamina, we integrate the given density function over the solid:

m= J]L plx,v.z)dV

Since z is lies between the planes z=(Q and z=y, 0<z<y. Inthexy-plane, x*+y* =115

the quarter circle described by R= =(.r, y)02x21,0<y<1-¥ }

0<x<).which meansthat y=( and x =1 are the lower and upper limits of integration of x
respectively. (< y<+fl-x? . which meansthat y=0and j_.fj_,* are the are the lower
and upper limits of integration of y respectively. and 0<:z < y. which means that z =0 and

z =y are the are the lower and upper limits of integration of z respectively.

This allows as to write the mass as the iterated integral

m=J:J.:II_:IJ J;:'I+.r+y+z dz dy dx

5 M= :'m{ in.r{r'm“ +x+y+zz=0.p)y= {}._ﬁqn{ l —,rz]],.t= 0

..I];

3 11

— e+
2T 24

Therefore

m =_[Jj:mj:l+.r+y+: d= dy dx

3 11
—ridei
32 24

This is the mass of the region which is bounded by the cylinder x* 4+ y* =1 and the planes
Y=z y=0,and ==10.



(b) The center of mass

To find the center of mass, we use the following integrals with the same limits of integration that
we used in calculating the mass:

¥ = ﬁm'f xp(x, v,2) dV

|

=—!|;j”'£_}:p{x,y,z} dv
Z= ﬁ”_l-ﬁzp(:r,y,z] dav
where m= .UL plxy,z)dV.

Using the limits of integration we previously found, the center of mass may be calculated by

=

Sl e @ b

L1 e

=
I

(&]]
Il

| Ji-:;; ¥
;LL j“z[1+x+y+z)dzdydt
Calculating the first coordinate of the centre of the mass is

= xhar == '1?[ i:rl[:'rr!‘{r'ri.r{x-{l +x+y+z)z=0.),y ={}._sqr1[1
—.:.:]]tx=ﬂ..lnl

7

i 11
24[321!1' 24)

simplify

28
9 + 44

|

3 7 T
32 “[24]"‘

Calculating the y-coordinate of the centre of mass using the maple.

. vhar = ﬁ{ r'm[:'m{ in{y-(1 +x+y+z),z=0.9),y=0 ..sqrt{ 1

=+)),x=0.1));

.-:ng!i:l’:..'

2 64+15x
5 9np+44



Calculating the z-coordinate of the centre of mass using the maple.

zhar = L[ i:r:l::'m‘[f'm{z-[l +x+y+z)z= D..J.'Ly=ﬂ..sqrt[]
i

—_rz]].x=ﬂ..1]]l

==

13 1
—= 4 —n
o0 | 32
3 T
e— +_
32 ° T 7

simg!if_'..'

1 208 +45w
15 on<+44

Since we have calculated the individual coordinates, we can write the center of mass as

=7.2)=

28 1284+ 30x 208+ 457 ]
44+ 97 220+ 457 660 +1357

(c) The moment of inertia about the z-axis

To find the moment of inertia about the z-axis, we use the following integral with the same limits
of integration that we used in calculating the mass:

1= ][ (x*+3*) px.y.2) dV

Using the limits of integration we previously found, the moment of inertia about the z-axis may
be calculated by

] '\.'rl:-_l.'!. ¥ 'I' 4
f:,:LL In ['r ) )(]+I+}?+z:| dz dy dx
Calculating the moment of inertia about the z-axis using the maple.

" im{m![:'nr[ [.t’j' +y2]-{l +x+y+ :},:=l].._u=],y=[l..sqrt(l —.1'2}},
:r=L'|'..I];
I 17

6" 60
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Consider E be the solid in the first octant bounded by the cylinder »? +J,~3 =] and the planes

Y=z, x=0.and z=0 with the density function p[r,y,z] = x* +_}='2.
Since E lies in the first octant, x and y values are bounded below by 0.

Since x is at least 0 and y =3x, UEIE%_}'.

In the yz-plane, },-? +z! =9 is the quarter circle that lies in the first guadrant, so

0<z<.9-y*-

When z is 0, we know from the equation of the circle y* 4+ z* =9 that y is at most 3, and
0=sy=<3

Since 0< y<3, meansthat y=0and y =3 are the lower and upper limits of integration of y
respectively.

0<y=< %J:__ meansthat y=0 and x= %y are the lower and upper limits of integration of x
respectively.

0<z<,/9—y* . meansthat ;=0 and ;= f'g_},.i are the lower and upper limits of

integration of z respectively.

Write the mass as the iterate integral.

m= II I (.r +y cf*ci'rdy
(a)

To find the mass of the lamina, integrate the density function over the solid:

=[] o av

m=[ [ [*7 (2 +17) de ae dy

Use maple to find the value.

JL I {1.‘2+‘r ]dzdtdr

i

5

3 ply ooyt
Therefore fﬂ J'DE-' L‘ ' (f +},~2) d= dv dy =|—




(b)

To find the center of mass, use the following integrals.
P i
¥= ;ml xp(x,y,2) dV
7= [If, vo(x.5.) av
=
z :;”sz{.nyﬁz] dv

Here m=HL_p{x,y,z} dv .

_25
5
=11.2

Consider ¥ =$I:J";’I:r x(x*+y7) de dx dy

% 3.5 v e —32
-“1—2[ J J x (rz +);] dzdxdy;
oo o

0.1192801339n

at 5 digits
—————

0.37473

—

Therefore ¥ =$I:L;"I"q"'! x(x%+ %) de dx dy =

o



Consider = i‘mﬁyp[.r,y,z] dv

i 3.3 Jo—y2
ﬁ[ J J (& + ) deddy;
ot o

L7031 230000 ®
at 5 digits
D

22089

Therefore y =lj:j':i*'j:lﬁy{x3 +y3) dz dx dy =|2.209
mn

Consider E=El.m::zp{x’y’z) dv

3.3 Jo—y2

> 1 ” J © 2(2 +5P) dededy
470 "0

11.2

09375000000

Therefore 7 = LJ:I:‘J;ﬁ z(.v:J + yz) dz dx dy =
m

Therefore center of the mass is (¥,%,7)=|(0.375,2.209,0.938)

(c)
Find the moment of inertia about the z-axis.

To find the moment of inertia about the z-axis, use the following integral.

I =III}__[xz+y:]p{x,y,z} dv

L LT ) )

.
5 73 3 Jo—2 2y
Jj l [_12+_1."} dzdrdy;
as o "0

1064
175

at 5 digits
—a

59.794
Therefore [ :J‘Ij‘h.[II+P1]P{I=P=3) dv

=159.794
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f(x,y,z:]= e xz i E, where
E=[|:x,y,z): D=Zx=Z2, 0=y 2, 05252]
And flix,y,z)z 0, otherwise

(4]
MNow § I:x, y,z:] iz the joint density function
ThenT T Tf(x,y,z)dzdydle
RPYE
Le .I..I-.I.C nedzdvdr=1
Do
2
LE cj-xcixlll I =4
0
e SN
e (4)(4)(4)=1
; 8 1
Le £=—=|=
B4 |8
(B)
111
P(x=1¥=1,Z2=1)=[[cnzdz dvdx
000
=c_i-xc1’x_i-ycfy_|1-zciz
0 0 0
S (),
& 1
-2 m=|1
{ﬁsc:é from part (4))
(<

P(X+F+Z=1)

We need to find the probability such that
A+F+2 =1

ie. P(X+Y+Z=1)=P((X.7.Z)cE)

Where E 15 the tetrandron bounded by planes
x=0,y=0,z=0,x+y+2z=1



(0,0,1)

x+y+z=1

(0,1,0)

>X
L (1,0)

Then Ez{[x,y,z): D=zxz=l,0=y=l-x 0=z El—x—y]
Therefore P[



my[l— x—y)g v cx

T
—_

I
o] o

—
]

) s

(xy+ Fy4rst - 2xty— 2ot + 2;:2;132) dvdx

—

-:-'\—|.:_I1 e, |

[l [yt

O ey = Py D ey D Ry

(x(l— x)2y+2x[x—1)y2 +zy3:|.:iy.:x’x

4 p=1-2
[x[l—x)g‘}; +2x[}: 1);%4_;;1:_} dx

4 1

B | 0

[6;:1 :J: —8x(1—xj4+3(1—xj4x]dx

3’< ©
q:.!—.._.

ie P(X+Y+Z<1) Y dx

)
Y
—l
I
o

[
Ll“

[x+x5+5x3 Azt — 45" ].:i

-2
L|“

1
—t—+-=x —ixj—dl—f
2 6 2 5 3

1

Ko R]e

1~  — Ole— O —
Hh.'!
-l
h
[N ]
=

o
—_

T 04%30 8x24%30

ie  P(X+Y+Z=1)=

5760
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i [x,y,z:l = EE—(Djxmﬂym.lx} .in E where
E:{[x,y,z): xzl vz D,E:_:":l}
ﬁ;ndf(x,y,z): 0, otherwise



(&)
Now 7 (:J:

) 1z the joint density function

LE. c

¥,z

Then TTT}' xyz .:iz.:fy.:fx—l
TTTE_W 02y g by =1
000

|

0

1E. e E'ﬂj”dx_l-é'u‘”dy_l-é'u'hdzzl
i i

i(g—ﬂj:r)“ IIE_M'F]: I[é'_u'lz): —

05 o' Tmge T SmE
| c(0-1) (0-1) (0-1) _

B Toosy D0y o)

5 [0_5)[;2)[0_1) =

1E ekl O B

100

()
llwm
P(X=17Y=1) =”[ce*’-“* 0B g gy dx
noao

E—Uﬁx:l (42y)1 (E-u.lx]:
“T05) [02) [01)
[e¥-1) (£72) [o=g)
(—05)  (-02) (—01)

(1-e%) (1) 4

-::_Il-e":'j”.:ix.l- -uzydy.l' 0ls
0
L

=

05 02 01
001 (0.3934)(0.18126)
— 0.07132

Hence [P(X =1,¥=1)=007132




(<)

PlX=1¥=1Z=1 =Hjce“’f 0B o e dydn

000
':.Il-e_ujxdx.l- -uzydyi' 0ls g,

0
[:E—Eljx) I[ :4;::]1 (-013)1
0 0
“0s) o2y (01)

2
E]Ell
Tyl

NCBIC
= D.DDﬁTET
Hence [P(X =17 =1 Z <1)= 0.006787
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How the region of integration 1s:
E:{[x,y,z:l: D=x=l 0=y=/i, DEZEL]

And f[x,y,z)zm

|_I.
'Z'Eu
-\___,-
_—
|_I.
E‘Eu
x_-f
—
"
|
st
L
—
——
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e I
(0L0,1)

X

The paraboloidz = 1—2° — y* meets z= 0 in a circle z° +»* =1. Thus the region B

iz the solid under the parabolic z =1-x* —y* and above the circle 2° + v =1

Mow f[x,y,z:l = x'z 43z
= z(xz +_}?2)

Then _I-yf (x,0.2)dv = _I-.!;J-z |::f2 +y2)r::fv

It 15 easier to convert to polar co — ordinates in xy — plane. This gives

[[2(2+57)a»
= | |:(:J:2 +?) éI.l_ﬁ_f )

il =[

Where D 15 the crrcular disk given by
D={(r8),0=8=2x 0=r =1}



Hence
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Consider ”I(l —x" =29t - 333)‘-""”'
E
The region Eis bounded by ellipsoid
X +2y8 4328 =1

S0,

Thus, the region is

2 2 Tt g prre
I o gyg\/l_x ; -\II_I =AY wpe ISR SR
2 2 3 3

E= {(L_}r,z}

We have
-2 [i-2-2* [1-x* N
R RES (e
f J J- {I—xz—2_}'2—3zz]dzd_}idr=2f J [{l—xz—lyz)z—zl]: * dydx
T o
' J% s ooy [1=xt =29 [1-x*=2y :
=2:[ .'IL (1—x-—zy-}2,J : —[ - ] el
V2
=
_ 4 e T=x2 =2 1;'
"B g P
=

4J51r
45

By using computer algebra system, the maximum value if the triple integrant is






