MATHEMATICS

DPP No. 22

Total Marks: 32

Max. Time: 35 min.

Γ12.

[12,

[8,

121

15]

81

Topics: Fundamentals of Mathematics, Function, Limits

Type of Questions M.M., Min.

Single choice Objective (no negative marking) Q.1,2,3,4 (3 marks, 3 min.)
Subjective Questions (no negative marking) Q.5,6,7 (4 marks, 5 min.)
Match the Following (no negative marking) Q.8 (8 marks, 8 min.)

1. Range of the function $f(x) = \frac{\ln x}{\sqrt{x}}$ is

Range of the function
$$I(X) = \frac{1}{\sqrt{X}}$$
 is

$$\text{(A) } (-\infty,\,e) \qquad \qquad \text{(B) } (-\infty,\,e^2) \qquad \qquad \text{(C) } \left(-\infty,\frac{2}{e}\right] \qquad \qquad \text{(D) } \left(-\infty,\frac{1}{e}\right]$$

2. Let $\tan (2\pi |\sin \theta|) = \cot (2\pi |\cos \theta|)$, where $\theta \in R$ and $f(x) = (|\sin \theta| + |\cos \theta|)^x$, $x \ge 1$. Then range of f(x) does not include (A) 1 (B) 2 (C) 3 (D) 4

3. Range of the function
$$f(x) = \sqrt{\sin^{-1}|\sin x| - \cos^{-1}|\cos x|}$$
 is
(A) $\{0\}$ (B) $\left[0, \sqrt{\pi/2}\right]$ (C) $\left[0, \sqrt{\pi}\right]$ (D) none of these

4. If
$$f(4) = g(4) = 2$$
, $f'(4) = 9$, $g'(4) = 6$, then $\lim_{x \to 4} \frac{\sqrt{f(x)} - \sqrt{g(x)}}{\sqrt{x} - 2}$ is equal to

(A)
$$3\sqrt{2}$$
 (B) $\frac{3}{\sqrt{2}}$ (C) 0 (D) does not exists

5.

(i)
$$\lim_{x \to \infty} \frac{\cot^{-1}\left(\sqrt{x+1} - \sqrt{x}\right)}{\sec^{-1}\left(\left(\frac{2x+1}{x-1}\right)^{x}\right)}$$
 (ii)
$$\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r}{1+r^{2}+r^{4}}$$

6. Let
$$f(x) = \begin{cases} \frac{\sin ax^2}{x^2}; & x \neq 0 \\ \frac{3}{4} + \frac{1}{4a}; & x = 0 \end{cases}$$
. For what values of a, $f(x)$ is continuous at $x = 0$?

7. Find all values of the parameter 'a' for which the inequality $4^x - a2^x - a + 3 \le 0$ is satisfied by at least one real x.

8. Column - I Column - II

(A)
$$\lim_{x \to \pi/2} [\sin^{-1} \sin x] =$$
 (p) -2

(B)
$$\lim_{x \to -\infty} [\tan^{-1}x] =$$
 (q) 0

(C)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{1 - \sqrt{\sin 2x}}}{\pi - 4x} =$$
 (r) 1

(D)
$$\lim_{x \to 0^+} \left[\frac{\sin|x|}{x} \right] =$$
 (s) does not exist.

(: where [.] denotes greatest integer function)

Answers Key

1. (C) **2.** (A) **3.** (A) **4.** (A)

5. (i) 1 (ii) $\frac{1}{2}$ **6.** $a = 1, a = \frac{-1}{4}$

7. $a \in [2, \infty)$ 8. $(A) \rightarrow r$, $(B) \rightarrow p$, $(C) \rightarrow s$, $(D) \rightarrow q$