CUSAT 2021 : Shift 3

Solved Paper

Question 1

A certain screw gauge has a pitch of $0.5\,\mathrm{mm}$. If there are 50 divisions on the head scale, the dimension of the object can then be determined to an accuracy of

accuracy of
otions:
0.05 cm
0.01 cm
0.001 cm
0.0001 cm
swer: C
olution:
lution:
vioction 2
uestion 2
ne refractive index of glass measured by a given method by four dependent measurements is found to have values of 1.54, 1.58, 1.52 and 1.56 respectively. The mean value of refractive index with ercentage error is
ne refractive index of glass measured by a given method by four dependent measurements is found to have values of 1.54, 1.58, 1.52 and 1.56 respectively. The mean value of refractive index with
ne refractive index of glass measured by a given method by four dependent measurements is found to have values of 1.54, 1.58, 1.52 and 1.56 respectively. The mean value of refractive index with ercentage error is
ne refractive index of glass measured by a given method by four dependent measurements is found to have values of 1.54, 1.58, 1.52 and 1.56 respectively. The mean value of refractive index with ercentage error is otions:
ne refractive index of glass measured by a given method by four dependent measurements is found to have values of 1.54, 1.58, 1.52 at 1.56 respectively. The mean value of refractive index with ercentage error is otions: $1.55 \pm 1.29\%$
ne refractive index of glass measured by a given method by four dependent measurements is found to have values of 1.54, 1.58, 1.52 at 1.56 respectively. The mean value of refractive index with ercentage error is $1.55 \pm 1.29\%$ $1.55 \pm 0\%$
the refractive index of glass measured by a given method by four dependent measurements is found to have values of 1.54, 1.58, 1.52 and 1.56 respectively. The mean value of refractive index with ercentage error is $1.55 \pm 1.29\%$ $1.55 \pm 0\%$ $1.56 \pm 6\%$
the refractive index of glass measured by a given method by four dependent measurements is found to have values of 1.54, 1.58, 1.52 at 1.56 respectively. The mean value of refractive index with excentage error is $1.55 \pm 1.29\%$ $1.55 \pm 0\%$ $1.56 \pm 6\%$ $1.56 \pm 0\%$

Question 3

A particle moves for 20 seconds with velocity 3m / s and then with velocity 4m / s for another 20 seconds and finally moves with velocity 5m / s for next 20 seconds. Then the average velocity of the particle is

5m / 8 for next 20 seconds. Then the average velocity of the particle is
Options:
A. 3m / s
B. 4m / s
C. 5m / s
D. Zero
Answer: B
Solution:
Solution:
Question 4
An athlete completes one round of a circular track of radius R in 40 s. What will be his displacement at the end of $2 \min 40$ seconds?
Options:
A. 8R
Β. 8πR
C. 2R
D. Zero
Answer: D
Solution:
Solution:
Question 5

A wheel having 1m diameter makes 60 revolutions per minute. The linear speed of a point on its circumference is

Options:

A. $\pi/2m/s$

B. πm / s	
C. 2πm / s	
D. 60πm / s	
Answer: B	
Solution:	
Solution:	
Question 6	
	o cover a distance s. The coefficient of friction he tyres is μ. The maximum time in which the car is proportional to
Options:	
Α. μ	
B. $\sqrt{\mu}$	
C. 1 / µ	
D. $1/\sqrt{\mu}$	
Answer: D	
Solution:	
Solution:	
Question 7	
	40 kg of water in 1 second. The water comes out a velocity of 3m / s. What is the power of the
Options:	
A. 12 kW	
B. 1.2 kW	

C. 120 kW

D. 1200 kW

Answer: B

Solution:
Question 8
Which one of the following is the S.I. unit of electric field strength?
Options:
$A. Am^{-1}$
$B. Nm^{-1}$
$C. Vm^{-1}$
D. Coulomb s cm ⁻¹
Answer: C
Solution:
Solution:
Question 9
If the distance between the two charged particles is reduced to half the original distance, then the force between them becomes
Options:
A. doubled
B. one-forth
C. one-half
D. four times
Answer: D
Solution:
Solution:
Question 10
A metal sheet is placed between two charges separated by a distance. Then the force between them will

3. decrease
C. remains the same
D. be reduced to half the initial value
Answer: A
Solution:
Solution:
Question 11
If the separation between carbon and oxygen in CO molecule is 0.12 nm, then the distance of the center of mass from the carbon atom is
Options:
A. 0.03 nm
3. 0.068 nm
C. 0.05 nm
O. 0.06 nm
Answer: B
Solution:
Solution:
Question 12
A hole is drilled along the earth's diameter and a stone is dropped into it. When the stone is at the center of the earth, it has
Options:
A. mass
3. weight

Solution:

Answer: A

D. zero mass

C. potential energy

A. increase

Solution:
Question 13
Two wires of the same radius and material have lengths in the ratio 1:2. If these are stretched by the same force, the strain produced in the two cases will be in the ratio
Options:
A. 1:2
B. 2:1
C. 1:1
D. 4:1
Answer: C
Solution:
Solution:
Question 14
Two wires of the same radius and material have lengths in the ratio 1:2. If these are stretched by the same force, the strain produced in the two cases will be in the ratio
Options:
A. 1:2
B. 2:1
C. 1:1
D. 4:1
Answer: C
Solution:
Solution:

Question 15

Standing waves are produced in a 10m long stretched string. If the

string vibrates in 5 segments and the wave velocity is 20m / sec, the frequency is
Options:
A. 2 Hz
B. 4 Hz
C. 5 Hz
D. 10 Hz
Answer: C
Solution:
Solution:
Question 16
A parallel plate condenser is charged and isolated. When a sheet of glass is interposed between the plates
Options:
A. the charges on the plates will be reduced
B. the potential difference between the plates will be reduced
C. the potential difference between the plates will be increased
D. the charges on the plates will be increased
Answer: C
Solution:
Solution:
Question 17
If a capacitor of Capacitance 10 micro Farad (μF) is charged to a potential difference of 100V, the energy stored in it is
Options:
A. 0.5J
B. 0.05 ergs

C. 10J

Answer: D Solution: Solution: Question 18 With increase in altitude, the conductivity of the atmosphere Options: A. first increases and then decreases B. increases C. decreases D. remains constant Answer: B Solution: Question 19 An electric iron box has a heater coil of resistance 50\Omega. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution: Solution:	D. 0.05J
Question 18 With increase in altitude, the conductivity of the atmosphere Options: A. first increases and then decreases B. increases C. decreases D. remains constant Answer: B Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Answer: D
Question 18 With increase in altitude, the conductivity of the atmosphere Options: A. first increases and then decreases B. increases C. decreases D. remains constant Answer: B Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Solution:
With increase in altitude, the conductivity of the atmosphere Options: A. first increases and then decreases B. increases C. decreases D. remains constant Answer: B Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Solution:
Options: A. first increases and then decreases B. increases C. decreases D. remains constant Answer: B Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50\Omega. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Question 18
A. first increases B. increases C. decreases D. remains constant Answer: B Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	With increase in altitude, the conductivity of the atmosphere
B. increases C. decreases D. remains constant Answer: B Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Options:
C. decreases D. remains constant Answer: B Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50\Omega. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	A. first increases and then decreases
D. remains constant Answer: B Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	B. increases
Answer: B Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	C. decreases
Solution: Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	D. remains constant
Solution: Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Answer: B
Question 19 An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Solution:
An electric iron box has a heater coil of resistance 50Ω. If it is connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Solution:
connected to 230V AC mains, the current flowing through the heater coil will be Options: A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	Question 19
A. 4.6 mA B. 5A C. 4.6A D. 15A Answer: C Solution:	connected to 230V AC mains, the current flowing through the heater
B. 5A C. 4.6A D. 15A Answer: C Solution:	Options:
C. 4.6A D. 15A Answer: C Solution:	A. 4.6 mA
D. 15A Answer: C Solution:	B. 5A
Answer: C Solution:	C. 4.6A
Solution:	D. 15A
	Answer: C
Solution:	Solution:
	Solution:

Question 20
Glass has a resistivity of the order of
Options:
A. $10^{-8}\Omega m$
B. $10^{-5}\Omega m$
C. $10^8\Omega m$
D. $10^{12}\Omega m$
Answer: D
Solution:
Solution:
Question 21
A long solenoid of n turns has a self inductance L and area of cross section a. When a current flows through the solenoid, it produces a magnetic field B. The current flowing through the solenoid is
Options:
A. Ban / L
B. BanL
C. Bn / aL
D. B / anL
Answer: A
Solution:
Solution:

Question 22

A conductor of length r moves in a uniform magnetic field of induction B with a velocity boldsymbol v. The emf induced across the conductor is

Options:

A. $(v \times B) \cdot r$

B. $v \cdot (r \times B)$

C. B. $(r \times v)$
D. $r \times (v \times B)$
Answer: A
Solution:
Solution:
Question 23
The penetrating powers of α , β and γ radiation, in decreasing order are
Options:
Α. α, β, γ
Β. γ, α, β
C. β, γ, α
D. γ, β, α
Answer: D
Solution:
Solution:
Question 24
A half-wave rectifier is being used to rectify an alternating voltage of frequency 50 Hz. The number of pulses of rectified current obtained in one second is
Options:
A. 50
B. 25
C. 100
D. 6
Answer: B
Solution:
Solution:

Question 25
The voltage V and the current I flowing through an A.C circuit are given by V = $2\cos 100\pit$ and I = $4\sin 100\pi t$, where t represents time. The power dissipated in the circuit is
Options:
A. zero Watt
B. 8 Watt
C. 4 Watt
D. 2 Watt
Answer: A
Solution:
Solution:
Question 26
An alternating e.m.f. is given by $V = 100\sin 314t$. Its frequency is
Options:
A. 100 Hz
B. 50 Hz
C. 314 Hz
D. 60 Hz
Answer: B
Solution:
Solution:
Question 27
In a purely inductive circuit, the current

Options:

A. is in phase with voltage

B. is out of phase with voltage

C. leads the voltage by 90°
D. lags behind the voltage by 90°
Answer: D
Solution:
Solution:
Question 28
The current and voltage in an A.C. circuit are given by
$I=I_o sin\left(\omega t-\frac{\pi}{2}\right)$ and $E=E_o sin\omega t.$ Then the average power consumption P in the circuit is
Options:
A. $P = \frac{E_o I_o}{\sqrt{2}}$
B. $P = \frac{EI}{\sqrt{2}}$
$C. P = \frac{E_0 I_0}{2}$
D. zero
Answer: D
Solution:
Solution:
Question 29
Two electric bulbs whose resistances are in the ratio 1:2, are connected in parallel to a constant voltage source. The power dissipated in them is in the ratio
Options:
A. 1:2
B. 2:1
C. 1:1
D. 1:4

Answer: B

Solution:
Solution:
Question 30
The neutral temperature for a thermocouple is 270°C. If the temperature of the cold junction is 15°C, then the inversion temperature is
Options:
A. 255°C
B. 285°C
C. 570°C
D. 525°C
Answer: D
Solution:
Solution:
Question 31
A source emits a sound of frequency $400\mathrm{Hz}$ but the listener hears it to be $390\mathrm{Hz}$. Then
Options:
A. the listener is moving towards the source
B. the source is moving toward the listener
C. the listener is moving away from the source
D. the listener has a defective ear
Answer: C
Solution:
Solution:
Question 32

The binding energy of the electron in a hydrogen atom is 13.6 eV, the energy required to remove the electron from the first excited state of ${\rm Li}^{++}$ is
Options:
A. 122.4 eV
B. 30.6 eV
C. 13.6 eV
$D.~3.4\mathrm{eV}$
Answer: B
Solution:
Solution:
Question 33
Which of the following nuclei has lowest value of the binding energy per nucleon?
Options:
$A. 2He^4$
B. $24Cr^{52}$
C. 62Sm ¹⁵²
D. 80Hg ¹⁰⁰
Answer: A
Solution:
Solution:
Question 34
The average number of neutrons emitted during the fission of U 235 is
Options:
A. 3
B. 2
C. 1.5

D. 2.5
Answer: D
Solution:
Solution:
Question 35
The radioactive decay of uranium into thorium is represented by the equation $92U^{238} \rightarrow 90Th^{234} + X$, then X is
Options:
A. an electron
B. a neutron
C. a proton
D. an alpha particle
Answer: D
Solution:
Solution:
Question 36
The same radioactive nucleus may emit
Options:
A. all the three α , β and γ simultaneously
B. either α or β or γ at a time
C. all the three α , β and γ at a time
D. only α and β
Answer: B
Solution:
Solution:

Question 37 The radius of a nucleus of mass number A is proportional to Options: A. A B. $A^{1/2}$ C. $A^{1/3}$ D. A^3 Answer: C

Solution:

Solution:

Question 38

Which one of the statements about nuclear forces is INCORRECT?

Options:

- A. Nuclear forces are short range forces
- B. Nuclear forces are charge independent forces
- C. Nuclear forces are exchange forces
- D. Nuclear forces are central forces

Answer: D

Solution:

Sol	I	-:	_	-	
50	w	Т	n	n	=

Question 39

Which one of the statements about neutron is INCORRECT?

- A. Neutron is a fundamental particle
- B. Neutron has no charge
- C. Nuclei of all elements in nature contain neutron
- D. Neutron has a spin

Answer: C
Solution:
Solution:
Question 40
The ground state energy of the hydrogen atom is
Options:
A. 13.6 eV
B. 0 eV
C3.4 eV
D13.6 eV
Answer: D
Solution:
Solution:
Question 41
Which one of the statements about matter waves is INCORRECT?
Options:
A. Matter waves are not electromagnetic waves
B. Matter waves are also called probability waves
C. de Broglie waves are pilot waves i.e., these waves guide the particle
D. The phase velocity of the matter waves in vacuum is independent of wavelength
Answer: D
Solution:
Solution:

Question 42

Kinetic energy of the cathode rays (electrons) depend on

A. voltage applied to the electrode
B. depend on work function
C. depend on both (A) and (B)
D. does not depend on any physical quantity
Answer: C
Solution:
Solution:
Question 43
A man cannot see objects clearly at a distance greater than 2m. He is then suffering from
Options:
A. short sight
B. long sight
C. astigmatism
D. presbyopia
Answer: A
Solution:
Solution:
Question 44
The magnifying power of a simple microscope can be increased by if we use eyepiece of
Options:
A. higher focal length
B. smaller focal length

Answer: B

C. higher diameter

D. smaller diameter

Solution:
Solution:
Question 45
If the focal length of the objective and eyepiece lens of an astronomical telescope are f $_{\rm o}$ and f $_{\rm e}$ respectively, then its magnifying power is
Options:
A. $\frac{f_o}{f_e}$
B. $\frac{\mathrm{f}_{\mathrm{e}}}{\mathrm{f}_{\mathrm{o}}}$
C. $\frac{2f_o}{f_e}$
D. 2f _e
Answer: A
Solution:
Solution:
Question 46
If f _r and f _v stand for focal length of the lens for red colour and violet colour respectively, then the longitudinal chromatic aberration of the lens for parallel rays is given by
Options:
A. $f_r - f_v$
B. $f_v - f_r$
C. $f_r f_v$
D. $f_v + f_r$
Answer: A
Solution:

Question 47
The deviation produced by a flint glass prism for violet and red light rays are 3.25° and 3.10° respectively. Then the angular dispersion is
Options:
A. 6.35°
B. 3.175°
C. 0.15°
D. 6.35 radians
Answer: C
Solution:
Solution:
Total internal reflection is NOT possible in the case when light travels from
_
Options:
A. glass to air
B. glass to water
C. water to glass
D. water to air
Answer: C
Solution:
Solution:
Question 49

When the angle of incidence on a certain material is 60°, the reflected light is completely polarized. The angle of refraction is then

Options:

A. 60°

3. 90°
C. 30°
D. 45°
Answer: C
Solution:
Solution:
Question 50
A sugar solution of length 15 cm has specific rotation of 65° and produces a optical rotation of 7°. Then the concentration of the solution is
Options:
A. 0.7g / cc
3. 13.9g / cc
C. 0.0717g / cc
O. 0.01g / cc
Answer: C
Solution:
Solution:
Question 51
Γο observe diffraction, the size of an obstacle
Options:
A. should be of the order of wavelength

Answer: A

B. should be much larger than the wavelength

 $C.\ has\ no\ relation\ to\ wavelength$

D. should be exactly / / 2.

Solution:
Question 52
If the distance between the screen and the slit is doubled in Young's double slit experiment, the fringe width will become
Options:
A. four times
B. two times
C. one-half
D. one-fourth
Answer: B
Solution:
Question 53
When light waves suffer reflection at the interface between air and glass, the change of phase of the reflected wave is
Options:
A. zero
В. п
С. 2п
D. π / 2
Answer: B
Solution:
Solution:
Question 54

If a string of string constant ${\bf k}$ is stretched by a length ${\bf x}$ under tension T , the energy stored is

A. $\frac{2k}{T^2}$
B. $\frac{2T^2}{k^2}$
C. $\frac{T^2}{2k}$
D. $\frac{2T}{k^2}$
Answer: C
Solution:
Solution:
Question 55
The Young's modulus of a perfectly rigid body is
Options:
A. zero
B. unity
C. infinite
D. may be any finite non-zero value
Answer: C
Solution:
Solution:
Question 56
A wire elongates by l mm when a load W is hanged at from it. If the wire goes over a pulley and the two weights W each are hung at the two ends, the elongation of the wire (in mm) will be
Options:
A. 1 / 2
B. 1
C. 2l

D. zero

Answer: B
Solution:
Solution:
Question 57
If two liquids of same masses but densities ρ_1 and ρ_2 respectively are mixed, then the density of the mixture is
Options:
A. $\rho_1 + \rho_2$
B. $\frac{\rho_1 + \rho_2}{2}$
$C. \frac{\rho_1 \rho_2}{\rho_1 + \rho_2}$
D. $\frac{2\rho_1\rho_2}{\rho_1 + \rho_2}$
Answer: D
Solution:
Solution:
Question 58
A boy carries on his head an airtight box containing a bird resting on the floor of the box. When the bird starts flying inside the box, he will feel that the box is now
Options:
A. lighter
B. heavier
C. same in weight as before
D. lighter in the beginning and heavier later
Answer: C
Solution:

Question 59
A cork ball is floating on the surface of water in a beaker. The beaker is covered with a bell jar and the air is evacuated. What will happen to the ball?
Options:
A. Sink a little
B. Rise a little
C. Remain unchanged
D. Sink completely
Answer: A
Solution:
Solution:
Question 60
The thermometer used as a reference standard is
Options:
A. mercury thermometer
B. platinum resistance thermometer
C. gas thermometer
D. thermocouple thermometer
Answer: C
Solution:
Solution:
Question 61 If α is coefficient of linear expansion, β is coefficient of superficial

If α is coefficient of linear expansion, β is coefficient of superficial expansion and γ is the coefficient of cubical expansion, then for the same rise in temperature, the percentage changes in α , β and γ are in the ratio

A. 1:2:3	
B. 3:2:1	
C. 1:1:1	
D. 1:2:4	
Answer: A	
Solution:	
Solution:	
Question 62	
If K and σ respectively are the thermal and metal at absolute temperature T , then	l electrical conductivities of a
Options:	
A. $\frac{K}{\sigma T} = \text{constant}$	
B. $\frac{K}{\sigma} = \text{constant}$	
C. $\frac{K}{T}$ = constant	
D. $\frac{\sigma}{KT}$ = constant	
Answer: A	
Solution:	
Solution:	
Question 63	
The velocity ${f V}$ of thermal radiation is (${f C}$ =	velocity of light in vacuum)
Options:	
A. V < C	
B. V > C	
C. V = C	
D. dependent on the medium	
Answer: C	

etic waves is
the of the waves

Question 66

The area of B – H	hysteresis loop	in a ferron	nagnetic m	laterial i	is a
measure of the					

$\boldsymbol{\cap}$	 • ~ .	ns:
.,		ис.
$\mathbf{\circ}$		

- A. net energy dissipated per unit volume per cycle of magnetization of the material
- B. permeability of the material
- C. susceptibility of the material
- D. retentivity of the material

Answer: A

\sim	1		- •			
•	$\mathbf{\alpha}$	111	ti	^	n	•
J	V.	ւս	ப	v	11	٠

Solution

Joiationii			

Question 67

The unit cubic cell of Al has an edge length equal to $4.5 \times 10^{-10} m$. The number of unit cells in an aluminium foil of volume $91 \times 10^{-6} m^3$ is

Options:

- A. 10^{24}
- B. 10^{-24}
- $C. 10^8$
- D. 10²³

Answer: A

Solution:

Sol	uti	on	:
		• • •	-

Question 68

The gate with the Boolean expression $Y = \overline{A \cdot B}$ for its output is

- A. AND
- B. NAND

\sim	$X \cap R$
U.	AUR

D. XNOR

Answer: B

Solution:

Solution:

Question 69

The Boolean expression for NOR gate is

Options:

A.
$$Y = A + \overline{B}$$

B.
$$Y = \overline{A + B}$$

C.
$$Y = \overline{A} + B$$

D.
$$Y = \overline{A} + \overline{B}$$

Answer: B

Solution:

Solution:

Question 70

What gate has the truth table given below?

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

- A. NOT
- B. AND
- C. NAND
- D. NOR

Allswer: D
Solution:
Solution:
Question 71
A transistor amplifier is operated in common emitter configuration at constant collector voltage of V $_{\rm C}$ = 1.5V, such that the change in the base current from 100 μ A to 150 μ A produces a change in the collector current from 5 mA to 10 mA. The current gain β of the circuit is then
Options:
A. 50
B. 67
C. 75
D. 100
Answer: D
Solution:
Solution:
Question 72
A two stage transistor amplifier has a gain of 10 for the first stage and a gain of 20 for the second stage. The overall gain of the cascade amplifier will be
Options:
A. 30
B. 10
C. 200
D. 2
Answer: C
Solution:

Question 73	
Long range radio transmission is possible when the radio waves are reflected from the ionosphere. For this to happen, the frequency of radio waves must be in the range	t he
Options:	
A. 80 – 150 MHz	
B. 8 – 25 MHz	
C. 1 – 3 MHz	
D. 150 – 1500 kHz	
Answer: B	
Solution:	
Solution:	
Question 74	
The colour of a star is dependent on its	
Options:	
A. radius	
B. distance from the earth	
C. temperature	
D. structure	
Answer: C	
Solution:	
Solution:	
Question 75	
Hubble constant H has the dimensions of	
Options:	

A. mass

B. length

C. $(\text{time })^{-1}$
D. temperature
Answer: C
Solution:
Solution:
Question 76
mole of water converted to steam at 373K is
Options:
A. $109.1 \text{JK}^{-1} \text{mol}^{-1}$
B. $40.7 \mathrm{kJ} \mathrm{mol}^{-1}$
C. $81.4 \mathrm{kJ} \mathrm{mol}^{-1}$
D. 218.2JK ⁻¹ mol ⁻¹
Answer: A
Solution:
Solution:
Question 77
For a non-linear triatomic gas the value of the ratio of $\mathbf{C}_{\mathbf{p}}$ and $\mathbf{C}_{\mathbf{V}}$ at laboratory temperature is (assuming no vibrational contribution)
Options:
A. 7 / 5
B. 9 / 7
C. 8 / 3
D. 4/3
Answer: D
Solution:
Solution:

Question 78
6 moles of SO_2 and 6 moles of O_2 are allowed to form SO_3 in a closed vessel. At the equilibrium stage, 60% of SO_2 is used up. The total number moles of the mixture at equilibrium is
Options:
A. 10.2
B. 9.8
C. 7.2
D. 11.2
Answer: A
Solution:
Solution:
Question 79
pH of a solution obtained by mixing equal volumes of the solutions with pH 3 and pH 5 is
Options:
A. 4.0
B. 3.5
C. 3.3
D. 2.0
Answer: C
Solution:
Solution:
Question 80
The K $_{\rm sp}$ of AgCl is 1×10^{-10} , its solubility in pure water in 0.01M NaCl i

Options:

A. 2×10^{-10}

B. 1×10^{-8}	
$C. 2 \times 10^{-8}$	
D. 1×10^{-10}	
Answer: B	
Solution:	
Solution:	
Question 81	
The edge length of fcc unit cell is $508\mathrm{pm}$. The radius of the atom is j	pm.
Options:	
A. 180	
B. 200	
C. 618	
D. 288	
Answer: A	
Solution:	
Solution:	
Question 82	
Crystalline solids having the least enthalpy of fusion is	
Options:	
A. Molecular solid	
B. Metallic solid	
C. Ionic solid	
D. Covalent solid	
Answer: A	
Solution:	

Question 83
Vapour pressure of water at 298K is 19.8 mm of Hg. 0.1 mole of glucose is dissolved in 172.8g of water. The vapour pressure of the solution is
Options:
A. 19.6 mm
B. 16.9 mm
C. 19.0 mm
D. 18.9 mm
Answer: A
Solution:
Solution:
Question 84
Osmotic pressure of blood is 8.21 atm at 37°C. Amount of glucose that should be used per litre of intravenous injection that is at the same osmotic pressure of blood is
Options:
A. 58.4g
B. 29.2g
C. 5.84g
D. 2.92g
Answer: A
Solution:
Solution:
Question 85
The equitant conductance of 1M benzoic acid is $12.8 \text{Scm}^2 \text{eq}^{-1}$ and if the limiting equivalent conductance of benzoate ion and H^+ ion are 42 and $288.42 \text{Scm}^2 \text{eq}^{-1}$, respectively, its degree of dissociation is

A. 39%	
B. 3.9%	
C. 0.35%	
D. 0.039%	
Answer: B	
Solution:	
Solution:	
Question 86	
Two half-cells of electrode potentials e_3 and e_3 are first electrode, second electrode and the second electrode are second electrode.	re number of electrons involved in
Options:	
A. $E_3 = E_2 - E_1$	
B. $E_3 = (E_1 n_1 + E_2 n_2) / n_3$	
C. $E_3 = (E_1 n_1 - E_2 n_2) / n_3^2$	
D. $E_3 = E_1 + E_2$	
Answer: A	
Solution:	
Solution:	
Question 87	
The potential of half-cell consisting of solution at 25° C is (E° = -0.763 V)	zinc electrode in 0.01MZnSO4
Options:	
A0.8221V	
B. $-0.704V$	
C0.881V	

D. -0.645V

Answer: A
Solution:
Solution:
Question 88
A dilute aqueous solution of ${\rm CuSO}_4$ is electrolyzed using Pt electrodes. The products at the anode and cathode are
Options:
A. O ₂ , H ₂
B. H ₂ , O ₂
C. O ₂ , Cu
D. S ₂ O ₈ ²⁻ , H ₂
Answer: C
Solution:
Solution:
Question 89
The half-life for radioactive decay of C^{14} is 5730 years. An archaeological artefact containing wood had only 80% of the C^{14} found in living tree. The age of the sample is
Options:
A. 1845 years
B. 2865 years
C. 4584 years
D. 1146 years
Answer: A
Solution:
Solution:

If the volume of the reaction vessel is halved, for the reaction
$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$, then the rate is

Options:
A. $1/6^{th}$ of its initial value
B. 1 / 4^{th} of its initial value
C. 8 times of its initial value
D. 4 times of its initial value
Answer: C
Solution:
Solution:
Question 91
·
The rate equation for a reaction: $A \rightarrow B$ is $r = k[A]^0$. If the initial concentration of the reactant is 'a' mol dm ⁻³ , then half-life period of reaction is
concentration of the reactant is 'a' moldm ⁻³ , then half-life period of
concentration of the reactant is 'a 'moldm ⁻³ , then half-life period of reaction is
concentration of the reactant is 'a 'moldm ⁻³ , then half-life period of reaction is Options:
concentration of the reactant is ' a ' mol dm $^{-3}$, then half-life period of reaction is Options: A. a / k
concentration of the reactant is ' a ' mol dm $^{-3}$, then half-life period of reaction is Options: A. a / k B. $2a / k$
concentration of the reactant is 'a 'mol dm $^{-3}$, then half-life period of reaction is Options: A. a / k B. 2a / k C. a / 2k
concentration of the reactant is 'a 'moldm ⁻³ , then half-life period of reaction is Options: A. a / k B. 2a / k C. a / 2k D. k / a

Question 92

The number of unit cells present in 39g of potassium that crystallizes as body centered cubic structure is $N_{\rm A}$ = Avogadro number)

Options:

A. N_A

$C. 0.5N_A$
D. $0.75N_{A}$
Answer: C
Solution:
Solution:
Question 93
Which one of the following is not correctly matched?
Options:
A. $[Ni(CN)_4]^{2-} - dsp^2$ hybridization, dia-magnetic
B. $[Cu(NH_3)_4]^{2+}$ - sp^3 hybridization, para-magnetic
C. $[NiCl_4]^{2-}$ – sp ³ hybridization, tetrahedral
D. $[CuCl_4]^{2-}$ - sp^3 hybridization, para-magnetic
Answer: B
Solution:
Solution:
Question 94
Which one of the following statements is not true according to Werner theory of coordination compounds?
Options:
A. Both primary and secondary valencies can be satisfied by anions
B. Secondary valency is non-directional

Solution:

Answer: B

C. Primary valency is ionic valency

D. Metal ions exhibit two types of valencies

B. 0.25NA_A

Solution:	
Question 95	
Which one of the following is true regarding the er of tetragonally distorted octahedral geometry?	nergies of d-orbitals
Options:	
A. $d_{yz} > d_{xz} > d_{xy}$	
B. $d_{x^2 - y^2} = d_{z^2}$	
C. $d_{xz} > d_{yz}$	
D. $d_{z^2} > d_{x^2 - y^2}$	
Answer: D	
Solution:	
Solution:	
Question 96	
In the estimation of Ca (II) ions, in the presence of ammonium chloride buffer solution, EDTA acts as	
Options:	
A. flexidentate	
B. pi-donor	
C. hexadentate	
D. tetradentate	
Answer: C	
Solution:	
Solution:	

How much amount of oxalic acid dihydrate crystals are required to prepare 1L of a decinormal solution of it?

Options:
A. 6.3g
B. 12.6g
C. 3.15g
D. 9g
Answer: A
Solution:
Solution:
Question 98
What is correct order of increasing acidic strength of oxides of nitrogen?
Options:
A. $NO < N_2O_3 < N_2O_4 < N_2O_5$
B. $NO = N_2O_3 < N_2O_4 = N_2O_5$
$C. NO > N_2O_3 < N_2O_4 > N_2O_5$
D. $NO > N_2O_3 > N_2O_4 > N_2O_5$
Answer: A
Solution:
Solution:
Question 99
Regarding compounds of sulfur, which one of the following statements in not true? $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
Options:
A. SF ₆ does not undergo hydrolysis
B. SF_4 undergoes hydrolysis
${\rm C.\ SF}_6$ is thermally stable and chemically inert
D. SF4 acts as Lewis acid

Answer: D
Solution:
Solution:
Question 100
Fluorine does not act as the central atom in interhalogen compounds, because
Options:
A. it is highly electronegative
B. of absence of d-orbitals
C. of its small size
D. of its gaseous nature
Answer: B
Solution:
Solution:
Question 101
A hydrometallurgical process involves the following steps. $Ag_2S + 4 NaCN \rightarrow 2 Na[Ag(CN)_2] + Na_2S$ $2 Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2 Ag \downarrow$ Which one of the following statements is true?
Options:
A. In the second step Zn (II) is reduced to Zn(0)
B. Dicyanoargentum(I) complex is insoluble in water
C. In the first step Ag(I) is reduced to Ag(0)
D. Tetracyanozinc(II) complex is soluble in water
Answer: D
Solution:
Solution:

Transition metals exhibit variable oxidation states. This is because

Options:

- A. the outermost shell is empty
- B. they are all metals
- C. the energies of (n 1)d and ns orbitals are almost equal
- D. the ionization energy to remove electron from ns orbital is very low

Answer: C

Solution:

Solution:

Question 103

The general electronic configuration of inner-transition elements is

Options:

A.
$$(n-2)f^{1-14}(n-1)d^{0,1}$$

B.
$$(n-2)f^{1-14}(n-1)d^{0-1}n s^2$$

C.
$$(n-1)f^{1-14}(n-1)d^{0-1}n s^2$$

D.
$$(n-2)f^{1-14}n s^2$$

Answer: B

Solution:

Solution:

Question 104

Which of the following species would be diamagnetic?

- A. Cr³⁺
- B. Co³⁺
- C. Br
- D. Zn²⁺

Answer: D
Solution:
Solution:
Question 105
Which orbital is designated by the quantum numbers: $n = 5$, $l = 1$, $m_l = 0$?
Options:
A. 5 s
B. 5p
C. 5d
D. 5f
Answer: B
Solution:
Solution:
Question 106
If travelling at equal speeds, which of the following matter waves have the longest wavelength?
Options:
A. Electron
B. Proton
C. Neutron
D. α particle
Answer: A
Solution:
Solution:

Number of angular nodes for	4d orbital is
Options:	
A. 4	
В. 3	
C. 2	
D. 1	
Answer: C	
Solution:	
Solution:	
Question 108	
Which of the following will no through electric field?	ot show deflection from the path on passing
Options:	
A. Electron	
B. Neutron	
C. Cathode rays	
D. Proton	
Answer: B	
Solution:	
Solution:	
Question 109	
Complete the following nucle $_{27}^{59}$ Co + $_{0}^{1}$ n $\rightarrow _{25}^{56}$ Mn + ?	ear equation:
Options:	
A. 4 ₁ ¹ H	
B. 4 ₁ ¹ n	

C. $_2$ He

D. 2 ₁ ¹ H
Answer: C
Solution:
Solution:
Question 110
Which among the following sequence is best suited for selective transformation on 2-methylbutane to 2-methylbutan-2-ol?
Options:
A. Treatment with Cl_2 in the presence of UV light followed by hydrolysis with potassium hydroxide in water
B. Treatment with Cl_2 in the presence of UV light followed by hydrolysis with potassium hydroxide in ethanol
C. Treatment with Br_2 in the presence of UV light followed by hydrolysis with potassium hydroxide in water
D. Treatment with $\rm I_2$ in the presence of UV light followed by hydrolysis with potassium hydroxide in a 1:1 mixture of water and ethanol
Answer: D
Solution:
Solution:
Question 111
Ozone depletion in Antartica is due to
Ontions

- A. sulphur containing gases
- B. peroxy acetyl nitrate
- C. chlorine nitrate
- D. fluorine

Answer: C

Solution:

Solution:
Question 112
When an organic compound ' A ' was treated sequentially with ammonia and Br ₂ / KOH, methanamine was obtained. Then ' A ' is an
Options:
A. ethanol
3. ethyl acetate
C. acetonitrile
D. acetic acid
Answer: B
Solution:
Solution:
Question 113
How many structural isomers are possible for C_3H_9N ?
Options:
A. 3
3. 4
C. 5
D. 6
Answer: B
Solution:
Solution:
Question 114

Which is a non-reducing sugar?

Options:

A. Glucose

B. Sucrose
C. Maltose
D. Fructose
Answer: B
Solution:
Solution:
Question 115
0.200g of an organic compound contains 71% carbon. What is the mass of ${\rm CO_2}$ produced when it is subjected to complete combustion?
Options:
A. 0.142
B. 0.039
C. 0.521
D. 0.733
Answer: C
Solution:
Solution:
Question 116
Consider the following compounds: (i) hydrazine (ii) paracetamol (iii) chlorophyll (iv) saccharin How many among them will test negative for nitrogen in Lassaigne's test?
Options:
A. 1
B. 2
C. 3
D. 4

Answer: A		
Solution:		
Which among the following is more reactive towards nitration using nitrating mixture?		
Options:		
A. tertiary-Butylbenzene		
B. Toluene		
C. Benzene		
D. Chlorobenzene		
Answer: B		
Solution:		
Solution:		
Question 118		
Which among the following is antiaromatic?		
Options:		
A.		
В.		
C.		
D.		

 \checkmark

Answer: A
Solution:
Solution:
Question 119
Hydrogenation of acetyl chloride in the presence of ${\rm Pd}$ – ${\rm BaSO}_4$ as catalyst to obtain ethanal is
Options:
A. Clemmensen reduction
B. Rosenmund reduction
C. Schmidt reaction
D. Dakin reaction
Answer: B
Solution:
Solution:
Question 120
Which among the following compounds will selectively give the same addition product with HBr under both Markonikkoff's and anti-Markonikkoff's addition conditions?
Options:
A. $CH_3 - CH = CH - CH_2 - CH_3$
$B. CH_3 - CH = CH - C(CH_3)_2$
C. $CH_3 - CH = CH - CH(CH_3)_2$
D. $C_6H_5 - CH = CH_2$
Answer: C
Solution:
Solution:

Among the following, the organic compound that gives propyne on treatment with sodamide with minimal side products is

A. CH₃CH₂CHCl₂

B. $CH_3CCl = CH_2$

 $C. CH_3 CCl = CH_2 Cl$

 $\mathrm{D.}\;\mathrm{CH_3CCl_2}-\mathrm{CH_3}$

Answer: A

Solution:

Solution:

Question 122

Which among the following tests is useful to differentiate between styrene and phenol?

Options:

- A. Lucas test
- B. Test with bromine water
- C. Test with bromine in dry chloroform
- D. Test with KMnO₄

Answer: C

Solution:

Solution:

Question 123

Identify the incorrect statement about natural rubber.

- A. Double bonds are located between C₂ and C₃ of each isoprene unit
- B. Has mostly trans double bonds

C. Intermolecular forces are quite weak
D. Has a randomly coiled structure
Answer: B
Solution:
Solution:
Question 124
The monomer unit/units in cellulose is/are
Options:
A. α-D-glucose
B. β-D-glucose
C. Alternating $\alpha\text{-D-glucose}$ and D-fructose units
D. Alternating β -D-fructose and D-fructose units
Answer: B
Solution:
Solution:
Question 125
Which among the following vitamins is the most efficient antioxidant?
Options:
A. Vitamin D
B. Vitamin C
C. Vitamin B
D. Vitamin A
Answer: B
Solution:
Solution:

Suppose $\sqrt{\frac{1+\cos A}{1-\cos A}}$ = 2. Then tan A =

Options:

A. $\tan A < 1$

B. tan A > 2

 $C. \tan A > 1$

D. $tan A = \infty$

Answer: C

Solution:

Solution:

Question 127

Let a and b be non zero real numbers such that $a^2 + b^2 = 1$. Then

Options:

A. a + b = 1

B. $a + b \le \sqrt{2}$

C. a + b $\geq \sqrt{2}$

D. a + b = 2

Answer: B

Solution:

Solution:

Question 128

Let $tan^2x = 2tan^2y + 1$. Then $sin^2y =$

Options:

A. sin 2x

B. $-\cos 2x$

 $C. \cos 2x$

Dsin 2x
Answer: B
Solution:
Solution:
Question 129
Let $\tan \alpha = \frac{x}{x+1}$ and $\tan \beta = \frac{x+1}{x}$. Then $\alpha + \beta =$
Options:
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$
Answer: C
Solution:
Solution:
Question 130
Let $a = \sin x$, $b = \csc x$ and $a + b = 3$. Then $a^2 + b^2 =$
Let $a = \sin x$, $b = \csc x$ and $a + b = 3$. Then $a^2 + b^2 =$ Options:
Options:
Options: A. 3
Options: A. 3 B. 5
Options: A. 3 B. 5 C. 7
Options: A. 3 B. 5 C. 7 D. 9

Suppose $\frac{1+\sin 2\theta}{1-\sin 2\theta} = \cot^2(x+\theta)$, then x is equal to

Options:

- A. $\frac{\pi}{4}$
- B. $\frac{\pi}{3}$
- C. $\frac{2\pi}{3}$
- D. $\frac{3\pi}{4}$

Answer: D

Solution:

Solution:

Question 132

The maximum value of $5\sin^2 x + 4\cos^2 x + \sin\frac{x}{2} + \cos\frac{x}{2}$ is

Options:

- A. 5 + $2\sqrt{2}$
- B. $5 2\sqrt{2}$
- C. 5 + $\sqrt{2}$
- D. 5 $\sqrt{2}$

Answer: C

Solution:

Solution:

Question 133

The chances to fail in Mathematics is 20% and the chances to fail in Chemistry is 25%. The chance to fail in at least one subject is

Options:

A. $\frac{11}{13}$

B. $\frac{14}{15}$	
C. $\frac{2}{5}$	
D. $\frac{11}{12}$	
Answer: C	
Solution:	
Solution:	
Question 134	
	and 6 blue balls. The probability that two balls ond ball drawn is blue without replacements, is
Options:	
A. $\frac{3}{5}$	
B. $\frac{4}{5}$	
C. $\frac{2}{5}$	
D. $\frac{7}{15}$	
Answer: A	
Solution:	
Solution:	
Question 135	
The third moment abou	at the mean for normal distribution is
Options:	
Α. 5σ	
B. $3\sigma^2$	
C. $7\sigma^2$	
D. 0	

Answer: D

Solution:
Solution:
Question 136
A box contains 24 identical balls of which 12 are white and remaining black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4 $^{\rm th}$ time on the 7 $^{\rm th}$ draw is
Options:
A. $\frac{6}{32}$
B. $\frac{5}{32}$
C. $\frac{7}{32}$
D. $\frac{1}{2}$
Answer: B
Solution:
Solution:
Question 137
5 gentlemen and 5 ladies take seats at random round a table. The probability that they are sitting alternatively is
Options:
A. $\frac{3}{126}$
B. $\frac{1}{252}$
C. $\frac{1}{126}$
D. $\frac{3}{252}$
Answer: C
Solution:

Question 138

Let A and B be two non-empty subsets of a set X such that A is not a subset of B. Then

Options:

- A. A and B are disjoint
- B. B \subseteq A
- C. A is the complement of B
- D. A and B may be disjoint

Answer: D

Solution:

Solution:

Question 139

Let $f : R \to R$ be defined by $f(x) = \cos 2x$. Then f is

Options:

- A. a one-to-one function
- B. an onto function
- C. both one-to-one and onto function
- D. neither one-to-one nor onto function

Answer: D

Solution:

Solution:

Question 140

Let $f\left(z+\frac{1}{z}\right)=z^2+\frac{1}{z^2}$ for all real $z\in R$ backslash $\{0\}$. Then f(z)=

Options:

A. z^2

B.
$$z^2 - 1$$

C.
$$z^2 - 2$$
 for all $|z| \ge 2$

D.
$$z^2 + 2$$
 for all $|z| \ge 2$

Answer: C

Solution:

Solution:

Question 141

Define f(x) = |x - 1| for all real numbers x. Then

Options:

A.
$$f(x^2) = (f(x))^2$$
 for all x

B.
$$f(x + y) = f(x) + f(y)$$
 for all x, y

C.
$$f(|x|) = |f(x)|$$
 for all x

D. All (A) to (C) above are not true

Answer: D

Solution:

Solution:

Question 142

The sum $\sum_{i=1}^{\infty} \frac{1}{i!} \begin{pmatrix} \sum_{k=1^{i}2}^{k-1} \end{pmatrix}$ is equal to

Options:

A.
$$e^2 - e$$

B.
$$e^2 + e$$

C.
$$e^2 + 1 / e$$

D.
$$e + 1 / e$$

Answer: A

Solution:

Question 143

If S =
$$\sum_{n=0}^{\infty} \frac{(\log x)^{2n}}{(2n)!}$$
, then S =

Options:

A.
$$x + x^{-1}$$

B.
$$x - x^{-1}$$

C.
$$\frac{x + x^{-1}}{2}$$

D. 0

Answer: C

Solution:

Solution:

Question 144

The sum of the series $\frac{2^2}{2!} + \frac{3^2}{3!} + \dots + \infty$ is

Options:

A. 2e

B. $2e^2$

C. e / 2

D. -e/2

Answer: A

Solution:

Solution:

Question 145

If
$$y = -\left(x^3 + \frac{x^6}{2} + \frac{x^9}{3} + \dots + \infty\right)$$

A.
$$x = 1 - e^{y}$$

B.
$$x = 1 + e^{y}$$

C.
$$x^3 = 1 - e^y$$

D.
$$x^3 = 1 + e^{-y}$$

Answer: C

Solution:

Solution:

Question 146

Sum of the series
$$\frac{2}{1!} + \frac{4}{3!} + \frac{6}{5!} + \dots + \infty$$

Options:

A. e

B. e^2

С. -е

 $D. -e^2$

Answer: A

Solution:

Solution:

Question 147

The value of
$$f(\theta) = \begin{pmatrix} \cos^2\theta & \cos\theta\sin\theta & \sin\theta \\ \cos\theta\sin\theta & \sin^2\theta & -\cos\theta \\ \sin\theta & -\cos\theta & 0 \end{pmatrix}$$

Options:

A. 0

B. 1

C. -1

D. 2

Answer: C

Let $A = \begin{bmatrix} 4x-7 & 2 & 2 \\ 2 & 4x-7 & 2 \\ 2 & 2 & 4x-7 \end{bmatrix}$. One of the root of the equation |A| = 0 is

Options:

A. 3/4

B. -3/4

C.4/3

D. -4/3

Answer: A

Solution:

Solution:

Question 151

Let A be the matrix $\begin{bmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$. Then the value of | adj A| is equal

to

Options:

A. 8

B. 64

C. 16

D. 32

Answer: B

Solution:

Solution:

Question 152

$$\begin{bmatrix} 1/36 & 0 \\ x & 1/36 \end{bmatrix} = \begin{bmatrix} 6 \\ - \end{bmatrix}$$

Given that the matrix $\begin{bmatrix} 1/36 & 0 \\ x & 1/36 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ -a & 6 \end{bmatrix}^{-2}$. Then the value of x is

Options:
A. $\frac{a}{108}$
B. $\frac{5a}{108}$
C. $\frac{3a}{118}$
D. $\frac{a}{118}$
Answer: A
Solution:
Solution:
Question 153 For a positive integer n, the third term in the expansion of
$\left(\sqrt[4]{a} + \frac{a}{\sqrt{a^{-1}}}\right)^n$ is 15a ⁴ . Then the value of n is
$\left(\sqrt[4]{a} + \frac{a}{\sqrt{a^{-1}}}\right)^n$ is 15a ⁴ . Then the value of n is
$\left(\sqrt[4]{a} + \frac{a}{\sqrt{a^{-1}}}\right)^n$ is 15a ⁴ . Then the value of n is Options:
$\left(\begin{array}{c} 4\sqrt{a} + \frac{a}{\sqrt{a^{-1}}} \right)^n$ is 15a ⁴ . Then the value of n is Options: A. 6
$\left(\begin{array}{c} 4\sqrt{a} + \frac{a}{\sqrt{a^{-1}}} \right)^n$ is 15a ⁴ . Then the value of n is Options: A. 6 B5
$\left(\begin{array}{c} 4\sqrt{a} + \frac{a}{\sqrt{a^{-1}}} \right)^n$ is 15a ⁴ . Then the value of n is Options: A. 6 B5 C. 3
$\left(\begin{array}{c}4\sqrt{a}+\frac{a}{\sqrt{a^{-1}}}\right)^n$ is 15a ⁴ . Then the value of n is Options: A. 6 B5 C. 3 D. 15
$\left(\begin{array}{c} 4\sqrt{a} + \frac{a}{\sqrt{a^{-1}}} \end{array}\right)^n$ is $15a^4$. Then the value of n is Options: A. 6 B5 C. 3 D. 15 Answer: A

 $\sum\limits_{i=0}^k \ \frac{i^k C_i}{^k C_{i-1}}$ is equal to

A.
$$\frac{k(2k+1)}{2}$$

B.
$$\frac{k(k+1)}{2}$$

Solution:	
Solution:	
Question 157	
Number of terms in the expansion of $(y^2 + \sqrt{y^2 - 1})^4 + (y^2 - \sqrt{y^2 - 1})^4$	is
Options:	
A. 10	
3. 8	
C. 6	
D. 5	
Answer: D	
Solution:	
Solution:	
Question 158	
There are 5 letters and 5 different envelopes. The number of ways in which all the letters can be put in wrong envelope is	
Options:	
A. 119	
3. 44	
C. 59	
D. 40	
Answer: B	
Solution:	
Solution:	
Ouestion 159	

The number of diagonals in an octagon will be

Options:
A. 12
B. 16
C. 18
D. 20
Answer: D
Solution:
Solution:
Question 160
The number of divisors of the form $4n + 2(n \ge 0)$ of the integer 240 is equal to
Options:
A. 3
B. 4
C. 12
D. 15
Answer: B
Solution:
Solution:
Question 161
There are three coplanar parallel lines. If any p points are taken on each of the lines, the maximum number of triangles with vertices at these points is
Options:
A. $p^2(p + 3)$
B. $p^2(p-3)$

C. $p^2(4p + 3)$

D. $p^2(4p - 3)$

Answer: D
Solution:
Solution:
Question 162
In class of 18 students, every student has to hand shake with every other student. The total number of handshakes was
Options:
A. 17
B. 18
C. 153
D. 306
Answer: C
Solution:
Solution:
Question 163
Total number of numbers that are less than 4.10^6 and can be formed using the digits 1, 2, 3 is equal to
Options:
A. $\frac{9.3^8 + 3}{2}$
B. $\frac{9.3^8 - 2}{3}$
C. $\frac{9.3^8 + 3}{3}$
D. $\frac{9.3^8 - 3}{2}$
Answer: D
Solution:

Solution:

Question 164
A variable name in certain computer language must be either an alphabet or an alphabet followed by a decimal digit. Total number of different variable names that can exist in that language is equal to
Options:
A. 280
B. 286
C. 290
D. 296
Answer: B
Solution:
Solution:
Question 165
Let $X = \{a \mid a \text{ is a prime number and } a < 30 \}$. The number of different rational numbers whose numerator and denominator belong to X is
Options:
A. 90
B. 91
C. 180
D. 181
Answer: B
Solution:
Solution:
Question 166
Let $z^2 - z + 1 = 0$ and z be a complex number. Then the value of $z^n - z^{-1}$

where n is a multiple of 3 is

Solution:
Question 169
$\cos\left(i\log\left(\frac{x-iy}{x+iy}\right)\right)$ is equal to
Options:
A. $\frac{x^2 - y^2}{x^2 + y^2}$
B. $\frac{xy}{x^2 + y^2}$
$C. \frac{x^2 - y^2}{2xy}$
$D. \frac{2xy}{x^2 + y^2}$
Answer: A
Solution:
Solution:
Question 170
Let z be a complex number satisfying the relation $ z-36 ^2=36z-1 ^2$. Then $ z $ is equal to
Options:
A. 5
B. 6
C. 7
D. 8
Answer: B
Solution:

Solution:

If z is a complex number such that $\left| \frac{z-1}{z+1} \right| = 0$ is purely real. Then

Options:

A. z is purely imaginary

B. z is purely real

C. |z| = 1

D. $Re(z) \neq 0$ and $Im(z) \neq 0$

Answer: B

Solution:

Solution:

Question 172

The product of all values of $(\cos x + i\sin x)^{\frac{3}{4}}$ is

Options:

A. $(\cos 4x + i\sin 4x)$

B. $(\cos 4x - i\sin 4x)$

C. $(\cos 3x - i\sin 3x)$

D. $(\cos 3x + i\sin 3x)$

Answer: D

Solution:

Solution:

Question 173

Let z be a complex number such that $|z + 4| \le 3$. Then

A.
$$|z + 1| = 6$$

B.
$$0 \le z + 1 \mid \le 6$$

C.
$$|z + 1| = 0$$

D.
$$3 \le z + 1 \mid \le 6$$

Answer: B
Solution:
Solution:
Question 174
Let a, b, c > 0. Then $a(1-b) > \frac{1}{4}$, $b(1-c) > \frac{1}{4}$, $c(1-a) > \frac{1}{4}$
Options:
A. are never possible
B. are always possible
C. are sometimes possible
D. cannot be discussed
Answer: A
Solution:
Solution:
Question 175
The inequality $\frac{2}{x} < 3$ is true, when x belongs to
Options:
A. [2 / 3, ∞)
B. $(-\infty, 2/3]$
C. $(2/3, \infty) \cup (-\infty, 0)$
D. $(-\infty, 0)$
Answer: C
Solution:
Solution:

Let $\alpha \in \left(0, \frac{\pi}{2}\right)$. The value of the expre	ssion $\sqrt{x^2 + x} +$	$\frac{\sin^2\alpha}{t^2}$ is always
greater than or equal to	·	$\sqrt{x^2 + x}$
Options:		
A. 1		
B. 2		
C. $2\sin\alpha$		
D. $2 \csc \alpha$		
Answer: C		
Solution:		
Solution:		
Question 177	-	
Solutions of $2y - 3 = y + 6 $ are		
Options:		
A1, -1		
B. 1, -1		
C1, 9		
D. 9		
Answer: D		
Solution:		
Solution:		

If $a \in R$ and $m = \frac{a^2}{1 + a^4}$ is real, then

Options:

A.
$$0 \le m \le \frac{1}{2}$$

B.
$$0 \le m \le 1$$

C.
$$0 \le m \le 2$$

Answer: A
Solution:
Solution:
Question 179
Let a, b, c be three distinct numbers which are in a Geometric Progression. Also the numbers a, 2b, 3c are in an Arithmetic Progression. Then the common ratio of the Geometric Progression is
Options:
A. 3
B. 1
C. $\frac{2}{3}$
D. $\frac{1}{3}$
Answer: D
Solution:
Solution:
Question 180
Three positive real numbers x , y , z are in Arithmetic Progression and $xyz = 4$. The the minimum value of y is
Options:
A. $\sqrt{2}$
B. $\sqrt[3]{2}$
C. $2^{1/3}$
D. 2 ^{2/3}
Answer: D
Solution:

D. $0 \le m \le \infty$

Question 181	
The maximum possible i	nteger value of sum 15 + 14 $\frac{1}{7}$ + 13 $\frac{2}{7}$ + is
Options:	
A. 134	
В. 136	
C. 138	
D. 140	
Answer: C	
Solution:	
Solution:	
Question 182	
Let S_n denotes the sum of the value of $S_{n+3} - 5S_{n+3}$	of n terms of an Arithmetic Progression. Then $\frac{1}{2} + 7S_{n+1} - 3S_n$ is
Options:	
A. 0	
В. 3	
C. 6	
D. 9	
Answer: A	
Solution:	
Solution:	

Options:

A. S = $1023\sqrt{3}$

Solution: Solution: Question 186 The equation $\sqrt{y+2-4\sqrt{y-2}} + \sqrt{y+7-6\sqrt{y-2}} = 1$ has **Options:** A. no solution B. one solution C. two solutions D. more than two solutions **Answer: D Solution: Solution: Question 187** Let α and β be the roots of the equation $my^2 - ny - p = 0$. Then the root of the equation $(m + px)^2 = n^2x$ are **Options:** A. $\alpha + \beta$, $\alpha - \beta$ B. $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ C. $\frac{1}{\alpha^2}$, $-\frac{1}{\beta^2}$ D. α^2 , β^2 **Answer: B Solution: Solution: Question 188**

If the roots of the equation $y^2-2my+m^2+m-3=0$ are real and less than 3 , then
Options:
A. $m = 1$
B. $m < -1$
C. $m = 2$
D. m < 2
Answer: D
Solution:
Solution:
Question 189
Let β,β^2 be the roots of the equation $y^2+4y+1=0.$ Then β^{46},β^{62} are roots of the equation
Options:
A. $y^2 + 4y + 1 = 0$
B. $y^2 - 4y + 1 = 0$
C. $y^2 - 4y - 1 = 0$
D. $y^2 + 4y - 1 = 0$
Answer: A
Solution:
Solution:
Question 190
The number of real solutions of the equation $\left(\frac{7}{13}\right)^x = -13 + x - x^2$ is
Options:
A. 3
B. 2

C. 1

1		Λ
	,	11

Answer: D

Solution:

Solution:

Question 191

Given that the sum of the squares of the roots of the equation $y^2-(k-3)y-k-2=0$ is 13 . Then number of values of k lying in the interval [1, 4] is

Options:

- A. 0
- B. 1
- C. 2
- D. 3

Answer: B

Solution:

Solution:

Question 192

Let $8^{\sin^2 x} + 8^{\cos^2 x} = 6$. Then

Options:

A.
$$\sin^2 x = \frac{2}{3}$$

B.
$$\sin x = -\frac{1}{3}$$

C.
$$\cos^2 x = \frac{1}{2}$$

D.
$$\cos x = -\frac{1}{2}$$

Answer: A

Solution:

Question 193 The equation $|\sin x| = 2\cos x$ has **Options:** A. infinitely many solutions B. finitely many solutions C. has no solutions in integers D. has no solutions **Answer: D Solution: Solution: Question 194** The value of x satisfying $1 + \cos x + \cos^2 x + \dots = 4 + 2\sqrt{3}$ in the interval $\left[\begin{array}{c} \frac{\pi}{2}, \pi \right]$ is **Options:** A. $\frac{2\pi}{3}$ B. $\frac{\pi}{2}$ C. $\frac{4\pi}{5}$ D. $\frac{3\pi}{4}$ **Answer: A Solution:**

Question 195

Solution:

In a triangle ABC, let $\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ac}$. Then $b^2 + c^2$ is equal to

Options:
A. a^2
B. ac
C. bc
D. a + b
Answer: A
Solution:
Solution:
Question 196
In a triangle ABC, let $\frac{2\cos A}{a} + \frac{\cos B}{b} + \frac{2\cos C}{c} = \frac{a}{bc} + \frac{b}{ac}$. Then $b^2 + c^2$ is equal
to
Options:
A. a ²
B. ac
C. bc
D. a + b
Answer: B
Solution:
Solution:
Question 197
If the sides of a triangle are proportional to the cosines of the opposite angles, then
Options:
A. the triangle is right angled
B. the triangle is isosceles
C. the triangle is equilateral

D. one of the angle is obtuse

Answer: C

Solution:		
Solution:		

Let a = 7, b = 4, c = 9a in a $\triangle ABC$. Then the values of sin $\frac{A}{2}$ and cos A are equal to respectively

Options:

A.
$$\sqrt{\frac{4}{13}}$$
 and $\frac{9}{13}$

B.
$$\sqrt{\frac{5}{13}}$$
 and $\frac{8}{13}$

C.
$$\sqrt{\frac{7}{13}}$$
 and $\frac{6}{13}$

D.
$$\sqrt{\frac{6}{13}}$$
 and $\frac{7}{13}$

Answer: D

Solution:

Solution:

Question 199

Given that the lengths of the sides p, q, r of a $\triangle PQR$ are in an Arithmetic Progression. Then the ration $\frac{q}{r}$ lies in the interval

Options:

A.
$$(\frac{1}{3}, \frac{2}{3})$$

B.
$$(\frac{2}{3}, 2)$$

C.
$$(\frac{2}{3}, 1)$$

D.
$$(\frac{1}{3}, \frac{4}{3})$$

Answer: B

Solution:
Question 200
The two adjacent sides AB and BC of a cyclic quadrilateral ABCD are 2 and 5 units respectively and the angle between them is 60°. Then the area of circle circumscribing the quadrilateral ABCD is
Options:
A. $\frac{9\pi}{2}$
B. $\frac{19\pi}{2}$
C. $\frac{9\pi}{3}$
D. $\frac{19\pi}{3}$
Answer: D
Solution:
Solution:
Question 201
In a \triangle ABC, $2a^2 + 9b^2 + c^2 = 6ab + 2ac$, then $\cos C$ is equal to
Options:
A. 1 / 2
B. 1 / 3
C. 1 / 4
D. 1 / 6
Answer: D
Solution:
Solution:

In the \triangle ABC, (a + b + c) $\left(\tan \frac{A}{2} + \tan \frac{B}{2}\right)$ is equal to
Options:
A. $2 \operatorname{c} \cot \frac{C}{2}$
B. $2a \cot \frac{A}{2}$
C. $2b \cot \frac{B}{2}$
D. $\tan \frac{C}{2}$
Answer: A
Solution:
Solution:
Question 203
$\sin \left[\frac{\pi}{6} - \sin^{-1} \left(-\frac{1}{2} \right) \right]$ is equal to

Options:

A. 0

Β. ∞

C. 1

D. -1

Answer: C

Solution:

Solution:

Question 204

If $\sin A + \cos B = a$ and $\sin B + \cos A = b$, $\sin (A + B)$ is equal to **Options:**

A.
$$\frac{a^2 + b^2 - 2}{2}$$

B.
$$\frac{a^2 + b^2 + 2}{2}$$

Question 207	
The midpoint of the line joining $(-6, 4)$ and $(8, -6)$ divides the ling oining $(3, 6)$ and $(-6, -3)$ in the ratio	1 e
Options:	
A. 2:7 externally	
3. 2:7 internally	
C. 3:7 internally	
O. 3:7 externally	
Answer: B	
Solution:	
Solution:	
Question 208	
	nes is
Question 208 The sum of the distances from a point to the two perpendicular li	nes is
Question 208 The sum of the distances from a point to the two perpendicular li 2 . The locus of the point is	nes is
Question 208 The sum of the distances from a point to the two perpendicular list 2. The locus of the point is Options:	nes is
Question 208 The sum of the distances from a point to the two perpendicular line. The locus of the point is Options: A. a square	nes is
Question 208 The sum of the distances from a point to the two perpendicular lines. The locus of the point is Options: A. a square B. a pair of straight lines	nes is
Question 208 The sum of the distances from a point to the two perpendicular liperature. The locus of the point is Options: A. a square B. a pair of straight lines C. an ellipse	nes is
Question 208 The sum of the distances from a point to the two perpendicular lines. The locus of the point is Options: A. a square B. a pair of straight lines C. an ellipse D. a parabola	nes is
Question 208 The sum of the distances from a point to the two perpendicular lite. The locus of the point is Options: A. a square B. a pair of straight lines C. an ellipse D. a parabola Answer: A	nes is

x + y = 0, then the new position of P is

Options:

A. (-1, 2)

Solution:
Question 212
The equation of the circumcircle of the triangle formed by the lines $x = 2$, $y = 0$ and $x + y - 6 = 0$ is
Options:
A. $x^2 + y^2 + 8x - 4y - 12 = 0$
B. $x^2 + y^2 - 8x - 4y - 12 = 0$
C. $x^2 + y^2 - 8x - 4y + 12 = 0$
D. $x^2 + y^2 + 8x - 4y + 12 = 0$
Answer: C
Solution:
Solution:
Question 213
The equation of a parabola is $y^2=4x$. P(1, 3) and Q(1, 1) are two points in the xy-plane. Then, for the parabola
Options:
A. P and Q are exterior points
B. P is an interior point while Q is an exterior point
C. P and Q are interior points
D. P is an exterior point while Q is an interior point
Answer: D
Solution:

A circle having its center at (2, 3) is cut orthogonally by the parabola $y^2 = 4x$. The possible intersection point of these curves can be

Options:

If the polar of $y^2 = 4ax$ is always touching the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then the locus of the pole is

Options:

A.
$$4a^2x^2 + b^2y^2 = 4a^4$$

B.
$$4a^2x^2 - b^2y^2 = 4a^4$$

C.
$$4a^2x^2 - b^2y^2 = 4b^4$$

D.
$$4a^2x^2 - b^2y^2 = 4b^4$$

Answer: B

Solution:

Solution:

Question 216

The radius of the circle passing through the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ and having its center (0, 3) is

Options:

- A. 4
- B. 3
- C. √12
- D. $\frac{7}{2}$

Answer: A

Solution:

Solution:

Question 217

The equation to the hyperbola having its eccentricity 2 and the distance between foci as $\boldsymbol{8}$, is

Options:

A.
$$\frac{x^2}{4} - \frac{y^2}{12} = 1$$

B.
$$\frac{x^2}{12} - \frac{y^2}{4} = 1$$

C.
$$\frac{x^2}{2} - \frac{y^2}{4} = 1$$

D.
$$\frac{x^2}{4} - \frac{y^2}{2} = 1$$

Answer: A

Solution:

Solution:

Question 218

The equation of the hyperbola whose vertices are at (5, 0) and (-5, 0) and $x = \frac{25}{7}$ as one of its directrices, is

Options:

A.
$$\frac{x^2}{25} - \frac{y^2}{24} = 1$$

B.
$$\frac{x^2}{24} - \frac{y^2}{25} = 1$$

C.
$$\frac{x^2}{16} - \frac{y^2}{25} = 1$$

D.
$$\frac{x^2}{25} - \frac{y^2}{16} = 1$$

Answer: A

Solution:

Question 219

 $\frac{d}{dx} \left\{ \tan^{-1} \left(\frac{3x - x^3}{1 - 3x^2} \right) \right\}$ is equal to

Options:

A.
$$\frac{3}{1+9x^2} \forall |x| < \frac{1}{\sqrt{3}}$$

B.
$$\frac{9}{1+x^2} \forall |x| < \frac{1}{\sqrt{3}}$$

C.
$$\frac{3}{1+x^2} \forall |x| < \frac{1}{\sqrt{3}}$$

D.
$$\frac{1}{9+x^2} \forall |x| < \frac{1}{\sqrt{3}}$$

Answer: C

Solution:

Solution:

Question 220

Let $x = \sec \theta - \cos \theta$ and $y = \sec^2 \theta - \cos^2 \theta$. Then $\left(\frac{dy}{dx}\right)^2 =$

Options:

A.
$$\frac{4(y^2-4)}{x^2+4}$$

B.
$$\frac{4(y^2+4)}{x^2+4}$$

C.
$$\frac{4(y^2-4)}{x^2-4}$$

D.
$$\frac{4(y^2+4)}{x^2-4}$$

Answer: B

Solution:

Solution:

Given that the line $y = 3x + c$ touches the curve $\frac{x}{2}$ c is	$\frac{x^2}{4} + \frac{y}{4}$	$\frac{y^2}{9} = 1.$	The val	ue of
Options:				
A. an integer				

B. always a rational number

C. always an irrational number

D. sometimes a rational number

Answer: C

Solution:

Solution:

Question 222

Let $f(x) = |\cos x| + |\sin x|$. Then $f'(2\pi/3) =$

Options:

A.
$$\frac{1 - \sqrt{3}}{2}$$

B.
$$\frac{\sqrt{3}-1}{2}$$

C. 0

D.
$$\frac{\sqrt{3} + 1}{2}$$

Answer: B

Solution:

Solution:

Question 223

If $x = a \left\{ \cos \theta + \log \tan \left(\frac{\theta}{2} \right) \right\}$ and $y = a \sin \theta$, then $\frac{dy}{dx}$ is

Options:

A. $\cot \theta$

B. $\tan \theta$

C. $\sin \theta$

D. $\cos \theta$
Answer: B
Solution:
Solution:
Question 224
If $f(x) = x - 1 $ $g(x) = f(f(x))$, then, for all $x \ge 2$, $g'(x) =$
Options:
A. 1
B. 2
C1
D. 0
Answer: A
Solution:
Solution:
Question 225
If $y = \sin[\cos^{-1}{\sin(\cos^{-1}x)}]$, then $\frac{dy}{dx}$ at $x = \frac{1}{2}$ is equal to
Options:
Options:
Options: A. 0
Options: A. 0 B. 1
Options: A. 0 B. 1 C. $2/\sqrt{3}$
Options: A. 0 B. 1 C. $2 / \sqrt{3}$ D1

The function f (x) = $\sqrt{\log_{10} \left(\frac{5x-x^2}{4}\right)}$ exists for
Options:
A. [1, 4]
B. [1, 0]
C. [0, 5]
D. [5, 0]
Answer: A
Solution:
Solution:
Question 227
The range of the function $f(x) = \frac{x+3}{ x+3 }$, $x \neq -3$ is
Options:
A. {0}
B. {0, 1}
C. {-3, 3}
D. {-1, 1}
Answer: D
Solution:
Solution:
Question 228
The period of the function f (x) = $\cos \frac{2x}{7} + \sin \frac{x}{2}$ is
Options:
Α. 7π
Β. 4π

 $C.\ 14\pi$

D. 28π

Answer: D
Solution:
Solution:
Question 229
Let $f: R \to R$ be defined as $f(x) = \begin{cases} 0, & x \text{ is irrational} \\ \sin x , & x \text{ is rational} \end{cases}$.
Then which of the following is true? Options:
 (A) f is discontinuous for all x (B) f is continuous for all x (C) f is discontinuous at x = kπ, where k is an integer (D) f is continuous at x = kπ, where k is an integer
Answer: D
Solution:
Solution:
Question 230
The period of the function $f(x) = \csc^3 3x + \cot 4x$ is
Options:
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. π
Answer: D
Solution:
Solution:
0 11 004

$\lim_{x\to\infty} \left(\frac{x+7}{x+3}\right)^{x+2}$ is equal to
Options:
$A. e^2$
B. e^4
C. e^{-4}
D. e^{-2}
Answer: B
Solution:
Solution:
Question 232
Let m, n be natural numbers with n > m . $\lim_{x \to 0} \frac{\sin x^n}{(\sin x)^m}$ is equal to
Options:
A. 2
B2
C1
D. 0
Answer: D
Solution:
Solution:

$$\lim_{x \to \frac{\Pi}{2}} \frac{\sin x - (\sin x)^{\sin x}}{1 - \sin x + \log \sin x}$$

Options:

- A. 1
- B. 2
- C. 3

D. 4
Answer: B
Solution:
Solution:
Question 234
If the curve $y = x^2 + bx + c$ touches the line $y = x$ at the point (1, 1), then the values of x for which the curve has a negative gradient are
Options:
A. $x > \frac{3}{2}$
B. $x < \frac{3}{2}$
C. $x > \frac{1}{2}$
D. $x < \frac{1}{2}$
Answer: D
Solution:
Solution:
Question 235
The sub tangent, ordinate and sub normal to the parabola $y^2 = 4ax$ at a point (different from the origin) are
Options:
A. in Harmonic Progression
B. in Geometric Progression
C. in Arithmetic Progression
D. equal
Answer: B
Solution:

Question 236

If $0 < x < \frac{\pi}{2}$, then

Options:

A. cos(sin x) < sin (cos x)

B. $\sin(\cos x) > \cos x$

C. cos(sin x) > sin (cos x)

D. $cos(sin x) \le cos x$

Answer: C

Solution:

Solution:

Question 237

The minimum value of $e^{(2x^2+2x+1)\sin^2 x}$ is

Options:

A. 0

B. 1

C. 2

D. 3

Answer: B

Solution:

Solution:

Question 238

$$\int \frac{dx}{x^2+4x+5}$$
 is equal to

Options:

A.
$$\frac{1}{2} \left\{ \tan^{-1}(x+2) + \frac{x+2}{x^2+4x+5} \right\} + c$$

B.
$$\frac{1}{2} \left\{ \tan^{-1}(x+2) + \frac{x}{x^2+4x+5} \right\} + c$$

C.
$$\frac{1}{2} \left\{ \tan^{-1}(x+2) + \frac{x-2}{x^2+4x+5} \right\} + c$$

D.
$$\frac{1}{2} \left\{ \tan^{-1}(x-2) + \frac{x}{x^2 + 4x + 5} \right\} + c$$

Answer: A

Solution:

Solution:

Question 239

 $\int \left(\frac{x+2}{x+4}\right)^2 e^x dx$ is equal to

Options:

A.
$$e^{x}\left(\frac{x}{x+4}\right) + c$$

B.
$$e^{x}\left(\frac{x+2}{x+4}\right) + c$$

C.
$$e^{x}\left(\frac{x-2}{x+4}\right)+c$$

D.
$$e^{x} \left(\frac{2xe^{x}}{x+4} \right) + c$$

Answer: A

Solution:

Solution:

Question 240

The value of $I = \int_0^1 x \left| x - \frac{1}{2} \right| dx$ is equal to

Options:

A.
$$\frac{1}{2}$$

B.
$$\frac{1}{3}$$

D. 0 sq. units

Answer: D

Solution:
Solution:
Question 243
If the position vector of three points are $\vec{a} - 2\vec{b} + 3\vec{c}$, $3\vec{a} + 4\vec{b} - 5\vec{c}$, $-\vec{a} - 8\vec{b} + 11\vec{c}$, then the three points are
Options:
A. non-coplanar
B. non-collinear
C. collinear
D. unit vectors
Answer: C
Solution:
Solution: Question 244
The sides of a parallelogram are $\vec{a} = \vec{i} + 2\vec{j} - 3\vec{k}$, $\vec{b} = \vec{i} + \vec{j} + 2\vec{k}$. Then the unit vector parallel to one of the diagonals is
Options:
A. $\frac{1}{\sqrt{14}} (2\vec{i} + 3\vec{j} + \vec{k})$
B. $\frac{1}{\sqrt{14}} (2\vec{i} + 3\vec{j} - \vec{k})$
C. $\frac{1}{\sqrt{26}} \left(\vec{j} + 5 \vec{k} \right)$
D. $\frac{1}{26} \left(-\vec{j} - 5\vec{k} \right)$
Answer: B
Solution:
Solution:

In a three dimensiona	space, the equation	8x + 7y = 0 represents
-----------------------	---------------------	------------------------

A. the z-axis

B. the z-plane

C. the x-axis

D. the plane y = 0

Answer: A

Solution:

Solution:

Question 246

The plane x - 2y + z = 6 and the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are related as

Options:

A. parallel to the plane

B. at right angles to a plane

C. lies in the plane

D. meets the plane obliquely

Answer: A

Solution:

Solution:

Question 247

If the position vectors of A, B and C are respectively $\hat{i} + \hat{j} + \hat{k}$, $\hat{i} - 2\hat{j} - 4\hat{k}$ and $2\hat{i} - 3\hat{j} - 3\hat{k}$, then $\cos^2 B$ is equal to

Options:

A. $\frac{1}{63}$

B. $\frac{4}{63}$

D.
$$\frac{11}{63}$$

Answer: B

Solution:

Solution:

Question 248

The number of solutions at x = 5 for the equation $\left| \frac{dy}{dx} \right| + \left| x \right| + 7 = 0$ is

Options:

- A. 0
- B. 1
- C. 5
- D. ∞

Answer: A

Solution:

Solution:

Question 249

A solution of the differential equation $(x + y)^2 \frac{dy}{dx} = 4$ is

Options:

A.
$$y = 2\tan^{-1}\left(\frac{x-y}{2}\right) + c$$

B.
$$y = 2\tan^{-1}\left(\frac{x+y}{2}\right) + c$$

C.
$$y = tan^{-1} \left(\frac{x-y}{2} \right) + c$$

D.
$$y = tan^{-1} \left(\frac{x+y}{2} \right) + c$$

Answer: B

Solution:
Question 250
$I = \int_{-3}^{2} (x + 1 + x + 2) dx =$
Options:
A. 10
B. 12
C. 15
D. 18
Answer: C

Solution:

Solution:
